Problem Set #3

- 1. Solve the initial value problem where y''' y' = 0, y(0) = 0, y'(0) = 1, and y''(0) = 2.
- **2.** Solve $12u^{(4)} + 31u^{(3)} + 75u'' + 37u' + 5u = 0$.

Hint. Both $-\frac{1}{3}$ and $-\frac{1}{4}$ are roots of the characteristic polynomial.

3. Solve $x^{(8)} + 8x^{(4)} + 16x = 0$.

Hint. $r^4 + 4 = (r^2 - 2r + 2)(r^2 + 2r + 2).$

- **4.** A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of $10 \text{ cm} \cdot \text{s}^{-1}$ and if there is no damping, determine the position of the mass at any time. When does the mass first return to its equilibrium position?
- 5. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a viscous damper with a damping constant of $400 \text{ g} \cdot \text{s}^{-1}$. If the mass is pulled down an additional 2 cm and then released, find its position at any time. Determine the ratio of the quasi-period to the period of the corresponding undamped motion.
- 6. Assume that the system described by the equation my'' + cy' + ky = 0 is either critically damped or overdamped. Show that the mass can pass through the equilibrium position at most once, regardless of the initial conditions.
- 7. Solve $u'' + u' + 4u = 2\sinh(x)$.

Hint. $\sinh(x) = \frac{1}{2}(e^x - e^{-x}).$

- 8. Solve $y'' + \omega_0^2 y = \cos(\omega t)$ where $\omega^2 \neq \omega_0^2$.
- 9. Solve the initial value problem where $y'' 2y' 3y = 3xe^{2x}$, y(0) = 1, and y'(0) = 0.
- 10. Use the method of variation of parameters to find a particular solution to $y'' y' 2y = 2e^{-t}$. Check your answer by using the method of undetermined coefficients.

11. Solve
$$x'' - 2x' + x = \frac{e^t}{1 + t^2}$$
.

12. The *Bessel equation* of order one-half $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$ has two linearly independent solutions $y_1(x) = x^{-1/2}\cos(x)$ and $y_2(x) = x^{-1/2}\sin(x)$. Find a general solution to the nonhomogenous equation $x^2y'' + xy' + (x^2 - \frac{1}{4})y = x^{5/2}$ where x > 0.