
NONNEGATIVITY CERTIFICATES ON REAL ALGEBRAIC SURFACES

GRIGORIY BLEKHERMAN, RAINER SINN, GREGORY G. SMITH, AND MAURICIO VELASCO

ABSTRACT. We introduce tools for transferring nonnegativity certificates for global sections between
line bundles on real algebraic surfaces. As applications, we improve Hilbert’s degree bounds on sum-
of-squares multipliers for nonnegative ternary forms, give a complete characterization of nonnegative
real forms of del Pezzo surfaces, and establish quadratic upper bounds for the degrees of sum-of-
squares multipliers for nonnegative forms on real ruled surfaces.

1. OVERVIEW

Characterizing nonnegativity is a fundamental problem in both real algebraic geometry and optimiza-
tion. We develop a transfer approach to testing and certifying nonnegativity of polynomials. The key
to this approach is the following simple observation: If f ,g are multivariate polynomials satisfying
the equation f g = s where s is a sum-of-squares of polynomials then nonnegativity of f is equivalent
to nonnegativity of g. The identity f g = s thus transfers the problem of testing the nonnegativity
of f to that of g. We are interested in transferring nonnegativity certificates between classes of
functions: if we can show that every nonnegative function f in a certain class has a multiplier g in
a different class, such that f g is a sum of squares, then we have transferred nonnegativity testing
from the class of f to the class of g. If the class of g is simpler in an appropriate sense, then we can
iteratively apply the transfer procedure aiming to reduce the problem to a class of functions where
nonnegativity is well understood.

We carry out the program outlined above for forms on real projective surfaces. Our method
transfers nonnegativity certificates for sections of a certain line bundle on a surface, to nonnegativity
certificates of sections of a “simpler” line bundle, provided the bundles satisfy certain cohomological
inequalities. These inequalities hold for line bundles on a wide array of algebraic surfaces, including
rational and more generally ruled surfaces, and allow us to fully characterize nonnegativity sections
in several situations.

One of the least understood aspects of the relationship between nonnegative polynomials and
sums of squares is the question of degree bounds when writing nonnegative polynomials as sums
of squares of rational functions. Hilbert’s 17th problem asked whether every globally nonnegative
polynomial f can be written as a sum of squares of rational functions. It is easy to see that being able
to write a nonnegative polynomial f in this way is equivalent to the existence of a sum-of-squares
multiplier g and a sum-of-squares s such that f g = s as above. Artin’s affirmative solution to
Hilbert’s 17th problem in [Art27] thus transfers nonnegativity certification into a sum-of-squares
feasibility problem. However, our understanding of bounds on the degree of the available multipliers
g (both upper and lower) remains quite poor.

Prior to posing the 17th problem, Hilbert showed in 1893 [Hil93] that the result holds for ternary
forms (homogeneous polynomials in three variables). Hilbert’s original proof of the case of ternary
forms came with upper bounds on the degree of the sum-of-squares multipliers, and these bounds
remained unimproved until our current work. His proof iteratively lowers the degree of the ternary
form for which nonnegativity has to be certified. Hilbert’s iterative approach is an inspiration for
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the approach introduced in this article: we extend Hilbert’s methods from the case of P2 to general
algebraic surfaces, developing a general transfer theory. We then specialize our results to several
types of surfaces. First, we focus on toric surfaces and provide a combinatorial interpretation for our
transfer Theorem in terms of lattice points in polygons. The freedom to choose different line bundles
allowed by the transfer Theorem leads us to revisit Hilbert’s bounds for ternary forms, obtaining
the first improvement since the original paper in 1893. Furthermore, in the first case where degree
bounds for multipliers of ternary forms are not known, namely ternary forms of degree 10, we prove
a tight upper bound; this is the first new instance since Hilbert’s work of an exact multiplier degree
bound for his 17th problem.

