Solutions 11

1. Let *K* be a field and let *U*, *V*, and *W* be *K*-vector spaces. Consider *K*-linear maps $\varphi : U \to V$ and $\psi : V \to W$. The map φ has *finite index* if both of the *K*-modules $\text{Ker}(\varphi)$ and $\text{Coker}(\varphi)$ are finite-dimensional. The *index* of φ is

 $\operatorname{ind}(\varphi) := \dim \operatorname{Ker}(\varphi) - \dim \operatorname{Coker}(\varphi).$

- *i*. Prove that *U* decomposes into a direct sum of $\text{Ker}(\varphi)$ and two *K*-modules *U*' and *U*" such that $\text{Ker}(\psi \circ \varphi) = \text{Ker}(\varphi) \oplus U'$ and $\text{Im}(\psi \circ \varphi) = \psi(\varphi(U''))$.
- *ii.* Prove that if two of the three *K*-linear maps φ , ψ , and $\psi \circ \varphi$ are of finite index, then so is the third and $ind(\psi \circ \varphi) = ind(\varphi) + ind(\psi)$.

Solution.

- *i*. Let {u_j}_{j∈J} be a basis for the *K*-module Ker(φ). Since Ker(φ) ⊆ Ker(ψ ∘ φ), the linearly independent family {u_j}_{j∈J} extends to a basis {u_j}_{j∈J∪J'} of Ker(ψ ∘ φ). Let U' denote the submodule of U with basis {u_j}_{j∈J'}. By construction, we have Ker(ψ ∘ φ) = Ker(φ) ⊕ U'. We can also extend the linearly independent family {u_j}_{j∈J∪J'} to a basis {u_j}_{j∈J∪J'} of U. Let U" be the submodule of U with basis {u_j}_{j∈JUJ'}. Again by construction, U" is a complementary submodule of Ker(ψ ∘ φ) in U, Im(ψ ∘ φ) = ψ(φ(U")), and U = Ker(φ) ⊕ U' ⊕ U".
- *ii.* By part *i*, there is a basis $\{u_j\}_{j \in J_0 \cup J_1 \cup J_2}$ of *U* such that the family $\{u_j\}_{j \in J_0}$ is basis for Ker(φ), the family $\{u_j\}_{j \in J_0 \cup J_1}$ is a basis for Ker($\psi \circ \varphi$), the family $\{\varphi(u_j)\}_{j \in J_1}$ is a basis for the submodule Im(φ) \cap Ker(ψ) of *V*, the family $\{\varphi(u_j)\}_{j \in J_2}$ is a basis for a complementary submodule of Im(φ) \cap Ker(ψ) in Im(φ) $\subseteq V$, and the family $((\psi \circ \varphi)(u_j))_{j \in J_2}$ is a basis for the submodule Im($\psi \circ \varphi$) of *W*. There is a basis $\{v_j\}_{j \in J_1 \cup J_3}$ for Ker(ψ) such that $v_j = \varphi(u_j)$ for all $j \in J_1$ and there is a basis $\{v_j\}_{j \in J_2 \cup J_4}$ for a complementary submodule of Ker(ψ) in *V* such that $v_j = \varphi(u_j)$ for all $j \in J_2$. Thus, the family $\{v_j\}_{j \in J_1 \cup J_2 \cup J_3 \cup J_4}$ is a basis for *V*. Similarly, there is a basis $\{w_j\}_{j \in J_2 \cup J_4 \cup J_5}$ for *W* such that $w_j = (\psi \circ \varphi)(u_j) = \psi(v_j)$ for all $j \in J_2$ and $w_j = \psi(v_j)$ for all $j \in J_4$. Hence, we obtain

$$\dim \operatorname{Ker}(\varphi) + \dim \operatorname{Ker}(\psi) + \dim \operatorname{Coker}(\psi \circ \varphi)$$

= $|J_0| + (|J_1| + |J_3|) + (|J_4| + |J_5|)$
= $(|J_0| + |J_1|) + (|J_3| + |J_4|) + |J_5|$
= $\dim \operatorname{Ker}(\psi \circ \varphi) + \dim \operatorname{Coker}(\varphi) + \dim \operatorname{Coker}(\psi)$

Therefore, if two of the three linear maps φ , ψ , and $\psi \circ \varphi$ are of finite index, then so is the third and $\operatorname{ind}(\psi \circ \varphi) = \operatorname{ind}(\varphi) + \operatorname{ind}(\psi)$.

Remark. If *U*, *V* and *W* are finite-dimensional, then we have

$$\operatorname{ind}(\varphi) = \dim \operatorname{Ker}(\varphi) - \dim \operatorname{Coker}(\varphi) = \dim U - \dim V$$

 $\operatorname{ind}(\psi) = \dim \operatorname{Ker}(\psi) - \dim \operatorname{Coker}(\psi) = \dim V - \dim W$

 $-\operatorname{ind}(\psi \circ \varphi) = -\operatorname{dim}\operatorname{Ker}(\psi \circ \varphi) + \operatorname{dim}\operatorname{Coker}(\psi \circ \varphi) = -\operatorname{dim} U + \operatorname{dim} W.$

Adding these three equations establishes that $ind(\psi \circ \varphi) = ind(\varphi) + ind(\psi)$.

