Solutions 10

- **1.** A module is *simple* if it is not the zero module and if it has no proper submodule. *i.* Let V be a simple R -module. Show that V is cyclic.
	- *ii.* Prove *Schur's Lemma:* Any *R*-linear map $\varphi : V \to W$ between simple *R*-modules is either is zero or an isomorphism.
	- *iii.* For a simple R-module V, show that the set $\text{End}_R(V)$ of endomorphisms forms a field where multiplication is given by composition of functions and addition is defined pointwise.

Solution.

- *i.* A nonzero element g in V generates a nonzero submodule $\langle g \rangle$ in V. As V is simple, it follows that $V = \langle g \rangle$.
- *ii.* Since *V* is simple, the submodule $\text{Ker}(\varphi) \subseteq V$ is either 0 or *V*, so φ is either injective or the zero map. Since W is simple, the submodule $\text{Im}(\varphi) \subseteq W$ is either 0 or W, so φ is either the zero map or surjective. Combining these, we see that φ is either zero or an isomorphism.
- *iii.* The set $\text{End}_R(V)$ forms an R-module where is addition defined pointwise, so it is an abelian group under addition. For any φ , ψ , and θ in End_R(V) and any v in V , we have

$$
(\varphi \circ (\psi + \theta))(v) = \varphi((\psi + \theta)(v)) = \varphi(\psi(v) + \theta(v)) = (\varphi \circ \psi)(v) + (\varphi \circ \theta)(v),
$$

so the distributive axiom holds. Because V is a simple module, part *ii* implies that the set of endomorphism consists of the zero map and the set of R -module automorphisms ${\rm Aut}_R(V)$ of V. As the set ${\rm Aut}_R(V)$ is a group, it follows that multiplication in End_R(V) is associative with the identity id_V: $V \rightarrow V$ and any nonzero element is a unit. Finally, part *i* implies that $V = \langle u \rangle$ for some *u* in *V*. For any v in V, there exists r in R such that $v = ru$. For any φ and ψ in End_R(V), define *s* and *t* in *R* by $\varphi(u) := s u$ and $\psi(u) := t u$. Hence, we have

$$
(\varphi \circ \psi)(v) = r \varphi(\psi(u)) = r t \varphi(u) = r t s u = r s \psi(u) = r \psi(\varphi(u)) = (\psi \circ \varphi)(v),
$$

so $\varphi \circ \psi = \psi \circ \varphi$ and the multiplication is commutative. Therefore, End_R(*V*) is a field. a field. \Box

- **2.** Let R be domain and let V be an R -module. An element v in V is a **torsion element** if there is a nonzero element r in R such that $rv = 0$. Let $\tau(V)$ be the set of torsion elements of V. A module V is *torsion* if $\tau(V) = V$ and it is *torsion-free* if $\tau(V) = 0$.
	- *i.* Demonstrate that the **annihilator** Ann(V) := { $f \in R \mid f v = 0$ for all $v \in V$ } forms an ideal in *.*
	- *ii.* Show that $\tau(V)$ is a submodule of V.
	- *iii.* Prove that $V/\tau(V)$ is torsion-free.
	- *iv.* For any *R*-linear map $\varphi : V \to W$, demonstrate that $\varphi(\tau(V)) \subseteq \tau(W)$.
	- *v.* Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Solution.

i. For any r and s in R, any f and g in Ann(V), and any v in V , we have

$$
(r f + s g) v = r (f v) + s (g v) = r 0 + s 0 = 0,
$$

so $r f + s g \in Ann(V)$ and the annihilator of V is an ideal in R.

ii. By definition, an element v in R is a torsion element if $Ann(v) \neq 0$. Suppose that v and v' are elements in $\tau(V)$. There exists nonzero elements r and r' in *R* such that $rv = 0$ and $r'v' = 0$. For any *s* and *s'* in *R*, we have

$$
rr'(s v + s v') = s r'(r v) + s' r(r' v') = s r' 0 + s' r 0 = 0.
$$

As R is domain, we have $r r' \neq 0$ and $Ann(s v + s v') \neq 0$. Thus, we deduce that $s v + s' v' \in \tau(V)$, so $\tau(V)$ is a submodule.

