Problems 4 Due: Monday, 7 November 2022 before 17:00 EST

P4.1 Let *A* be an *R*-complex. For any *R*-complex *B*, let

 $\varsigma^{B} := \operatorname{Hom}(A, \operatorname{id}^{B, B[1]}) \operatorname{id}^{\operatorname{Hom}(A, B)[1], \operatorname{Hom}(A, B)} \colon \operatorname{Hom}(A, B)[1] \to \operatorname{Hom}(A, B[1])$

denote the natural isomorphism; compare with Problem 3.3. For any morphism $\varphi : B \to C$ of *R*-complexes, consider the homomorphism κ : Cone $(\text{Hom}(A, \varphi)) \to \text{Hom}(A, \text{Cone}(\varphi))$ defined, for all homogeneous $\beta \in \text{Hom}(A, B)[1]$ and all homogeneous $\gamma \in \text{Hom}(A, C)$, by

$$\kappa\left(egin{bmatrix}eta\ \gamma\end{bmatrix}
ight)=egin{bmatrix}eca^B(eta)\ \gamma\end{bmatrix}.$$

Demonstrate that the κ is an isomorphism.

P4.2 A semi-free filtration of an R-complex F is an increasing sequence

$$0 \subseteq F^0 \subseteq F^2 \subseteq \cdots \subseteq F^{m-1} \subseteq F^m \subseteq \cdots$$

of subcomplexes such that $F = \bigcup_{m \in \mathbb{Z}} F^m$, $F^{-1} = 0$, and the underlying \mathbb{Z} -graded *R*-module $\bigoplus_{i \in \mathbb{Z}} (F^m/F^{m-1})_i$ for each successive quotient *R*-complex F^m/F^{m-1} has a homogeneous basis of cycles. Prove that an *R*-complex is semi-free if and only if it admits a semi-free filtration.

P4.3 Let *P* be a semi-projective *R*-complex and let $0 \leftarrow P \leftarrow C \leftarrow B \leftarrow 0$ be a short exact sequence of *R*-complexes. Prove that the *R*-complex *C* is semi-projective if and only if the *R*-complex *B* is semi-projective.

Hint. Use Theorem 5.1.6 (g).

P4.4 Let $\psi: A \to B$, $\varphi: B \to C$, and $\theta: C \to D$ be morphisms of *R*-complexes. When $\varphi \psi$ and $\theta \varphi$ are homotopy equivalences, prove that ψ, φ, θ , and $\theta \varphi \psi$ are also homotopy equivalences.

