Problem Set \#3

1. Solve the initial value problem where $y^{\prime \prime \prime}-y^{\prime}=0, y(0)=0, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=2$.
2. Solve $12 u^{(4)}+31 u^{(3)}+75 u^{\prime \prime}+37 u^{\prime}+5 u=0$.

Hint. Both $-\frac{1}{3}$ and $-\frac{1}{4}$ are roots of the characteristic polynomial.
3. Solve $x^{(8)}+8 x^{(4)}+16 x=0$.

Hint. $r^{4}+4=\left(r^{2}-2 r+2\right)\left(r^{2}+2 r+2\right)$.
4. A mass of 100 g stretches a spring 5 cm . If the mass is set in motion from its equilibrium position with a downward velocity of $10 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ and if there is no damping, determine the position of the mass at any time. When does the mass first return to its equilibrium position?
5. A mass of 20 g stretches a spring 5 cm . Suppose that the mass is also attached to a viscous damper with a damping constant of $400 \mathrm{~g} \cdot \mathrm{~s}^{-1}$. If the mass is pulled down an additional 2 cm and then released, find its position at any time. Determine the ratio of the quasi-period to the period of the corresponding undamped motion.
6. Assume that the system described by the equation $m y^{\prime \prime}+c y^{\prime}+k y=0$ is either critically damped or overdamped. Show that the mass can pass through the equilibrium position at most once, regardless of the initial conditions.
7. Solve $u^{\prime \prime}+u^{\prime}+4 u=2 \sinh (x)$.

Hint. $\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.
8. Solve $y^{\prime \prime}+\omega_{0}^{2} y=\cos (\omega t)$ where $\omega^{2} \neq \omega_{0}^{2}$.
9. Solve the initial value problem where $y^{\prime \prime}-2 y^{\prime}-3 y=3 x e^{2 x}, y(0)=1$, and $y^{\prime}(0)=0$.
10. Use the method of variation of parameters to find a particular solution to $y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}$. Check your answer by using the method of undetermined coefficients.
11. Solve $x^{\prime \prime}-2 x^{\prime}+x=\frac{e^{t}}{1+t^{2}}$.
12. The Bessel equation of order one-half $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$ has two linearly independent solutions $y_{1}(x)=x^{-1 / 2} \cos (x)$ and $y_{2}(x)=x^{-1 / 2} \sin (x)$. Find a general solution to the nonhomogenous equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=x^{5 / 2}$ where $x>0$.

