Solutions 09

1. *i*. Determine all of the monic irreducible polynomials of degree 3 over \mathbb{F}_3 . *ii*. Prove that

$$\frac{\mathbb{F}_3[x]}{\langle x^3 - x - 1 \rangle} \cong \frac{\mathbb{F}_3[x]}{\langle x^3 - x^2 + x + 1 \rangle} \,.$$

Solution.

i. The seive of Eratosthenes gives

so the 8 monic irreducible polynomials of degree 3 in $\mathbb{F}_3[x]$ are

ii. Consider the ring homomorphism

$$\varphi \colon \mathbb{F}_3[x] \to \frac{\mathbb{F}_3[x]}{\langle x^3 - x^2 + x + 1 \rangle}$$

defined by $\varphi(x) := x^2 + x$. Since we have

$$-(x^{2} + x)^{2} = -x^{4} - 2x^{3} - x^{2} = -x^{4} + x^{3} - x^{2}$$

$$= -x(x^{3} - x^{2} + x + 1) + x$$

$$(x^{2} + x)^{2} + (x^{2} + x) = x^{4} + 2x^{3} + 2x^{2} + x = x^{4} - x^{3} - x^{2} + x$$

$$= x(x^{3} - x^{2} + x + 1) + x^{2}$$

in $\mathbb{F}_3[x]$, we see that $\varphi(-x^2) = x$ and $\varphi(x^2 + x) = x^2$. As the 27 polynomials in the \mathbb{F}_3 -span of $\{1, x, x^2\}$ form a complete set of representatives for the cosets of $\langle x^3 - x^2 + x + 1 \rangle$, we see that φ is surjective. Moreover, we have

$$(x^{2} + x)^{3} - (x^{2} + x) - 1 = x^{6} + 3x^{5} + 3x^{4} + x^{3} - x^{2} - x - 1$$

= $x^{6} + x^{3} - x^{2} - x - 1$
= $(x^{3} + x^{2} - 1)(x^{3} - x^{2} + x + 1)$

in $\mathbb{F}_3[x]$, so $\langle x^3 - x - 1 \rangle \subseteq \text{Ker}(\varphi)$. Part *i* shows that the polynomial $x^3 - x - 1$ is irreducible in $\mathbb{F}_3[x]$ which implies that the ideal $\langle x^3 - x - 1 \rangle$ is maximal and $\langle x^3 - x - 1 \rangle = \text{Ker}(\varphi)$. Thus, the map φ induces a ring isomomorphism from the quotient $\mathbb{F}_3[x]/\langle x^3 - x - 1 \rangle$ to $\mathbb{F}_3[x]/\langle x^3 - x^2 + x + 1 \rangle$.

MATH 893 : 2024

2. Factor $x^4 + 1$ into irreducibles in $\mathbb{F}_2[x]$, $\mathbb{F}_7[x]$, $\mathbb{F}_{13}[x]$, $\mathbb{F}_{17}[x]$, and $\mathbb{Q}[x]$.

Solution. In $\mathbb{F}_2[x]$, we have $(x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1 = x^4 + 1$ and x + 1 is clearly irreducible in $\mathbb{F}_2[x]$.

In $\mathbb{F}_7[x]$, we have $(x^2 + 3x + 1)(x^2 - 3x + 1) = x^4 - 7x^2 + 1 = x^4 + 1$. Evaluating these quadratic polynomials at each element of \mathbb{F}_7 gives

x	0	1	2	3	4	5	6
$x^2 + 3x + 1$	1	5	4	5	1	6	6
$x^2 - 3x + 1$	1	6	6	1	5	4	5

As these quadratic polynomials have no roots in \mathbb{F}_7 , they are irreducible in $\mathbb{F}_7[x]$.

In $\mathbb{F}_{13}[x]$, we have $(x^2 - 5)(x^2 + 5) = x^4 - 25 = x^4 + 1$. Evaluating these quadratic polynomials at each element of \mathbb{F}_{13} gives

x	0	1	2	3	4	5	6	7	8	9	10	11	12
$x^2 - 5$	8	9	12	4	11	7	5	5	7	1	4	12	9
$x^2 + 5$	5	6	9	1	8	4	2	2	4	8	1	9	6

As these quadratic polynomials have no roots in \mathbb{F}_{13} , we see that they are irreducible in $\mathbb{F}_{13}[x]$.

In $\mathbb{F}_{17}[x]$, we have

$$(x-8)(x+8)(x-2)(x+2) = (x^2-13)(x^2-4) = x^4 - 17x^2 + 52 = x^4 + 1.$$

The linear polynomials are clearly irreducible in $\mathbb{F}_{17}[x]$.

The irreducible factorization of $x^4 + 1$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$ are the equal. Since $m^4 > 0$ for any nonzero integer *m*, we see that $x^4 + 1$ does not have a linear factor in $\mathbb{Z}[x]$. Suppose there exists integers *a*, *b*, *c*, and *d* such that

$$x^{4} + 1 = (x^{2} + ax + b)(x^{2} + cx + d)$$

= $x^{4} + (a + c)x^{3} + (b + d + ac)x^{2} + (ad + bc)x + bd$.