We then focus on real del Pezzo surfaces where we take advantage of the classification of their
real structures [Rus02]. The resulting understanding of the real Picard group allows us to fully carry
out the transfer program outlined above, obtaining a complete classification of nonnegative sections
for all line bundles. The del Pezzo case is particularly interesting since it illustrates the role that
real structures play in determining the available multipliers and the final form of the nonnegativity
certificates. Furthermore, this is the first example of concrete geometric bounds for nonnegativity
certificates that apply to a family of surfaces having a non-trivial moduli space.

Finally we develop an asymptotic theory of degree bounds for surfaces. The basic question is the
following: given a fixed real algebraic surface X , can we bound k such that every form f of degree
2d has a multiplier g of degree 2k so that f g is a sum of squares? We show that for most nonsingular
ruled surfaces and d large enough, the degree of multipliers k is bounded from above by a quadratic
function in d. This is the first result on multiplier degree bounds that applies to non-rational surfaces.

Main results. Let X be a totally-real variety. We say that a divisor E supports multipliers for a
divisor D if, for any nonnegative global section f in H0(X ,OX(2D)

)
, there exists a nonzero global

section g in H0(X ,OX(2E)
)

such that the product f g in H0(X ,OX(2D+2E)
)

is a sum of squares.
Equivalently, we can transfer testing nonnegativity of global sections in H0(X ,OX(2D)

)
, to testing

nonnegativity of global sections in H0(X ,OX(2E)
)
.

Our main technical contribution is the following theorem.

Theorem 4.2. Assume that X is a totally-real geometrically-integral projective surface. Let D and
E be divisors on X with D free (equivalently, the line bundle OX(D) is globally generated), D+E
very ample, and H0(X ,OX(E −D)

)
= H1(X ,OX(D+E)

)
= H1(X ,OX(2E)

)
= 0. The inequality

h0(X ,D+E)> 1+
⌈

h0(X ,2D+2E)−h0(X ,2E)−h0(X ,D+E)−h1(X ,E −D)

2

⌉
implies that the divisor E supports multipliers for the divisor D.

The main inequalities and cohomological vanishing conditions can sometimes be simplified. We
first consider toric surfaces, where we develop a criterion for transferring nonnegativity of Laurent
polynomials with support in a lattice polygon 2P to Laurent polynomials with support in a lattice
polygon 2Q. We need the following terminology: If A ⊆ R2 then the number of reduced connected
components of A is one less than the number of connected components of A and a lattice translate of
A is a set of the form A+m for m ∈ Z2. We write #A for the number of lattice points contained in A
and A◦ for the interior of A.

Theorem 5.1. Assume that P and Q are convex lattice polygons such that no lattice translate of P is
contained in Q. Let h be the total number of reduced connected components of the set differences
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P\Q′ as Q′ ranges over all lattice translates of Q. The inequality

#(2Q)+h > #
(
(P+Q)◦

)
implies that Q supports multipliers for P (i.e. for every nonnegative Laurent polynomial f with
monomial support in 2P there exists a Laurent polynomial g with monomial support in 2Q such that
f g is a sum of squares of Laurent polynomials with monomial support in 2(P+Q)).

This allows us prove sharp degree bounds for degree 10 ternary forms in Example 5.9, and improve
Hilbert’s bounds for ternary forms in Example 5.10.

The inequality in Theorem 4.2 can be rewritten geometrically, in terms of the adjoint bundle as

h0(X ,2E)+h1(X ,E −D)> h0(X ,KX +D+E) .

A negative canonical bundle makes the right hand side of this inequality smaller, making it natural
to focus on surfaces with large anticanonical divisor. Therefore, we look at del Pezzo surfaces in
detail. Our main result in this direction is the following:

Theorem 6.1. Let X be a totally-real del Pezzo surface having degree at least 3 and canonical divisor
KX . For any nonzero real effective divisor D on X, there exists a finite sequence D0,D1, . . . ,Dk of
effective divisors on X with D0 = D such that −KX ·Di <−KX ·Di−1, Di supports multipliers for
Di−1 for any 1 ⩽ i ⩽ k, and Dk is either zero or a positive multiple of a conic bundle. In particular,
the length k of the sequence is bounded above by −KX ·D.