iii. Choose an element u in V such that the coset $u + \tau(V)$ in $V/\tau(V)$ is nonzero; this means u is not in $\tau(V)$ and Ann(u) = 0. Suppose that Ann($u + \tau(V)$) \neq 0. It follows that there exists a nonzero element r in R such that

$$
0 = r(u + \tau(V)) = ru + \tau(M),
$$

so we deduce that $ru \in \tau(V)$. Hence, there exist a nonzero element r' in R such that $0 = r'(r u) = (r' r) u$. As R is a domain, we have $r' r \neq 0$. It follows that Ann(u) $\neq 0$ contradicting the hypothesis that $u + \tau(V) \neq 0$. We conclude that $\tau(V/\tau(V)) = 0$ and $V/\tau(V)$ is torsion-free.

- *iv.* Consider an element v in $\tau(V)$; there exists a nonzero element r in R such that $rv = 0$. Applying the *R*-linear map φ , we obtain $0 = \varphi (rv) = r \varphi (v)$, which shows that $\varphi(v) \in \tau(W)$.
- ν . For any integer p and any nonzero integer q , we have

$$
q(p/q + \mathbb{Z}) = p + \mathbb{Z} = 0
$$

in \mathbb{Q}/\mathbb{Z} . Hence, every element in \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is a torsion element and \mathbb{Q}/\mathbb{Z} is a torsion module. Because $\{1/q + \mathbb{Z} \mid 0 < q \in \mathbb{Z}\}$ is a distinct set of elements in \mathbb{Q}/\mathbb{Z} , we see that \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

3. *i.* Let $\varphi: V' \to V$ and $\psi: V \to V''$ be R-linear maps. Prove that the sequence

$$
V' \xrightarrow{\varphi} V \xrightarrow{\psi} V'' \longrightarrow 0
$$

is exact if and only if, for every R-module W , the sequence

$$
(\bigstar)
$$

$$
(\bigstar) \qquad \qquad 0 \longrightarrow \text{Hom}_R(V'',W) \xrightarrow{\text{Hom}_R(\psi,W)} \text{Hom}_R(V,W) \xrightarrow{\text{Hom}_R(\varphi,W)} \text{Hom}_R(V',W)
$$

is exact.

ii. Show that
$$
\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/\langle m \rangle, \mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle d \rangle
$$
 where $d := \text{gcd}(m, n)$.

Solution.

i. Suppose that the sequence (\ddagger) is exact. Given an R-linear map $\varsigma : V'' \to W$ such that $(\text{Hom}_R(\psi,W))(\overline{\varsigma}) = \overline{\varsigma} \circ \psi = 0$, it follows that $\overline{\varsigma} = 0$ because ψ is surjective. Hence, the sequence (\bigstar) is exact at $\mathrm{Hom}_R(V'',W)$. As $\psi\circ\varphi=0,$ it follows that

 $\operatorname{Hom}_R(\varphi,W) \circ \operatorname{Hom}_R(\psi,W) = \operatorname{Hom}_R(\psi \circ \varphi,W) = \operatorname{Hom}_R(0,W) = 0$

MATH 893 : 2024 **page 2 of 3**

$$
\bigcirc \mathbb{O} \otimes \oplus
$$

which shows that $\text{Im}(\text{Hom}_R(\varphi,W)) \subseteq \text{Ker}(\text{Hom}_R(\psi,W))$. Consider an *R*-linear map $\theta: V \to W$ in Ker(Hom_g(φ, W)). As $\theta \circ \varphi = 0$, we have Ker(θ) \supseteq Im(φ). The sequence (\ddagger) being exact guarantees that Im(φ) = Ker(ψ) which implies that Ker(θ) \supseteq Ker(ψ). Since ψ is surjective, there exists an R -linear map $\theta' \colon V'' \to W$ such that $\theta=\theta'\circ\psi=(\operatorname{Hom}_R(\psi,W))(\theta')$ and we deduce that

$$
\text{Ker}(\text{Hom}_R(\varphi, W)) \subseteq \text{Im}(\text{Hom}_R(\psi, W))
$$

which completes the proof that the sequence (\star) is exact.

