
Solutions 10
1. A module is simple if it is not the zero module and if it has no proper submodule.
i. Ⅼet 𝑉 be a simple 𝑅‑module. Show that 𝑉 is cyclic.
ii. Prove Schur’s Ⅼemma: Any𝑅‑linearmap𝜑∶𝑉 →𝑊 between simple𝑅‑modules
is either is zero or an isomorphism.

iii. For a simple𝑅‑module𝑉 , show that the set End𝑅(𝑉) of endomorphisms forms
a field where multiplication is given by composition of functions and addition
is defined pointwise.

Solution.
i. A nonzero element 𝑔 in 𝑉 generates a nonzero submodule ⟨𝑔⟩ in 𝑉 . As 𝑉 is
simple, it follows that 𝑉 = ⟨𝑔⟩.

ii. Since 𝑉 is simple, the submodule Ker(𝜑) ⊆ 𝑉 is either 0 or 𝑉 , so 𝜑 is either
injective or the zero map. Since 𝑊 is simple, the submodule Ɪm(𝜑) ⊆ 𝑊 is
either 0 or𝑊 , so 𝜑 is either the zero map or surjective. Ⅽombining these, we
see that 𝜑 is either zero or an isomorphism.

iii. The set End𝑅(𝑉) forms an 𝑅‑module where is addition defined pointwise, so it
is an abelian group under addition. For any 𝜑, 𝜓, and 𝜃 in End𝑅(𝑉) and any 𝑣
in 𝑉 , we have

(𝜑 ∘ (𝜓 + 𝜃))(𝑣) = 𝜑((𝜓 + 𝜃)(𝑣)) = 𝜑(𝜓(𝑣) + 𝜃(𝑣)) = (𝜑 ∘ 𝜓)(𝑣) + (𝜑 ∘ 𝜃)(𝑣) ,
so the distributive axiom holds. Because 𝑉 is a simple module, part ii implies
that the set of endomorphism consists of the zeromap and the set of𝑅‑module
automorphisms Aut𝑅(𝑉) of 𝑉 . As the set Aut𝑅(𝑉) is a group, it follows that
multiplication in End𝑅(𝑉) is associative with the identity id𝑉 ∶ 𝑉 → 𝑉 and any
nonzero element is a unit. Finally, part i implies that 𝑉 = ⟨𝑢⟩ for some 𝑢 in 𝑉 .
For any 𝑣 in𝑉 , there exists 𝑟 in𝑅 such that 𝑣 = 𝑟𝑢. For any𝜑 and𝜓 in End𝑅(𝑉),
define 𝑠 and 𝑡 in 𝑅 by 𝜑(𝑢)∶= 𝑠𝑢 and 𝜓(𝑢)∶= 𝑡 𝑢. Hence, we have

(𝜑 ∘ 𝜓)(𝑣) = 𝑟𝜑(𝜓(𝑢)) = 𝑟 𝑡 𝜑(𝑢) = 𝑟 𝑡 𝑠𝑢 = 𝑟 𝑠𝜓(𝑢) = 𝑟𝜓(𝜑(𝑢)) = (𝜓 ∘ 𝜑)(𝑣) ,
so 𝜑 ∘ 𝜓 = 𝜓 ∘ 𝜑 and the multiplication is commutative. Therefore, End𝑅(𝑉) is
a field. □

2. Ⅼet𝑅 be domain and let𝑉 be an𝑅‑module. An element 𝑣 in𝑉 is a torsion element
if there is a nonzero element 𝑟 in 𝑅 such that 𝑟 𝑣 = 0. Ⅼet 𝜏(𝑉) be the set of torsion
elements of𝑉 . A module𝑉 is torsion if 𝜏(𝑉) = 𝑉 and it is torsion‑free if 𝜏(𝑉) = 0.
i. Ⅾemonstrate that the annihilator Ann(𝑉) ∶= {𝑓 ∈ 𝑅 || 𝑓 𝑣 = 0 for all 𝑣 ∈ 𝑉}
forms an ideal in 𝑅.

ii. Show that 𝜏(𝑉) is a submodule of 𝑉 .
iii. Prove that 𝑉/𝜏(𝑉) is torsion‑free.
iv. For any 𝑅‑linear map 𝜑∶ 𝑉 →𝑊 , demonstrate that 𝜑(𝜏(𝑉)) ⊆ 𝜏(𝑊).
v. Give an example of an infinite abelian group that is a torsion ℤ‑module.
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Solution.
i. For any 𝑟 and 𝑠 in 𝑅, any 𝑓 and 𝑔 in Ann(𝑉), and any 𝑣 in 𝑉 , we have

(𝑟 𝑓 + 𝑠𝑔) 𝑣 = 𝑟 (𝑓𝑣) + 𝑠 (𝑔𝑣) = 𝑟 0 + 𝑠0 = 0 ,
so 𝑟 𝑓 + 𝑠𝑔 ∈ Ann(𝑉) and the annihilator of 𝑉 is an ideal in 𝑅.