This theorem allows us to find certificates of nonnegativity on del Pezzo surfaces as explained in
Remark 6.7.

Next we also establish asymptotic degree bounds for some embedded surfaces. Let X in Pn be a
totally-real surface with canonical divisor KX . Let A be the divisor defined by the hyperplane section
of the embedding. Our goal is to prove degree bounds for certifying nonnegativity of global sections
of H0(X ,2dA) for large d. Our main result is that nonnegativity transfer is possible via the surface Z
obtained by blowing-up X at a real point when −KX ·A > 0, which implies that the surface X must
be ruled. More precisely, we prove the following:

Theorem 7.3. Assume that X is a totally-real smooth surface with a very ample divisor A satisfying
−KX ·A > 0. Let π : Z := Blp(X)→ X be the blow-up of X at a real point p and set H := π∗(A).
Fix s to be the smallest positive integer such that s(−KX ·A)> A · (A+KX) and choose a positive
integer t such that 1

2 +
1
3 + · · ·+ 1

t+1 > 2(1+
√

s). For all sufficiently large integers d, there exists
an (t +1)-step transfer on Z from dH to (d −1)H.

It follows that the degree of sum of square multipliers can be bounded by a quadratic polynomial
in d, i.e. there exists a sum of squares g ∈ H0(X ,2kA), such that f g is a sum of squares, and k can
be bounded by a quadratic function in d (see Corollary 7.5).

Relationship with earlier work. The statement that a globally nonnegative polynomial f is a sum
of squares of rational functions is equivalent (by clearing denominators) to saying that there exists a
real polynomial r such that f r2 is a sum of squares. As mentioned earlier this is in fact equivalent
to saying that there exists a sum of squares g, such that f g is a sum of squares. When referring
to degree bounds, we always refer to the bounds on the degree of the sum of squares multiplier
g. It is worth noting that Artin’s original proof did not produce any degree bounds. Currently, the
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best known upper bounds due to Lombardi, Perrucci and Roy are a multiple tower of exponentials
[LPR20], while the best known lower bounds are linear [BGP16].

The results of [LPR20] imply multiple tower of exponentials degree bounds for real varieties
and, more generally, for semialgebraic sets. In [BSV16] tight degree bounds were proved for real
curves, which significantly improve on the general bounds from real algebraic geometry. However,
the method does not transfer to varieties of higher dimension, making surfaces a very interesting
natural next step for a quantitative understanding of nonnegativity on varieties.

Finally, we would like to mention a related line of work which uses powers of a fixed polynomial
as a multiplier. A result of Reznick [Rez95] shows that if f is a strictly positive homogeneous
polynomial (form), then for some large enough r we have that (x2

1 + · · ·+ x2
n)

r f is a sum of squares.
The paper includes an upper bound on r in terms of the degree, the number of variables of f , and the
minimum value of f on the unit sphere. It is crucial to note that dependence of r on the minimum of
f cannot be removed, and so-called “uniform denominators" cannot work for all forms of degree
2d, as demonstrated in [Rez05]. Reznick’s result was later generalized by Scheiderer [Sch12], who
showed that if f and g are both strictly positive forms, then for k large enough we have f gk is a sum
of squares. However, in this generality, there is no estimate on the size of k. There is also a large
literature on Positivstellensatz theorems on compact affine varieties which do not use multipliers
[Mar08]. However, it is a feature of these theorems that uniform degree bounds are simply not
possible in general [Sch00].