Suppose that, for any R-module W, the sequence (\star) is exact. Since

 $\text{Hom}_R(\varphi, W) \circ \text{Hom}_R(\psi, W) = 0$,

it follows that, for any R-linear map θ : $V'' \to W$, we have $\theta \circ \psi \circ \varphi = 0$. Taking $W = V''$ and setting $\theta = id_{V''}$, we see that $\psi \circ \varphi = 0$ and $\text{Im}(\varphi) \subseteq \text{Ker}(\psi)$. Similarly, taking $W = \text{Coker}(\varphi)$ and letting $\pi: V \to W = V/\text{Im}(\varphi)$ be the canonical map, we obtain $(Hom_R(\varphi, W))(\pi) = \pi \circ \varphi = 0$, which implies that π in Ker(Hom_R (φ, W)). Since Ker(Hom_R (φ, W)) = Im(Hom_R (ψ, W)), there exists an *R*-linear map $\rho: V'' \to W$ satisfying $\pi = (\text{Hom}_R(\psi, W))(\rho) = \rho \circ \psi$. In particular, we have $Im(\varphi) = Ker(\pi) \supseteq Ker(\psi)$ which proves that the sequence (‡) is exact at V. Finally, taking $W := V''/Im(\psi)$ and letting $\eta : V'' \to W$ be the canonical map gives $(\text{Hom}_R(\psi, W))(\eta) = \eta \circ \psi = 0$. Because $\text{Hom}_R(\psi, W)$ is injective, it follows that $\eta = 0$. We conclude that $W = 0$, ψ is surjective, and the sequence (\ddag) is exact at $V'.$

ii. Let $\mu: \mathbb{Z} \to \mathbb{Z}$ be the \mathbb{Z} -linear map defined by $\mu(1_{\mathbb{Z}}) = m$ and let $\pi: \mathbb{Z} \to \mathbb{Z}/\langle m \rangle$ be the canonical map. Hence, we have an exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \frac{\mathbb{Z}}{\langle m \rangle} \longrightarrow 0.
$$

When $W := \mathbb{Z}/\langle n \rangle$, part *i* gives

$$
0 \longrightarrow \text{Hom}_{\mathbb{Z}}\left(\frac{\mathbb{Z}}{\langle m \rangle}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \xrightarrow{\text{Hom}_{\mathbb{Z}}(\pi, \mathbb{Z}/n)} \text{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \xrightarrow{\text{Hom}_{\mathbb{Z}}(\mu, \mathbb{Z}/n)} \text{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \frac{\mathbb{Z}}{\langle n \rangle}\right)
$$

The canonical isomorphism $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle n \rangle$ identifies the *R*-linear map $\theta: \mathbb{Z} \to \mathbb{Z}/\langle n \rangle$ with the element $\theta(1_{\mathbb{Z}})$ in $\mathbb{Z}/\langle n \rangle$. Hence, it follows that $(\theta \circ \mu)(1_{\mathbb{Z}}) = \theta(m) = m \theta(1_{\mathbb{Z}})$ and

$$
0 \longrightarrow \text{Hom}_{\mathbb{Z}}\left(\frac{\mathbb{Z}}{\langle m \rangle}, \frac{\mathbb{Z}}{\langle n \rangle}\right) \longrightarrow \frac{\mathbb{Z}}{\langle n \rangle} \stackrel{\mu^*}{\longrightarrow} \frac{\mathbb{Z}}{\langle n \rangle}
$$

where $\mu^*(i) = m i$. We obtain $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/\langle m \rangle, \mathbb{Z}/\langle n \rangle) \cong \text{Ker}(\mu^*).$

Set $d := \gcd(m, n)$ and write $n = n' d$ for some integer n'. We have $\mu^*(i) = 0$ if and only if n divides m i; equivalently n' divides i . Therefore, we conclude that Ker $(\mu^*) = n'(\mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle d \rangle$ as required.

