
Solutions 11
1. Ⅼet 𝐾 be a field and let𝑈, 𝑉 , and𝑊 be 𝐾‑vector spaces. Ⅽonsider 𝐾‑linear maps
𝜑∶ 𝑈 → 𝑉 and 𝜓∶ 𝑉 → 𝑊 . The map 𝜑 has finite index if both of the 𝐾‑modules
Ker(𝜑) and Ⅽoker(𝜑) are finite‑dimensional. The index of 𝜑 is

ind(𝜑)∶= dimKer(𝜑) − dimⅭoker(𝜑) .
i. Prove that 𝑈 decomposes into a direct sum of Ker(𝜑) and two 𝐾‑modules 𝑈 ′

and𝑈″ such that Ker(𝜓 ∘ 𝜑) = Ker(𝜑) ⊕𝑈 ′ and Ɪm(𝜓 ∘ 𝜑) = 𝜓(𝜑(𝑈″)).
ii. Prove that if two of the three 𝐾‑linear maps 𝜑, 𝜓, and 𝜓 ∘ 𝜑 are of finite index,
then so is the third and ind(𝜓 ∘ 𝜑) = ind(𝜑) + ind(𝜓).

Solution.
i. Ⅼet {𝑢𝑗}𝑗∈𝐽 be a basis for the 𝐾‑module Ker(𝜑). Since Ker(𝜑) ⊆ Ker(𝜓 ∘ 𝜑), the
linearly independent family {𝑢𝑗}𝑗∈𝐽 extends to a basis {𝑢𝑗}𝑗∈𝐽∪𝐽′ of Ker(𝜓 ∘ 𝜑).
Ⅼet𝑈 ′ denote the submodule of𝑈 with basis {𝑢𝑗}𝑗∈𝐽′ . By construction, we have
Ker(𝜓 ∘ 𝜑) = Ker(𝜑) ⊕𝑈 ′. We can also extend the linearly independent family
{𝑢𝑗}𝑗∈𝐽∪𝐽′ to a basis {𝑢𝑗}𝑗∈𝐽∪𝐽′∪𝐽″ of𝑈. Ⅼet𝑈″ be the submodule of𝑈 with basis
{𝑢𝑗}𝑗∈𝐽″ . Again by construction,𝑈″ is a complementary submodule of Ker(𝜓∘𝜑)
in𝑈, Ɪm(𝜓 ∘ 𝜑) = 𝜓(𝜑(𝑈″)), and𝑈 = Ker(𝜑) ⊕𝑈 ′ ⊕𝑈″.

ii. By part i, there is a basis {𝑢𝑗}𝑗∈𝐽0∪𝐽1∪𝐽2 of𝑈 such that the family {𝑢𝑗}𝑗∈𝐽0 is basis
for Ker(𝜑), the family {𝑢𝑗}𝑗∈𝐽0∪𝐽1 is a basis for Ker(𝜓 ∘ 𝜑), the family {𝜑(𝑢𝑗)}𝑗∈𝐽1
is a basis for the submodule Ɪm(𝜑) ∩ Ker(𝜓) of 𝑉 , the family {𝜑(𝑢𝑗)}𝑗∈𝐽2 is a
basis for a complementary submodule of Ɪm(𝜑)∩Ker(𝜓) in Ɪm(𝜑) ⊆ 𝑉 , and the
family ((𝜓 ∘ 𝜑)(𝑢𝑗))𝑗∈𝐽2 is a basis for the submodule Ɪm(𝜓 ∘ 𝜑) of𝑊 . There is a
basis {𝑣𝑗}𝑗∈𝐽1∪𝐽3 for Ker(𝜓) such that 𝑣𝑗 = 𝜑(𝑢𝑗) for all 𝑗 ∈ 𝐽1 and there is a basis
{𝑣𝑗}𝑗∈𝐽2∪𝐽4 for a complementary submodule of Ker(𝜓) in 𝑉 such that 𝑣𝑗 = 𝜑(𝑢𝑗)
for all 𝑗 ∈ 𝐽2. Thus, the family {𝑣𝑗}𝑗∈𝐽1∪𝐽2∪𝐽3∪𝐽4 is a basis for 𝑉 . Similarly, there is
a basis {𝑤𝑗}𝑗∈𝐽2∪𝐽4∪𝐽5 for𝑊 such that𝑤𝑗 = (𝜓 ∘ 𝜑)(𝑢𝑗) = 𝜓(𝑣𝑗) for all 𝑗 ∈ 𝐽2 and
𝑤𝑗 = 𝜓(𝑣𝑗) for all 𝑗 ∈ 𝐽4. Hence, we obtain

dimKer(𝜑) + dimKer(𝜓) + dimⅭoker(𝜓 ∘ 𝜑)
= |𝐽0| + (|𝐽1| + |𝐽3|) + (|𝐽4| + |𝐽5|)
= (|𝐽0| + |𝐽1|) + (|𝐽3| + |𝐽4|) + |𝐽5|
= dimKer(𝜓 ∘ 𝜑) + dimⅭoker(𝜑) + dimⅭoker(𝜓) .