Structure of the paper. Let Y ⊂ Pn be a real, projective, linearly normal curve with graded
coordinate ring R. One of our main technical tools is establishing bounds so that a linear functional
ℓ on R2 can be written as a sum of few evaluations on points of Y , and the points of Y are chosen
in a conjugate-invariant way. We call the least number of conjugate-invariant point evaluations the
conjugate invariant length of ℓ. The main result of Sections 2 and 3 is a bound on the (maximal
typical) conjugate invariant length. If the curve Y has no real points, then there is a trivial bound of
⌈1

2 dimR2⌉ of complex pairs of evaluations. We modestly improve it to ⌈1
2(dimR2 −dimR1)⌉+1,

but this improvement is crucial. The basic idea is simple: given a generic linear functional ℓ ∈ R∗
2,

consider the associated quadratic form ϕℓ. We can make ϕℓ drop rank by 1 by adding a multiple of
some complex point evaluation. The resulting linear functional ℓ′ can be written in terms of point
evaluations of Kerϕℓ′ ∩Y (this uses linear normality of Y ). Then we just apply the trivial bound
to KerQℓ′ ∩Y , so the rank of ℓ′ is at most ⌈1

2(dimR2 −dimR1)⌉, and so the length of ℓ is at most
⌈1

2(dimR2 −dimR1)⌉+1.
Cohomological conditions on X allow us to pass to (and count dimensions in) the normalization

of Y =V ( f )∩X . Interestingly, passing to the normalization Y ′ of Y increases the dimension of R1,
while keeping the dimension of R2 the same, which improves the effectiveness of our bound on
conjugate symmetric length ⌈1

2(dimR2(Y ′)−dimR1(Y ′))⌉+1
In Section 4, we prove Theorem 4.2 by applying results on conjugate-invariant length, which

allow us to count signs in a suitably defined real quadratic form. We derive a contradiction to
non-existence of sum of squares multipliers in some degree, since the quadratic form is supposed to
be positive definite, and yet the results on the conjugate-invariant length allow us to show that it
doesn’t have enough positive eigenvalues.

In the second half of the paper we focus on the applications of Theorem 4.2. In Section 5, we
apply it to toric surfaces and derive the sharpest known degree bounds for sum of squares multiplies
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for ternary forms, improving Hilbert’s 1893 result. In Section 6 we work with real del Pezzo surfaces,
and in Section 7 we focus on asymptotic degree bounds for ruled surfaces and prove the existence of
asymptotic quadratic multiplier bounds for them.

2. POINT EVALUATIONS

This section introduces a numerical invariant of a real projective subvariety called the maximum
typical conjugation-invariant length; see Definition 2.4. It is derived from the conjugation-invariant
length of linear functionals, which depends on expressing linear functionals as conjugation-invariant
linear combinations of point evaluations. This subtle invariant allows one to bound the number of
positive and negative of the eigenvalues for quadratic forms on the subvariety.

Fix a nonnegative integer n and consider an (n + 1)-dimensional real vector space V . Let
x0,x1, . . . ,xn be a basis for its real dual space V ∗ and set S := Sym(V ∗) ∼= R[x0,x1, . . . ,xn] where
deg(x j) = 1 for all 0 ⩽ j ⩽ n. A real projective subvariety X of Pn := Proj(S) is an integral closed
subscheme over R such that the structure morphism X → Spec(R) is separated and of finite type.
The saturated homogeneous ideal of the subscheme X in the polynomial ring S is denoted by I
and the homogeneous coordinate ring of X is the quotient R := S/I. For all integers j, the graded
component R j, consisting of all homogeneous elements in R having degree j, is a finite-dimensional
real vector space.