ii. By definition, an element 𝑣 in 𝑅 is a torsion element if Ann(𝑣) ≠ 0. Suppose
that 𝑣 and 𝑣′ are elements in 𝜏(𝑉). There exists nonzero elements 𝑟 and 𝑟′ in
𝑅 such that 𝑟 𝑣 = 0 and 𝑟′ 𝑣′ = 0. For any 𝑠 and 𝑠′ in 𝑅, we have

𝑟 𝑟′ (𝑠 𝑣 + 𝑠𝑣′) = 𝑠 𝑟′ (𝑟 𝑣) + 𝑠′ 𝑟 (𝑟′ 𝑣′) = 𝑠 𝑟′ 0 + 𝑠′ 𝑟 0 = 0 .
As 𝑅 is domain, we have 𝑟 𝑟′ ≠ 0 and Ann(𝑠 𝑣+ 𝑠𝑣′) ≠ 0. Thus, we deduce that
𝑠 𝑣 + 𝑠′ 𝑣′ ∈ 𝜏(𝑉), so 𝜏(𝑉) is a submodule.

iii. Ⅽhoose an element 𝑢 in 𝑉 such that the coset 𝑢 + 𝜏(𝑉) in 𝑉/𝜏(𝑉) is nonzero;
this means 𝑢 is not in 𝜏(𝑉) and Ann(𝑢) = 0. Suppose that Ann(𝑢 + 𝜏(𝑉)) ≠ 0.
Ɪt follows that there exists a nonzero element 𝑟 in 𝑅 such that

0 = 𝑟 (𝑢 + 𝜏(𝑉)) = 𝑟𝑢 + 𝜏(𝑀) ,
so we deduce that 𝑟 𝑢 ∈ 𝜏(𝑉). Hence, there exist a nonzero element 𝑟′ in 𝑅
such that 0 = 𝑟′ (𝑟 𝑢) = (𝑟′ 𝑟) 𝑢. As 𝑅 is a domain, we have 𝑟′ 𝑟 ≠ 0. Ɪt follows
that Ann(𝑢) ≠ 0 contradicting the hypothesis that 𝑢 + 𝜏(𝑉) ≠ 0. We conclude
that 𝜏(𝑉/𝜏(𝑉)) = 0 and 𝑉/𝜏(𝑉) is torsion‑free.

iv. Ⅽonsider an element 𝑣 in 𝜏(𝑉); there exists a nonzero element 𝑟 in 𝑅 such that
𝑟 𝑣 = 0. Applying the 𝑅‑linear map 𝜑, we obtain 0 = 𝜑(𝑟 𝑣) = 𝑟𝜑(𝑣), which
shows that 𝜑(𝑣) ∈ 𝜏(𝑊).

v. For any integer 𝑝 and any nonzero integer 𝑞, we have
𝑞(𝑝/𝑞 + ℤ) = 𝑝 +ℤ = 0

inℚ/ℤ. Hence, every element inℤ‑moduleℚ/ℤ is a torsion element andℚ/ℤ
is a torsion module. Because {1/𝑞+ℤ || 0 < 𝑞 ∈ ℤ} is a distinct set of elements
inℚ/ℤ, we see thatℚ/ℤ is an infinite abelian group. □

3. i. Ⅼet 𝜑∶ 𝑉 ′ → 𝑉 and 𝜓∶ 𝑉 → 𝑉″ be 𝑅‑linear maps. Prove that the sequence

(‡) 𝑉 ′ 𝑉 𝑉″ 0𝜑 𝜓

is exact if and only if, for every 𝑅‑module𝑊 , the sequence

(★) 0 Hom𝑅(𝑉″,𝑊) Hom𝑅(𝑉,𝑊) Hom𝑅(𝑉 ′,𝑊)Hom𝑅(𝜓,𝑊) Hom𝑅(𝜑,𝑊)

is exact.
ii. Show that Homℤ(ℤ/⟨𝑚⟩ ,ℤ/⟨𝑛⟩) ≅ ℤ/⟨𝑑⟩ where 𝑑∶= gcd(𝑚,𝑛).
Solution.
i. Suppose that the sequence (‡) is exact. Given an𝑅‑linearmap 𝜍∶ 𝑉″ →𝑊 such
that (Hom𝑅(𝜓,𝑊))(𝜍) = 𝜍 ∘ 𝜓 = 0, it follows that 𝜍 = 0 because 𝜓 is surjective.
Hence, the sequence (★) is exact at Hom𝑅(𝑉″,𝑊). As 𝜓 ∘ 𝜑 = 0, it follows that
Hom𝑅(𝜑,𝑊) ∘Hom𝑅(𝜓,𝑊) = Hom𝑅(𝜓 ∘ 𝜑,𝑊) = Hom𝑅(0,𝑊) = 0
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which shows that Ɪm(Hom𝑅(𝜑,𝑊)) ⊆ Ker(Hom𝑅(𝜓,𝑊)). Ⅽonsider an 𝑅‑linear
map 𝜃∶ 𝑉 →𝑊 in Ker(Hom𝑅(𝜑,𝑊)). As 𝜃∘𝜑 = 0, we haveKer(𝜃) ⊇ Ɪm(𝜑). The
sequence (‡) being exact guarantees that Ɪm(𝜑) = Ker(𝜓) which implies that
Ker(𝜃) ⊇ Ker(𝜓). Since𝜓 is surjective, there exists an𝑅‑linearmap 𝜃′∶ 𝑉″ →𝑊
such that 𝜃 = 𝜃′ ∘ 𝜓 = (Hom𝑅(𝜓,𝑊))(𝜃′) and we deduce that

