Problems 3

Due: Monday, 24 October 2022 before 17:00 EDT
P3.1 For any two morphism $\varphi: B \rightarrow C$ and $\varphi^{\prime}: B \rightarrow C$ of R-complexes, consider the commutative diagram

whose rows are the canonical short exact sequences. Prove that the morphisms φ and φ^{\prime} are homotopic if and only if there exists an isomorphism $\psi: \operatorname{Cone}(\varphi) \rightarrow \operatorname{Cone}\left(\varphi^{\prime}\right)$ that makes the diagram commute.

P3.2 Let $\beta: B^{\prime} \rightarrow B, \beta^{\prime}: B^{\prime} \rightarrow B, \gamma: C \rightarrow C^{\prime}$, and $\gamma^{\prime}: C \rightarrow C^{\prime}$ be commutative homomorphisms of R-complexes.
(i) Show that the homomorphism $\operatorname{Hom}(\beta, \gamma): \operatorname{Hom}(B, C) \rightarrow \operatorname{Hom}\left(B^{\prime}, C^{\prime}\right)$ of \mathbb{k}-complexes is commutative.
(ii) When β or γ is null-homotopic, show that $\operatorname{Hom}(\beta, \gamma)$ is also null-homotopic.
(iii) When $\beta \sim \beta^{\prime}$ and $\gamma \sim \gamma^{\prime}$, show that $\operatorname{Hom}(\beta, \gamma) \sim \operatorname{Hom}\left(\beta^{\prime}, \gamma^{\prime}\right)$.

P3.3 Let B and C be R-complexes. For any integer k, prove that the composite homomorphism

$$
\operatorname{Hom}\left(\mathrm{id}^{B[k], B}, C\right) \mathrm{id}^{\operatorname{Hom}(B, C)[-k], \operatorname{Hom}(B, C)}: \operatorname{Hom}(B, C)[-k] \rightarrow \operatorname{Hom}(B[k], C)
$$

is an isomorphism of \mathbb{k}-complexes and it is natural in B and C.
P3.4 Let B be an R^{o}-complex and let C be an R-complex. Set B^{o} to be the corresponding R-complex and C^{o} to be corresponding R^{o}-complex and consider the homomorphism

$$
\varsigma^{B, C}: B \otimes C \rightarrow C^{\mathrm{o}} \otimes B^{\mathrm{o}}
$$

of \mathbb{k}-complexes having degree 0 defined, for any integers i and j, any $b \in B_{i}$, and any $c \in C_{j}$, by $\varsigma^{B, C}(b \otimes c)=(-1)^{i j} c \otimes b$. Prove that $\varsigma^{B, C}$ is an isomorphism.