We begin by describing a correspondence between the linear functionals ℓ : R2 → R and certain
quadratic forms. Since R2 = S2/I2, the pullback of the canonical surjection η : S2 → R2, which
sends a linear functional ℓ : R2 → R to the composite map ℓ◦η : S2 → R, is injective and defines an
isomorphism between R∗

2 and I⊥2 := {ψ ∈ S∗2 | ψ(g) = 0 for all g ∈ I2}. The corresponding quadratic
form ϕℓ : S1 → R is defined, for all f in S1, by ϕℓ( f ) = (ℓ ◦η)( f 2). The kernel of the quadratic
form ϕℓ is the kernel of its associated symmetric matrix: it is the linear subspace consisting of all
polynomials f in S1 such that (ℓ◦η)( f S1) = 0. The corank of ϕℓ is the dimension of its kernel.

Example 2.1. Let C be the complete intersection curve in P3 whose homogeneous coordinate ring is

R := R[x0,x1,x2,x3]/⟨x2
0 + x2

1,x1x2 − x2
2 − x2

3⟩ .

Any linear functional ℓ : R2 → R can be represented as a quadratic form ϕℓ : S1 → R. Since
dimR2 = 8, the associated symmetric matrix of the corresponding quadratic form, relative to the
ordered basis dual to x0,x1,x2,x3 in S1, is a real matrix of the form−a1 a2 a3 a4

a2 a1 a5 +a6 a7
a3 a5 +a6 a5 a8
a4 a7 a8 a6

 . ⋄

We record some basic features of projective space. A closed point p in Pn is an equivalence
class consisting of nonzero elements in V ⊗RC∼= Cn+1 up to multiplication by a nonzero complex
number. Any element p̂ in this equivalence class is an affine representative of the point p. Complex
conjugation on C induces involutions on both the complex vector space V ⊗RC and the closed
points in Pn. A closed point p is real if and only if it is fixed under conjugation: p = p. The
set of real points in Pn is denoted by Pn(R) and a nonreal point on Pn is any closed point in the
complement Pn \Pn(R). Every real point in Pn admits real affine representatives and any two real
affine representatives coincide up to multiplication by a nonzero real number. Hence, there is a
bijection between Pn(R) and the equivalence classes of nonzero elements of V up to multiplication
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by a real number. The set Pn(R) is a differentiable manifold endowed with a Euclidean topology
induced by any norm on V under the canonical quotient map V \{0}→ Pn(R).

We first analyze the geometric properties of the quadratic forms having corank 1. Although its
proof is elementary, we were unable to find a suitable reference. A subvariety X in Pn = Proj(S) is
nondegenerate if it is not contained in a hyperplane or, equivalently, if we have R1 = S1.

Lemma 2.2. Let X be a nondegenerate real subvariety of Pn with homogeneous coordinate ring R.
(i) The set M :=

{
ℓ : R2 → R

∣∣ the quadratic form ϕℓ has corank 1
}

is a differentiable manifold of
dimension dimR2 −1.

(ii) For any quadratic form ϕ in M, the tangent space Tϕ(M) is the linear subspace of I⊥2 consisting
of the linear maps ψ : S2 → R such that ψ(g2) = 0 for all polynomials g in the kernel of ϕ .

(iii) The map Φ : M → Pn(R), which sends a quadratic form ϕ having corank 1 to the equivalence
class of its kernel, has a surjective differential at all points in M. In particular, the image of
any Euclidean open set in M has nonempty Euclidean interior in Pn(R).

Proof. Every quadratic polynomial g in S2 corresponds to a unique real symmetric matrix A where
g = xTAx and x := [x0 x1 · · · xn]T. For any two integers j and k satisfying 0 ⩽ j ⩽ k ⩽ n, we
write a j,k for the linear functional a j,k : S2 → R that determines the ( j,k)-entry in the associated
symmetric matrix A. Let Z be the closed affine subscheme of S2 defined by the determinant of A.
The Jacobi formula d det(A) = tr

(
adj(A) dA

)
expresses the derivative of this determinant in terms

of the adjugate of A and the derivative of A. Consider a point ϕ in the determinantal hypersurface
Z corresponding to a quadratic form having corank 1. As every symmetric matrix is orthogonally
diagonalizable, we may choose coordinates so that the point ϕ is represented by a diagonal matrix
Q := diag(λ0,λ1, . . . ,λn−1,0) where λ j ̸= 0 for all 0 ⩽ j ⩽ n−1. Hence, the differential d det(A)
at the point ϕ equals λ0 λ1 · · ·λn−1 dan,n ̸= 0. It follows that ϕ is a nonsingular point on Z.