Therefore, if two of the three linearmaps𝜑,𝜓, and𝜓∘𝜑 are of finite index, then
so is the third and ind(𝜓 ∘ 𝜑) = ind(𝜑) + ind(𝜓). □

Remark. Ɪf𝑈, 𝑉 and𝑊 are finite‑dimensional, then we have
ind(𝜑) = dimKer(𝜑) − dimⅭoker(𝜑) = dim𝑈 − dim𝑉
ind(𝜓) = dimKer(𝜓) − dimⅭoker(𝜓) = dim𝑉 − dim𝑊

− ind(𝜓 ∘ 𝜑) = −dimKer(𝜓 ∘ 𝜑) + dimⅭoker(𝜓 ∘ 𝜑) = −dim𝑈 + dim𝑊 .
Adding these three equations establishes that ind(𝜓 ∘ 𝜑) = ind(𝜑) + ind(𝜓).
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2. Ⅼet 𝔽𝑞 be a finite field with 𝑞 elements.
i. For anynonnegative integer𝑛, calculate thenumberof elements in the𝔽𝑞‑vector
space 𝔽𝑛

𝑞 .
ii. Ⅼet GⅬ(𝑛,𝔽𝑞) denote the group of all invertible (𝑛 × 𝑛)‑matrices over the field
𝔽𝑞. Ⅾetermine the order of the group GⅬ(𝑛,𝔽𝑞).

iii. Ⅼet SⅬ(𝑛,𝔽𝑞) be the subgroup of GⅬ(𝑛,𝔽𝑞) consisting of matrices having deter‑
minant 1. Find the order of the group SⅬ(𝑛,𝔽𝑞).

Solution.
i. Ⅼet 𝑒1, 𝑒2,… , 𝑒𝑛 be a basis of the vector space 𝔽𝑛

𝑞 . Every element of 𝔽𝑛
𝑞 can be

expressed uniquely as 𝑎1 𝑒1 + 𝑎2 𝑒2 +⋯+ 𝑎𝑛 𝑒𝑛 where 𝑎𝑗 in 𝔽𝑞 for all 1 ⩽ 𝑗 ⩽ 𝑛.
Since finite field 𝔽𝑞 has 𝑞 elements, it follows that the vector space 𝔽𝑛

𝑞 has 𝑞𝑛
elements.

ii. An (𝑛 × 𝑛)‑matrix A over 𝔽𝑞 is invertible if and only if its columns are linearly
independent vectors in 𝔽𝑛

𝑞 . The first column a1 of A can be any nonzero vector
in 𝔽𝑛

𝑞 , so there are 𝑞𝑛 − 1 possibilities. Once the first column is chosen, the
second column a2 of A can be any vector which is not a multiple of the first.
Hence, a1 ≠ 𝑐a2 where 𝑐 in 𝔽𝑞, so there are 𝑞𝑛 − 𝑞 choices for a2. Ɪn general,
the 𝑖th column a𝑖 of A can be any vector which cannot be written in the form
𝑐1 a1+𝑐2 a2+⋯+𝑐𝑖−1 a𝑖−1 where 𝑐𝑖 in 𝔽𝑞. Thus, there are 𝑞𝑛−𝑞𝑖−1 possibilities
for a𝑖. By multiplying these together, we see that the order of GⅬ(𝑛,𝔽𝑞) is

(𝑞𝑛 − 1)(𝑞𝑛 − 𝑞)⋯(𝑞𝑛 − 𝑞𝑛−1) = 𝑞(
𝑛
2 )

𝑛
∏
𝑗=1

(𝑞𝑗 − 1) .

iii. The determinant function defines a group homomorphism from the general
linear groupGⅬ(𝑛,𝔽𝑞) onto themultiplicative group𝔽×

𝑞 which as 𝑞−1 elements.
Since SⅬ(𝑛,𝔽𝑞) is the kernel of this group homomorphism, it follows that

||𝔽×
𝑞 || =

||GⅬ𝑛(𝔽𝑞)||
||SⅬ𝑛(𝔽𝑞)||

so we obtain

||SⅬ𝑛(𝔽𝑞)|| =
(𝑞𝑛 − 1)(𝑞𝑛 − 𝑞)⋯(𝑞𝑛 − 𝑞𝑛−1)

𝑞 − 1 = 𝑞(
𝑛
2 )

𝑛
∏
𝑗=2

(𝑞𝑗 − 1) . □

3. Ⅽonsider the ringℚ[𝑥]. Find a basis for the submodule ofℚ[𝑥]3 generated by

𝑓1∶= [
2𝑥 − 1
𝑥

𝑥2 + 3
] , 𝑓2∶= [

𝑥
𝑥
𝑥2
] , and 𝑓3∶= [

𝑥 + 1
2𝑥

2𝑥2 − 3
] .

Solution. Since

𝑓1 − 3𝑓2 + 𝑓3 = [
2𝑥 − 1
𝑥

𝑥2 + 3
] − 3[

𝑥
𝑥
𝑥2
] + [

𝑥 + 1
2𝑥

2𝑥2 − 3
] = 0 ,
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the set {𝑓1, 𝑓2, 𝑓3} is notℚ‑linear independent. Setting 𝑔1 ∶= 𝑓1 − 𝑓2, 𝑔2 ∶= 𝑓3 − 𝑓2,
we obtain

𝑔1 + 𝑔2 = 𝑓1 − 2𝑓2 + 𝑓3 = 𝑓2 , 2 𝑔1 + 𝑔2 = 𝑓1 , and 𝑔1 + 2𝑔2 = 𝑓3 ,
so ⟨𝑓1, 𝑓2, 𝑓3⟩ = ⟨𝑔1, 𝑔2⟩. Ɪf 𝑝𝑔1 + 𝑞𝑔2 = 0 for some 𝑝 and 𝑞 in ℚ[𝑥], then each
coordinate in 𝑝𝑔1 + 𝑞𝑔2 is zero:

(𝑥 − 1) 𝑝 + 𝑞 = 0, 𝑥 𝑞 = 0, and 3𝑝 + (𝑥2 − 3)𝑞 = 0
which implies that 𝑝 = 𝑞 = 0. Therefore, we see that

𝑔1 = [
𝑥 − 1
0
3

] , and 𝑔2 = [
1
𝑥

𝑥2 − 3
]

form a basis for the submodule ⟨𝑓1, 𝑓2, 𝑓3⟩. □
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