Problems 1 Due: Monday, 19 September 2022 before 17:00 EDT

- **P1.1** Let *B* and *C* be *R*-complexes. If the canonical morphism $[id^B \ 0]: B \oplus C \to B$ is an isomorphism, then prove that C = 0.
- **P1.2** For any two *R*-complexes *B* and *C*, demonstrate that there exists an canonical isomorphism $\zeta^{B,C}: B \oplus C \to C \oplus B$. Moreover, for any two morphisms $\beta: B \to B'$ and $\gamma: C \to C'$ of *R*-complexes, prove that the diagram

commutes.

- **P1.3** Let $\psi: A \to B$ and $\varphi: B \to C$ be two morphisms. If $\varphi \psi$ is an isomorphism and φ is a monomorphism, then show that φ and ψ are both isomorphisms.
- **P1.4** Let $\varphi: B \to C$ be a morphism, let $\pi: B \times_C B \to B$ and $\pi': B \times_C B \to B$ be the two canonical morphisms of the fibred product, and let $\delta: B \to B \times_C B$ denote the unique morphism arising the universal property of the fibred product that satisfies $\pi \delta = id^B = \pi' \delta$. Prove that the following are equivalent:
 - (a) the morphism φ is a monomorphism,
 - (b) the morphism δ is an isomorphism,
 - (c) the morphism δ is an epimorphism,
 - (d) the morphisms π and π' are equal.