To establish that the point ϕ is a nonsingular point on Z ∩ I⊥2 , we show that the tangent space
Tϕ(Z) and the linear subspace I⊥2 intersect transversely, which proves that M is nonsingular and
Tϕ(M) = Tϕ(Z)∩ I⊥2 . By hypothesis, the subvariety X is nondegenerate, so the polynomial x2

n
does not belong to I2. Hence, the real vector space ⟨x2

n⟩+ I2 has dimension 1+ dim I2. Since(
Tϕ(Z)∩ I⊥2

)⊥ = Tϕ(Z)⊥∩ I2 = ⟨x2
n⟩+ I2, we see that Tϕ(Z) and I⊥2 intersect transversely. Because

this calculation is invariant under orthogonal transformations, we deduce that parts (i) and (ii) hold.
To understand the map Φ : M → Pn(R), recall that the adjugate matrix of A satisfies the equation

A adj(A) = det(A)I. Hence, in a neighbourhood of the point ϕ in M represented by the diagonal
matrix Q, the map Φ sends the associated symmetric matrix A to the equivalence class spanned by
the last column of the adjugate matrix adj(A), whose entries are polynomials in the a j,k. From this
local description, we see that the map Φ : M → Pn(R) is differentiable.

Finally, we compute the differential dΦ at the point ϕ in M. For all 0 ⩽ j ⩽ n and all 0 ⩽ k ⩽ n, let
E j,k be the

(
(n+1)×(n+1)

)
-matrix whose ( j,k)-entry is 1 and all other entries are 0. By identifying

points in dual space S∗2 with their associated symmetric matrices, we see that the differentiable
curves σ j,k : R→ S∗2 defined by

σ j,k(t) :=
{

Q+ t(E j,k +Ek, j) for all 0 ⩽ j ⩽ k ⩽ n−1
Q+ t(E j,n +En, j)+(t2/λ j)En,n for all 0 ⩽ j ⩽ n−1 and k = n
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lie in the hypersurface Z and their tangent directions at t = 0 span the tangent space Tϕ(Z). It follows
that Φ(ϕ) = [0 : 0 : · · · : 0 : 1] and

Φ
(
σ j,k(t)

)
=

{
[0 : 0 : · · · : 0 : 1] for all 0 ⩽ j ⩽ k ⩽ n−1
[0 : 0 : · · · : 0 : t : 0 : · · · : 0 :−λ j] for all 0 ⩽ j ⩽ n−1 and k = n.

Differentiating with respect to t establishes that the differential dΦ surjects onto the tangent space
TΦ(q)

(
Pn(R)

)
and its kernel K is spanned by forms that vanish at xj xn for all 0 ⩽ j ⩽ n. The map

µxn : R1 → R2 is injective, so the dimension of real vector space ⟨xj xn | 0 ⩽ j ⩽ n⟩+ I2 is equal to
the sum of the dimensions of its summands. Since

(
K ∩ I⊥2

)⊥ = ⟨xj xn | 0 ⩽ j ⩽ n⟩+ I2, we see that
K and I⊥2 intersect transversely. Therefore, the differential of the map Φ : M → Pn(R) is surjective
at all points in M. The final assertion follows from the implicit function theorem. □

Our second lemma relates linear functionals to point evaluations. A closed point in the subvariety
X is a closed point in Pn at which the polynomials in the homogeneous ideal I vanish. The set of real
points in X is denoted by X(R). Given any closed point p in X , any choice p̂ of affine representative
defines a ring homomorphism evp : R →C by sending the coset f in R to the evaluation f̂ (p̂), where
f̂ is a polynomial in S that maps to f under the canonical surjection. Since the point p lies on X , the
complex number f̂ (p̂) is independent of the choice of the polynomial f̂ . The closed point p in X
determines the point evaluation evp : R →C up to multiplication by a nonzero complex number. The
affine representatives of real points are always chosen to be real, so a point p in X(R) determines
the map evp : R → R up to multiplication by a nonzero real number.