MATH 893 : 2024

- **2.** Let \mathbb{F}_q be a finite field with *q* elements.
 - *i*. For any nonnegative integer *n*, calculate the number of elements in the \mathbb{F}_q -vector space \mathbb{F}_q^n .
 - *ii.* Let $GL(n, \mathbb{F}_q)$ denote the group of all invertible $(n \times n)$ -matrices over the field \mathbb{F}_q . Determine the order of the group $GL(n, \mathbb{F}_q)$.
 - *iii.* Let $SL(n, \mathbb{F}_q)$ be the subgroup of $GL(n, \mathbb{F}_q)$ consisting of matrices having determinant 1. Find the order of the group $SL(n, \mathbb{F}_q)$.

Solution.

- *i*. Let e_1, e_2, \ldots, e_n be a basis of the vector space \mathbb{F}_q^n . Every element of \mathbb{F}_q^n can be expressed uniquely as $a_1e_1 + a_2e_2 + \cdots + a_ne_n$ where a_j in \mathbb{F}_q for all $1 \leq j \leq n$. Since finite field \mathbb{F}_q has q elements, it follows that the vector space \mathbb{F}_q^n has q^n elements.
- *ii.* An $(n \times n)$ -matrix **A** over \mathbb{F}_q is invertible if and only if its columns are linearly independent vectors in \mathbb{F}_q^n . The first column \mathbf{a}_1 of **A** can be any nonzero vector in \mathbb{F}_q^n , so there are $q^n 1$ possibilities. Once the first column is chosen, the second column \mathbf{a}_2 of **A** can be any vector which is not a multiple of the first. Hence, $\mathbf{a}_1 \neq c \mathbf{a}_2$ where c in \mathbb{F}_q , so there are $q^n q$ choices for \mathbf{a}_2 . In general, the *i*th column \mathbf{a}_i of **A** can be any vector which cannot be written in the form $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_{i-1} \mathbf{a}_{i-1}$ where c_i in \mathbb{F}_q . Thus, there are $q^n q^{i-1}$ possibilities for \mathbf{a}_i . By multiplying these together, we see that the order of $GL(n, \mathbb{F}_q)$ is

$$(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{n-1})=q^{\binom{n}{2}}\prod_{j=1}^{n}(q^{j}-1).$$

iii. The determinant function defines a group homomorphism from the general linear group $GL(n, \mathbb{F}_q)$ onto the multiplicative group \mathbb{F}_q^{\times} which as q-1 elements. Since $SL(n, \mathbb{F}_q)$ is the kernel of this group homomorphism, it follows that

$$|\mathbb{F}_{q}^{\times}| = \frac{|\mathrm{GL}_{n}(\mathbb{F}_{q})|}{|\mathrm{SL}_{n}(\mathbb{F}_{q})|}$$

so we obtain

$$|SL_n(\mathbb{F}_q)| = \frac{(q^n - 1)(q^n - q)\cdots(q^n - q^{n-1})}{q - 1} = q\binom{n}{2} \prod_{j=2}^n (q^j - 1).$$

3. Consider the ring $\mathbb{Q}[x]$. Find a basis for the submodule of $\mathbb{Q}[x]^3$ generated by

$$f_1 \coloneqq \begin{bmatrix} 2x-1\\x\\x^2+3 \end{bmatrix}$$
, $f_2 \coloneqq \begin{bmatrix} x\\x\\x^2 \end{bmatrix}$, and $f_3 \coloneqq \begin{bmatrix} x+1\\2x\\2x^2-3 \end{bmatrix}$.

Solution. Since

$$f_1 - 3f_2 + f_3 = \begin{bmatrix} 2x - 1 \\ x \\ x^2 + 3 \end{bmatrix} - 3 \begin{bmatrix} x \\ x \\ x^2 \end{bmatrix} + \begin{bmatrix} x + 1 \\ 2x \\ 2x^2 - 3 \end{bmatrix} = 0,$$
page 2 of 3

MATH 893 : 2024

the set $\{f_1, f_2, f_3\}$ is not Q-linear independent. Setting $g_1 := f_1 - f_2$, $g_2 := f_3 - f_2$, we obtain

 $g_1 + g_2 = f_1 - 2f_2 + f_3 = f_2$, $2g_1 + g_2 = f_1$, and $g_1 + 2g_2 = f_3$, so $\langle f_1, f_2, f_3 \rangle = \langle g_1, g_2 \rangle$. If $pg_1 + qg_2 = 0$ for some p and q in $\mathbb{Q}[x]$, then each coordinate in $pg_1 + qg_2$ is zero:

(x-1)p+q=0, xq=0, and $3p+(x^2-3)q=0$

which implies that p = q = 0. Therefore, we see that

$$g_1 = \begin{bmatrix} x - 1 \\ 0 \\ 3 \end{bmatrix}$$
, and

form a basis for the submodule $\langle f_1, f_2, f_3 \rangle$.

 $g_2 = \begin{bmatrix} 1 \\ x \\ x^2 - 3 \end{bmatrix}$

