Problem Set \#4

1. Consider a mass of 1 kg in a undamped mass-spring system with spring constant $4 \mathrm{~kg} \cdot \mathrm{~s}^{-2}$ and external driving force $F(t)=\cos (t)$. Assume that the mass is displaced $\frac{1}{2} \mathrm{~m}$ from equilibrium and released. Describe the behaviour of the system.
2. Consider a mass of 1.000 kg in a mass-spring system with spring constant $4.000 \mathrm{~kg} \cdot \mathrm{~s}^{-2}$, damping constant $0.1000 \mathrm{~kg} \cdot \mathrm{~s}^{-1}$, and external driving force $F(t)=\cos (2 t)$. Assume that the mass is displaced 0.5000 m from equilibrium and released. Describe the behaviour of the system.
3. Consider a mass of 1 kg in a mass-spring system with spring constant $4 \mathrm{~kg} \cdot \mathrm{~s}^{-2}$, damping constant $4 \mathrm{~kg} \cdot \mathrm{~s}^{-1}$, and external driving force $F(t)=\cos (2 t)$. Assume that the mass is displaced $\frac{1}{2} \mathrm{~m}$ from equilibrium and released. Describe the behaviour of the system.
4. (a) Let $f(t)$ be a function such that $\mathscr{L}\{f(t)\}(s)$ exists and let $b>0$. Establish the scaling property of the Laplace transform: $\mathscr{L}\{f(b t)\}(s)=\frac{1}{b} \mathscr{L}\{f(t)\}\left(\frac{s}{b}\right)$.
(b) Suppose that $f(t)$ is a function such that $\mathscr{L}\{f(t)\}(s)=\frac{s^{2}-s+1}{(2 s+1)(s-1)}$. Determine the Laplace transform of $g(t)=f(2 t)$.
5. Let $u(t)$ be the unit step function and let $f(t)$ be a function such that $\mathscr{L}\{f(t)\}(s)$ exists. Establish the time shifting property of the Laplace transform: $\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s)$.
6. Use the definition of the Laplace transform, compute $\mathscr{L}\{f(t)\}(s)$ where

$$
f(t)= \begin{cases}1-t & \text { for } 0 \leq t \leq 1 \\ 0 & \text { for } 1<t\end{cases}
$$

Check your answer by using the time shifting property.
7. Find the inverse Laplace transform of $\frac{2 s+2}{s^{2}+2 s+5}$ and $\frac{6}{(s-2)^{4}}$.
8. Find the inverse Laplace transform of $\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}$ and $\frac{e^{-2 s}}{s^{2}+s-2}$.
9. The frequency differentiation property states that $\mathscr{L}\{t f(t)\}(s)=(-1) \frac{d}{d s}(\mathscr{L}\{f(t)\}(s))$. Use this property, to find the inverse Laplace transform of the following functions:
(a) $\ln \left(\frac{s+2}{s-5}\right)$
(b) $\arctan \left(s^{-1}\right)$
10. Use the Laplace transform to solve: $y^{\prime \prime}-y^{\prime}-6 y=0, y(0)=1, y^{\prime}(0)=-1$.
11. Use the Laplace transform to solve: $y^{\prime \prime}-2 y^{\prime}+2 y=\cos (t), y(0)=1, y^{\prime}(0)=0$.
12. Use the Laplace transform to solve the initial value problem:

$$
y^{\prime \prime}+4 y=\left\{\begin{array}{ll}
1 & \text { for } 1 \leq t<\pi, \\
0 & \text { for } \pi \leq t,
\end{array} \quad y(0)=1, y^{\prime}(0)=0 .\right.
$$

