Problem Set \#5

1. Use Laplace transforms to solve:

$$
\frac{d^{4} x}{d t^{4}}-4 \frac{d^{3} x}{d t^{3}}+6 \frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+x=0
$$

where $x(0)=0, x^{\prime}(0)=1, x^{\prime \prime}(0)=0, x^{\prime \prime \prime}(0)=1$.
2. Use Laplace transforms to solve: $y^{\prime \prime \prime}+y^{\prime \prime}=e^{t}+t+1, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$.
3. Use Laplace transforms to solve: $f^{\prime \prime}(t)+2 f^{\prime}(t)+f(t)=4 e^{-t}, f(0)=2, f^{\prime}(0)=-1$.
4. For $\lambda>0$, use Laplace transforms to solve: $y^{\prime \prime}+\lambda^{2} y=\cos (\lambda t), y(0)=1, y(\pi / 2 \lambda)=-1$.
5. Solve the following initial value problem which describes the deflection of a uniform static cantilever beam:

$$
\frac{d^{4} w}{d x^{4}}=\left\{\begin{array}{ll}
1 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array} \quad \text { where } w(0)=w^{\prime}(0)=0 \text { and } w^{\prime \prime}(2)=w^{\prime \prime \prime}(2)=0\right.
$$

6. (a) Compute $e^{t} * t$.
(b) Show that $f *(g * h)=(f * g) * h$.
7. Use the convolution property to find the following:
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\}(t)$
(b) $\mathscr{L}^{-1}\left\{\frac{1}{(s-a)(s-b)}\right\}(t) \quad$ where $a \neq b$.
8. Solve $y^{\prime \prime}+y=g(t)$ where $y(0)=y^{\prime}(0)=0$ and $g(t):= \begin{cases}\sin (t) & 0 \leq t<\pi \\ 0 & \pi \leq t .\end{cases}$
9. Solve the following integral equation: $t e^{-a t}=\int_{0}^{t} x(\tau) x(t-\tau) d \tau$.
10. Solve $y^{\prime \prime}+t y^{\prime}-2 y=4, y(0)=-1$ and $y^{\prime}(0)=0$.
11. The sawtooth wave is the piecewise linear function defined by $\operatorname{saw}(t):=t-\lfloor t\rfloor$, where $\lfloor t\rfloor$ is the largest integer not greater than t. Sketch the graph of $\operatorname{saw}(t)$ and compute its Laplace transform.
12. Solve $y^{\prime \prime}+4 \pi^{2} y=2 \pi \operatorname{saw}(t)$ where $y(0)=y^{\prime}(0)=0$.
