## Problems 3 Due: Monday, 24 October 2022 before 17:00 EDT

**P3.1** For any two morphism  $\varphi : B \to C$  and  $\varphi' : B \to C$  of *R*-complexes, consider the commutative diagram

whose rows are the canonical short exact sequences. Prove that the morphisms  $\varphi$  and  $\varphi'$  are homotopic if and only if there exists an isomorphism  $\psi$ : Cone( $\varphi$ )  $\rightarrow$  Cone( $\varphi'$ ) that makes the diagram commute.

- **P3.2** Let  $\beta: B' \to B, \beta': B' \to B, \gamma: C \to C'$ , and  $\gamma': C \to C'$  be commutative homomorphisms of *R*-complexes.
  - (i) Show that the homomorphism  $\text{Hom}(\beta, \gamma)$ :  $\text{Hom}(B, C) \to \text{Hom}(B', C')$  of  $\Bbbk$ -complexes is commutative.
  - (ii) When  $\beta$  or  $\gamma$  is null-homotopic, show that Hom $(\beta, \gamma)$  is also null-homotopic.
  - (iii) When  $\beta \sim \beta'$  and  $\gamma \sim \gamma'$ , show that  $\operatorname{Hom}(\beta, \gamma) \sim \operatorname{Hom}(\beta', \gamma')$ .

**P3.3** Let *B* and *C* be *R*-complexes. For any integer *k*, prove that the composite homomorphism Hom(id<sup>*B*[*k*],*B*</sup>,*C*) id<sup>Hom(*B*,*C*)[-*k*],Hom(*B*,*C*): Hom(*B*,*C*)[-*k*]  $\rightarrow$  Hom(*B*[*k*],*C*)</sup>

is an isomorphism of  $\Bbbk$ -complexes and it is natural in *B* and *C*.

**P3.4** Let *B* be an  $R^{\circ}$ -complex and let *C* be an *R*-complex. Set  $B^{\circ}$  to be the corresponding *R*-complex and  $C^{\circ}$  to be corresponding  $R^{\circ}$ -complex and consider the homomorphism

$$\varsigma^{B,C}\colon B\otimes C\to C^{\mathrm{o}}\otimes B^{\mathrm{o}}$$

of k-complexes having degree 0 defined, for any integers *i* and *j*, any  $b \in B_i$ , and any  $c \in C_j$ , by  $\zeta^{B,C}(b \otimes c) = (-1)^{ij} c \otimes b$ . Prove that  $\zeta^{B,C}$  is an isomorphism.

