Solutions 10

- **1.** A module is *simple* if it is not the zero module and if it has no proper submodule. *i*. Let *V* be a simple *R*-module. Show that *V* is cyclic.
 - *ii.* Prove *Schur's Lemma*: Any *R*-linear map $\varphi : V \rightarrow W$ between simple *R*-modules is either is zero or an isomorphism.
 - *iii*. For a simple *R*-module *V*, show that the set $\text{End}_R(V)$ of endomorphisms forms a field where multiplication is given by composition of functions and addition is defined pointwise.

Solution.

- *i*. A nonzero element *g* in *V* generates a nonzero submodule $\langle g \rangle$ in *V*. As *V* is simple, it follows that $V = \langle g \rangle$.
- *ii.* Since *V* is simple, the submodule $\text{Ker}(\varphi) \subseteq V$ is either 0 or *V*, so φ is either injective or the zero map. Since *W* is simple, the submodule $\text{Im}(\varphi) \subseteq W$ is either 0 or *W*, so φ is either the zero map or surjective. Combining these, we see that φ is either zero or an isomorphism.
- *iii*. The set $\operatorname{End}_R(V)$ forms an *R*-module where is addition defined pointwise, so it is an abelian group under addition. For any φ , ψ , and θ in $\operatorname{End}_R(V)$ and any v in *V*, we have

$$(\varphi \circ (\psi + \theta))(v) = \varphi((\psi + \theta)(v)) = \varphi(\psi(v) + \theta(v)) = (\varphi \circ \psi)(v) + (\varphi \circ \theta)(v),$$

so the distributive axiom holds. Because *V* is a simple module, part *ii* implies that the set of endomorphism consists of the zero map and the set of *R*-module automorphisms $\operatorname{Aut}_R(V)$ of *V*. As the set $\operatorname{Aut}_R(V)$ is a group, it follows that multiplication in $\operatorname{End}_R(V)$ is associative with the identity $\operatorname{id}_V : V \to V$ and any nonzero element is a unit. Finally, part *i* implies that $V = \langle u \rangle$ for some *u* in *V*. For any *v* in *V*, there exists *r* in *R* such that v = r u. For any φ and ψ in $\operatorname{End}_R(V)$, define *s* and *t* in *R* by $\varphi(u) := s u$ and $\psi(u) := t u$. Hence, we have

$$(\varphi \circ \psi)(v) = r \varphi(\psi(u)) = r t \varphi(u) = r t s u = r s \psi(u) = r \psi(\varphi(u)) = (\psi \circ \varphi)(v),$$

so $\varphi \circ \psi = \psi \circ \varphi$ and the multiplication is commutative. Therefore, $\text{End}_R(V)$ is a field.

- **2.** Let *R* be domain and let *V* be an *R*-module. An element *v* in *V* is a **torsion element** if there is a nonzero element *r* in *R* such that r v = 0. Let $\tau(V)$ be the set of torsion elements of *V*. A module *V* is **torsion** if $\tau(V) = V$ and it is **torsion-free** if $\tau(V) = 0$.
 - *i*. Demonstrate that the *annihilator* Ann $(V) := \{ f \in R \mid f v = 0 \text{ for all } v \in V \}$ forms an ideal in *R*.
 - *ii.* Show that $\tau(V)$ is a submodule of *V*.
 - *iii*. Prove that $V/\tau(V)$ is torsion-free.
 - *iv.* For any *R*-linear map $\varphi \colon V \to W$, demonstrate that $\varphi(\tau(V)) \subseteq \tau(W)$.
 - *v*. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Solution.

i. For any *r* and *s* in *R*, any *f* and *g* in Ann(V), and any *v* in *V*, we have

$$(rf + sg)v = r(fv) + s(gv) = r0 + s0 = 0,$$

so $r f + s g \in Ann(V)$ and the annihilator of V is an ideal in R.

ii. By definition, an element v in R is a torsion element if $Ann(v) \neq 0$. Suppose that v and v' are elements in $\tau(V)$. There exists nonzero elements r and r' in R such that r v = 0 and r' v' = 0. For any s and s' in R, we have

$$r r' (s v + s v') = s r' (r v) + s' r (r' v') = s r' 0 + s' r 0 = 0.$$

As *R* is domain, we have $rr' \neq 0$ and $Ann(sv + sv') \neq 0$. Thus, we deduce that $sv + s'v' \in \tau(V)$, so $\tau(V)$ is a submodule.