It follows that a + c = 0, b + d + ac = 0, ad + bc = 0 and bd = 1. From these equations, we obtain $b = d = \pm 1$, a = -c and $c^2 = \pm 2$ which is impossible because $c \in \mathbb{Z}$. Thus, $x^4 + 1$ has no quadratic factors in $\mathbb{Z}[x]$. Since $x^4 + 1$ has no factors in $\mathbb{Z}[x]$, we conclude that it is irreducible in $x^4 + 1$.

Remark. For every prime integer *p*, the polynomial $x^4 + 1$ factors in $\mathbb{F}_p[x]$, but it is irreducible in $\mathbb{Z}[x]$.

- **3.** Consider f := xz yw in $\mathbb{Z}[w, x, y, z]$.
 - *i*. Prove that $\langle f \rangle$ is a prime ideal in $\mathbb{Z}[w, x, y, z]$.
 - *ii.* Prove that $\mathbb{Z}[w, x, y, z]/\langle f \rangle$ is not a unique factorization domain.

Solution.

i. Because the ring $\mathbb{Z}[x, y, z, w]$ is a unique factorization domain, it suffices to show that the polynomial f = xz - yw is irreducible. Suppose that

$$wz - xy = g(x, y, z, w) \cdot h(x, y, z, w)$$

MATH 893 : 2024

for some *g* and *h* in $\mathbb{Z}[w, x, y, z]$ having positive degree. As *f* is homogeneous of degree 2, it follows that *g* and *h* are homogeneous of degree 1, so

$$g = Ax + By + Cz + Dw$$
 and $h = Ex + Fy + Gz + Hw$

for some integers A, B, \ldots, H . Hence, we obtain

$$\begin{aligned} xz - yw &= g(x, y, z, w) \cdot h(x, y, z, w) \\ &= AEx^2 + (AF + BE)xy + (AG + CE)xz + (AH + DE)xw \\ &+ BFy^2 + (BG + CF)yz + (BH + DF)yw + CGz^2 \\ &+ (CH + DG)zw + HDw^2. \end{aligned}$$

Since AE = 0 and AG + CE = 1 exactly one of A and E is zero. If A = 0, then the equation 0 = AF + BE = BE implies that B = 0 and the equation 0 = AH + DE = DE implies that D = 0. However, this means -1 = BH + DF = 0 which is a contradiction. If E = 0 then the equation 0 = AF + BE = AF implies that F = 0 and the equation 0 = AH + DE = AH implies that H = 0. However, this means -1 = BH + DF = 0 which is again a contradiction. Therefore, the polynomial xz - yw is irreducible.

ii. First, we claim that the coset $x + \langle f \rangle$ in the quotient ring $\mathbb{Z}[x, y, z, w]/\langle f \rangle$ is irreducible. Suppose there exists polynomials g and h in $\mathbb{Z}[w, x, y, z]$ such that $x + \langle f \rangle = (g + \langle f \rangle)(h + \langle f \rangle)$. Hence, we have $x - gh \in \langle f \rangle$. Decomposing the polynomials g and h into homogeneous parts, we have

$$g = \sum_{i=0}^{d} g_i$$
 and $h = \sum_{j=0}^{\ell} h_j$.

We may assume that, for any nonnegative integers *i* and *j*, neither g_i nor h_j belong to the principal ideal $\langle f \rangle$. Since *f* is homogeneous, it follows that each homogeneous part of x - gh also belongs to the ideal $\langle f \rangle$. If $\max(d, \ell) > 1$, then the top degree part of x - gh is $g_d h_\ell \in \langle f \rangle$. Because the ideal $\langle f \rangle$ is prime, we have either $g_d \in \langle f \rangle$ or $h_\ell \in \langle f \rangle$ contradicting our assumptions. Thus, we see that $\max(d, \ell) \leq 1$. The degree 0 part of x - gh is $g_0 h_0$. Since *f* has degree 2, the relation $g_0 h_0 \in \langle f \rangle$ implies that either $g_0 = 0$ or $h_0 = 0$. Without loss of generality, we may assume $g_0 = 0$. Hence, the degree 1 part of x - gh equals $x - g_1 h_0$. Because $x - g_1 h_0 \in \langle f \rangle$, we have $x - g_1 h_0 = 0$ and $g_1 = \pm x$ and $h_0 = \mp 1$. Lastly, degree 2 part of x - gh equals $g_1 h_1 = \pm x h_1 \in \langle f \rangle$ which implies that $h_1 = 0$. We conclude that $g = \pm x$ and $h = \mp 1$, so the image of *x* in the quotient $\mathbb{Z}[x, y, z, w]/\langle f \rangle$ is irreducible.

By symmetry, the images of x, y, z, and w in the quotient $\mathbb{Z}[x, y, z, w]/\langle f \rangle$ are distinct and irreducible. Hence, the equation xz = yw in this quotient ring gives two distinct factorizations of an element into irreducibles.