Lemma 2.3. Let X be a real subvariety of Pn with homogeneous coordinate ring R. For any linear
functional ℓ : R2 →R, there are nonnegative integers r and c, real numbers a1,a2, . . . ,ar, real points
p1, p2, . . . , pr in X, complex numbers z1,z2, . . . ,zc, and nonreal points q1,q2, . . . ,qc in X such that

ℓ= a1 evp1+a2 evp2+ · · ·+ ar evpr+(z1 evq1+z1 evq1)+(z2 evq2+z2 evq2)+ · · ·+(zc evqc+zc evqc) .

Proof. To start, we claim that any linear functional from R2 to C is a C-linear combination of point
evaluations. The point evaluations span a linear subspace of the linear functionals R∗

2. Suppose that
this linear subspace is contained in a hyperplane. It follows that the corresponding element f in R2
vanishes at every closed point in X . Since X is a subvariety, its homogeneous ideal I is radical, so
any polynomial f̂ in S2 that maps to f under the canonical surjection belongs to I. Hence, we have
f = 0 and the linear subspace spanned by point evaluations is not contained in a nonzero hyperplane.

It remains to describe the real-valued linear functionals ℓ : R2 → R. The previous paragraph
implies that there exists nonnegative integers r and c, complex numbers a1,a2, . . . ,ar, real points
p1, p2, . . . , pr in X , complex numbers z1,z2, . . . ,zc, and nonreal points q1,q2, . . . ,qc in X such that

ℓ= a1 evp1 +a2 evp2 + · · ·+ar evpr +z1 evq1 +z2 evq2 + · · ·zc evqc .

Since ℓ is real-valued and pj = pj for all 1 ⩽ j ⩽ r, we see that ℓ= ℓ and

ℓ= 1
2(ℓ+ ℓ) = Re(a1) evp1 +Re(a2) evp2 + · · ·+Re(ar) evpr

+(z1 evq1+z1 evq1)+(z2 evq2+z2 evq2)+ · · ·(zc evqc+zc evqc) . □

Building on this lemma, we introduce two numerical invariants.

Definition 2.4. For a linear functional ℓ : R2 → R, the conjugation-invariant length clen(ℓ) is the
minimum of the sum r+ c among all expressions for ℓ appearing in Lemma 2.3. The maximum
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typical conjugation-invariant length of X , denoted by mclen(X), is the smallest integer k such that
the subset of the linear functionals ℓ : R2 →R having conjugation-invariant length at most k is dense
in the Euclidean topology on R∗

2. Equivalently, the numerical invariant mclen(X) is the smallest
integer k such that the subset of the linear functionals ℓ : R2 →R having conjugation-invariant length
greater than k does not contain a nonempty open neighbourhood in the Euclidean topology on R∗

2.

The next proposition links the eigenvalues of a quadratic form to the conjugation-invariant length.
A set of points in Pn is in linear general position if they impose independent conditions on linear
forms, meaning that the set of linear forms vanishing at any k ⩽ n+ 1 of the points is a linear
subspace of codimension k.