iii. Choose an element *u* in *V* such that the coset $u + \tau(V)$ in $V/\tau(V)$ is nonzero; this means *u* is not in $\tau(V)$ and $\operatorname{Ann}(u) = 0$. Suppose that $\operatorname{Ann}(u + \tau(V)) \neq 0$. It follows that there exists a nonzero element *r* in *R* such that

$$0 = r(u + \tau(V)) = r u + \tau(M),$$

so we deduce that $r u \in \tau(V)$. Hence, there exist a nonzero element r' in R such that 0 = r'(r u) = (r' r) u. As R is a domain, we have $r' r \neq 0$. It follows that $Ann(u) \neq 0$ contradicting the hypothesis that $u + \tau(V) \neq 0$. We conclude that $\tau(V/\tau(V)) = 0$ and $V/\tau(V)$ is torsion-free.

- *iv.* Consider an element v in $\tau(V)$; there exists a nonzero element r in R such that r v = 0. Applying the R-linear map φ , we obtain $0 = \varphi(r v) = r \varphi(v)$, which shows that $\varphi(v) \in \tau(W)$.
- *v*. For any integer p and any nonzero integer q, we have

$$q(p/q + \mathbb{Z}) = p + \mathbb{Z} = 0$$

in \mathbb{Q}/\mathbb{Z} . Hence, every element in \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is a torsion element and \mathbb{Q}/\mathbb{Z} is a torsion module. Because $\{1/q + \mathbb{Z} \mid 0 < q \in \mathbb{Z}\}$ is a distinct set of elements in \mathbb{Q}/\mathbb{Z} , we see that \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

3. *i*. Let $\varphi : V' \to V$ and $\psi : V \to V''$ be *R*-linear maps. Prove that the sequence

$$(\ddagger) \qquad \qquad V' \xrightarrow{\varphi} V \xrightarrow{\psi} V'' \longrightarrow 0$$

is exact if and only if, for every R-module W, the sequence

$$(\bigstar) \qquad 0 \longrightarrow \operatorname{Hom}_{R}(V'', W) \xrightarrow{\operatorname{Hom}_{R}(\psi, W)} \operatorname{Hom}_{R}(V, W) \xrightarrow{\operatorname{Hom}_{R}(\varphi, W)} \operatorname{Hom}_{R}(V', W)$$

is exact.

ii. Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\langle m \rangle, \mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle d \rangle$ where $d := \operatorname{gcd}(m, n)$.

Solution.

i. Suppose that the sequence (\ddagger) is exact. Given an *R*-linear map $\varsigma : V'' \to W$ such that $(\operatorname{Hom}_R(\psi, W))(\varsigma) = \varsigma \circ \psi = 0$, it follows that $\varsigma = 0$ because ψ is surjective. Hence, the sequence (\bigstar) is exact at $\operatorname{Hom}_R(V'', W)$. As $\psi \circ \varphi = 0$, it follows that

 $\operatorname{Hom}_{R}(\varphi, W) \circ \operatorname{Hom}_{R}(\psi, W) = \operatorname{Hom}_{R}(\psi \circ \varphi, W) = \operatorname{Hom}_{R}(0, W) = 0$

MATH 893 : 2024

which shows that $\operatorname{Im}(\operatorname{Hom}_R(\varphi, W)) \subseteq \operatorname{Ker}(\operatorname{Hom}_R(\psi, W))$. Consider an *R*-linear map $\theta : V \to W$ in $\operatorname{Ker}(\operatorname{Hom}_R(\varphi, W))$. As $\theta \circ \varphi = 0$, we have $\operatorname{Ker}(\theta) \supseteq \operatorname{Im}(\varphi)$. The sequence (\ddagger) being exact guarantees that $\operatorname{Im}(\varphi) = \operatorname{Ker}(\psi)$ which implies that $\operatorname{Ker}(\theta) \supseteq \operatorname{Ker}(\psi)$. Since ψ is surjective, there exists an *R*-linear map $\theta' : V'' \to W$ such that $\theta = \theta' \circ \psi = (\operatorname{Hom}_R(\psi, W))(\theta')$ and we deduce that

 $\operatorname{Ker}(\operatorname{Hom}_{R}(\varphi, W)) \subseteq \operatorname{Im}(\operatorname{Hom}_{R}(\psi, W))$

which completes the proof that the sequence (\bigstar) is exact.

