Problems 2

Due: Monday, 3 October 2022 before 17:00 EDT

P2.1 Let $\psi: A \rightarrow B$ and $\varphi: B \rightarrow C$ be two morphism of R-complexes. Demonstrate that there exists an exact sequence

$$
0 \longleftarrow \operatorname{Coker}(\varphi) \longleftarrow \operatorname{Coker}(\varphi \psi) \longleftarrow \operatorname{Coker}(\psi) \longleftarrow \operatorname{Ker}(\varphi) \longleftarrow \operatorname{Ker}(\varphi \psi) \longleftarrow \operatorname{Ker}(\psi) \longleftarrow 0
$$

P2.2 Consider the commutative diagram of R-complexes

having exact rows.
(i) When α is an epimorphism and both β and δ are monomorphisms, prove that γ is a monomorphism.
(ii) When ε is a monomorphism and both β and δ are epimorphisms, prove that γ is an epimorphism.
(iii) When α, β, δ, and ε are isomorphisms, prove that γ is also an isomorphism.

P2.3 Consider the short exact sequence $0 \longleftarrow C \stackrel{\varphi}{\longleftarrow} B \stackrel{\psi}{\longleftarrow} A \longleftarrow 0$ of R-complexes.
(i) When the homology of two of R-complexes is zero, prove that the homology of the third is also zero.
(ii) Prove that the connecting morphism $\partial(\psi, \varphi): H(C) \rightarrow \mathrm{H}(A)[1]$ is an isomorphism if and only if $\mathrm{H}(B)=0$.

P2.4 A directed graph G consists of a set $V(G)$ of vertices and a set $E(G)$ of edges formed by ordered pairs of vertices. When $e \in E(G)$ corresponds to the pair (u, v) of vertices, the vertex u is the tail of e and the vertex v is the head of e. Writing $n:=|V(G)|$ and $m:=|E(G)|$, the incidence matrix $\mathbf{B}:=\left[b_{j, k}\right]$ of G is the $(n \times m)$-matrix defined by

$$
b_{j, k}:=\left\{\begin{aligned}
-1 & \text { if the } k \text {-th edge has the } j \text {-th vertex as its tail, } \\
1 & \text { if the } k \text {-th edge has the } j \text {-th vertex as its head, } \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

The \mathbb{Z}-complex $C(G)$ associated to the directed graph G is

$$
0 \longleftarrow \mathbb{Z}^{n} \longleftarrow \mathbf{B} \mathbb{Z}^{m} \longleftarrow 0
$$

When G has c connected components, show that the $\mathrm{H}_{0}(C(G))=\mathbb{Z}^{c}$ and $\mathrm{H}_{1}(C(G))=\mathbb{Z}^{m-n+c}$.
Hint. Find the Smith normal form of the matrix B. First consider the case $c=1$ and focus on the columns corresponding to a spanning tree in the underlying graph.