Ker(Hom𝑅(𝜑,𝑊)) ⊆ Ɪm(Hom𝑅(𝜓,𝑊))
which completes the proof that the sequence (★) is exact.
Suppose that, for any 𝑅‑module𝑊 , the sequence (★) is exact. Since

Hom𝑅(𝜑,𝑊) ∘Hom𝑅(𝜓,𝑊) = 0 ,
it follows that, for any 𝑅‑linear map 𝜃∶ 𝑉″ →𝑊 , we have 𝜃 ∘ 𝜓 ∘ 𝜑 = 0. Taking
𝑊 = 𝑉″ and setting 𝜃 = id𝑉″ , we see that 𝜓 ∘ 𝜑 = 0 and Ɪm(𝜑) ⊆ Ker(𝜓).
Similarly, taking 𝑊 = Ⅽoker(𝜑) and letting 𝜋∶ 𝑉 → 𝑊 = 𝑉/ Ɪm(𝜑) be the
canonical map, we obtain (Hom𝑅(𝜑,𝑊))(𝜋) = 𝜋 ∘ 𝜑 = 0, which implies that 𝜋
in Ker(Hom𝑅(𝜑,𝑊)). Since Ker(Hom𝑅(𝜑,𝑊)) = Ɪm(Hom𝑅(𝜓,𝑊)), there exists
an 𝑅‑linear map 𝜌∶ 𝑉″ → 𝑊 satisfying 𝜋 = (Hom𝑅(𝜓,𝑊))(𝜌) = 𝜌 ∘ 𝜓. Ɪn
particular, we have Ɪm(𝜑) = Ker(𝜋) ⊇ Ker(𝜓) which proves that the sequence
(‡) is exact at 𝑉 . Finally, taking𝑊 ∶= 𝑉″/ Ɪm(𝜓) and letting 𝜂∶ 𝑉″ → 𝑊 be the
canonical map gives (Hom𝑅(𝜓,𝑊))(𝜂) = 𝜂 ∘ 𝜓 = 0. Because Hom𝑅(𝜓,𝑊) is
injective, it follows that 𝜂 = 0. We conclude that𝑊 = 0, 𝜓 is surjective, and the
sequence (‡) is exact at 𝑉 ′.

ii. Ⅼet 𝜇∶ ℤ → ℤ be theℤ‑linear map defined by 𝜇(1ℤ) = 𝑚 and let 𝜋∶ ℤ → ℤ/⟨𝑚⟩
be the canonical map. Hence, we have an exact sequence

0 ℤ ℤ ℤ
⟨𝑚⟩ 0 .𝜇 𝜋

When𝑊∶= ℤ/⟨𝑛⟩, part i gives

0 Homℤ (
ℤ
⟨𝑚⟩,

ℤ
⟨𝑛⟩) Homℤ (ℤ,

ℤ
⟨𝑛⟩) Homℤ (ℤ,

ℤ
⟨𝑛⟩)

Homℤ(𝜋,ℤ/⟨𝑛⟩) Homℤ(𝜇,ℤ/⟨𝑛⟩)

The canonical isomorphism Homℤ(ℤ,ℤ/⟨𝑛⟩) ≅ ℤ/⟨𝑛⟩ identifies the 𝑅‑linear
map 𝜃∶ ℤ → ℤ/⟨𝑛⟩ with the element 𝜃(1ℤ) in ℤ/⟨𝑛⟩. Hence, it follows that
(𝜃 ∘ 𝜇)(1ℤ) = 𝜃(𝑚) = 𝑚𝜃(1ℤ) and

0 Homℤ (
ℤ
⟨𝑚⟩,

ℤ
⟨𝑛⟩)

ℤ
⟨𝑛⟩

ℤ
⟨𝑛⟩

𝜇∗

where 𝜇∗(𝑖) = 𝑚 𝑖. We obtain Homℤ(ℤ/⟨𝑚⟩ ,ℤ/⟨𝑛⟩) ≅ Ker(𝜇∗).
Set 𝑑∶= gcd(𝑚,𝑛) and write 𝑛 = 𝑛′ 𝑑 for some integer 𝑛′. We have 𝜇∗(𝑖) = 0

if and only if 𝑛 divides 𝑚𝑖; equivalently 𝑛′ divides 𝑖. Therefore, we conclude
that Ker(𝜇∗) = 𝑛′ (ℤ/⟨𝑛⟩) ≅ ℤ/⟨𝑑⟩ as required. □
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