Suppose that, for any *R*-module *W*, the sequence (\bigstar) is exact. Since

 $\operatorname{Hom}_{R}(\varphi, W) \circ \operatorname{Hom}_{R}(\psi, W) = 0$,

it follows that, for any *R*-linear map $\theta: V'' \to W$, we have $\theta \circ \psi \circ \varphi = 0$. Taking W = V'' and setting $\theta = \operatorname{id}_{V''}$, we see that $\psi \circ \varphi = 0$ and $\operatorname{Im}(\varphi) \subseteq \operatorname{Ker}(\psi)$. Similarly, taking $W = \operatorname{Coker}(\varphi)$ and letting $\pi: V \to W = V/\operatorname{Im}(\varphi)$ be the canonical map, we obtain $(\operatorname{Hom}_R(\varphi, W))(\pi) = \pi \circ \varphi = 0$, which implies that π in $\operatorname{Ker}(\operatorname{Hom}_R(\varphi, W))$. Since $\operatorname{Ker}(\operatorname{Hom}_R(\varphi, W)) = \operatorname{Im}(\operatorname{Hom}_R(\psi, W))$, there exists an *R*-linear map $\rho: V'' \to W$ satisfying $\pi = (\operatorname{Hom}_R(\psi, W))(\rho) = \rho \circ \psi$. In particular, we have $\operatorname{Im}(\varphi) = \operatorname{Ker}(\pi) \supseteq \operatorname{Ker}(\psi)$ which proves that the sequence (\ddagger) is exact at *V*. Finally, taking $W := V''/\operatorname{Im}(\psi)$ and letting $\eta: V'' \to W$ be the canonical map gives $(\operatorname{Hom}_R(\psi, W))(\eta) = \eta \circ \psi = 0$. Because $\operatorname{Hom}_R(\psi, W)$ is injective, it follows that $\eta = 0$. We conclude that $W = 0, \psi$ is surjective, and the sequence (\ddagger) is exact at *V'*.

ii. Let $\mu : \mathbb{Z} \to \mathbb{Z}$ be the \mathbb{Z} -linear map defined by $\mu(1_{\mathbb{Z}}) = m$ and let $\pi : \mathbb{Z} \to \mathbb{Z}/\langle m \rangle$ be the canonical map. Hence, we have an exact sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{\langle m \rangle} \longrightarrow 0.$$

When $W := \mathbb{Z}/\langle n \rangle$, part *i* gives

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\frac{\mathbb{Z}}{\langle m \rangle}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}}(\pi, \mathbb{Z}/\langle n \rangle)} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}}(\mu, \mathbb{Z}/\langle n \rangle)} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \frac{\mathbb{Z}}{\langle n \rangle}\right)$$

The canonical isomorphism $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle n \rangle$ identifies the *R*-linear map $\theta \colon \mathbb{Z} \to \mathbb{Z}/\langle n \rangle$ with the element $\theta(1_{\mathbb{Z}})$ in $\mathbb{Z}/\langle n \rangle$. Hence, it follows that $(\theta \circ \mu)(1_{\mathbb{Z}}) = \theta(m) = m \theta(1_{\mathbb{Z}})$ and

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\frac{\mathbb{Z}}{\langle m \rangle}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \longrightarrow \frac{\mathbb{Z}}{\langle n \rangle} \xrightarrow{\mu^*} \frac{\mathbb{Z}}{\langle n \rangle}$$

where $\mu^*(i) = m i$. We obtain $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\langle m \rangle, \mathbb{Z}/\langle n \rangle) \cong \operatorname{Ker}(\mu^*)$.

Set d := gcd(m, n) and write n = n' d for some integer n'. We have $\mu^*(i) = 0$ if and only if n divides m i; equivalently n' divides i. Therefore, we conclude that $\text{Ker}(\mu^*) = n' (\mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle d \rangle$ as required.