Proposition 2.5. Consider a linear function ℓ : R2 → R of the form

ℓ= a1 evp1+a2 evp2+ · · ·+ ar evpr+(z1 evq1+z1 evq1)+(z2 evq2+z2 evq2)+ · · ·+(zc evqc+zc evqc) ,

where a1,a2, . . . ,ar are real numbers, p1, p2, . . . , pr are real points in Pn, z1,z2, . . . ,zc are complex
numbers, and q1,q2, . . . ,qc are nonreal points in Pn. Setting r+ and r− to be the number of positive
and negative numbers in the set {a1,a2, . . . ,ar} respectively, the corresponding quadratic form ϕℓ

has at most r++ c positive eigenvalues and r−+ c negative eigenvalues. In particular, ϕℓ has at
most clen(ℓ) positive eigenvalues.

Proof. For any real point p in Pn(R), the quadratic form corresponding to evp : R2 → R has rank
one and one positive eigenvalue because evp( f 2)⩾ 0 for any f in R1. For any complex number z
and any nonreal point q in Pn, we claim that the quadratic form corresponding to z evq+z evq has
rank at most two, and at most one positive and one negative eigenvalue. Since g(q) = g(q) for any
g in R2, we have (evq+evq)( f 2) = 2Re

(
f 2(q)

)
for any f in R1. Writing q = a+ ib for some real

points a and b in Pn and using that f is linear, we see that 2Re
(

f 2(q)
)
= 2

(
f 2(a)− f 2(b)

)
. By

the first part, we see that this quadratic form has rank at most two, and at most one positive and
one negative eigenvalue. As z evq is the same as ev√zq on any elements g in R2, the claim follows.
Finally, we observe that the signature of a quadratic form is subadditive. □

3. BOUNDS FOR CURVES

For real curves with no real points, this section bounds the maximum typical conjugation-invariant
length. Despite superficial similarities to Theorem 1 of [BT15], our new inequality is essentially
independent and crucial to our proof strategy. Being able to sharpen or generalize the inequality in
Theorem 3.3 would ultimately translate into better degree bounds.

The next two lemmas provide topological tools for bounding the maximum typical conjugation-
invariant length on certain real subvarieties. The subvariety X is linearly normal if the canonical
map H0(Pn,OPn(1)

)
→ H0(X ,OX(1)

)
is surjective.

Lemma 3.1. Assume that the real projective subvariety X in Pn is nondegenerate, linearly normal,
and has positive dimension. Let R be the homogeneous coordinate ring of X. For any linear subspace
W in R1, the set of linear functionals ℓ ∈ R∗

2 such that the corresponding quadratic form ϕℓ : R1 →R
satisfies the following three properties, is open and nonempty in the Zariski topology.
(1) The restriction of quadratic form ϕℓ to the linear subspace W has rank equal to dimW.
(2) For any nonreal point q in X, there exists a complex number z (which may depend on ℓ) such

that, for the linear functional ℓ′ = z evq+z evq, the quadratic form ϕ ′ corresponding to ℓ+ ℓ′

has corank 1.
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(3) The quadratic form ϕ ′ is a smooth point on the differentiable manifold M formed by the quadratic
forms having corank 1, and the linear map ℓ′ is not an element of the tangent space Tϕ ′(M).

Recall that Lemma 2.2 (ii) identifies elements in Tϕ ′(M) with appropriate linear maps.

Proof. Fix a linear subspace W in the (n+1)-dimensional real vector space R1.
(1) A quadratic form has maximal rank if and only if its corresponding symmetric matrix is invertible.

Hence, the locus of quadratic forms arising from linear functionals on R2, whose restriction to W
has maximal rank, is open in the Zariski topology. We need to show that it is nonempty. Consider
the incidence correspondence Ξ :=

{
(ℓ, p)∈ R∗

2×P(W )
∣∣ p̂ ∈ Ker(ϕℓ)

}
. The fibre over the point

p in P(W ) consists of those linear functionals ℓ : R2 → R that annihilate the linear subspace(
∑

n
j=0(p̂)j x j

)
·W in R2. Since X is nondegenerate and irreducible, multiplication by the linear

form ∑
n
j=0(p̂)j x j is injective for any affine representative p̂. Hence, the dimension of the linear

subspace
(
∑

n
j=0(p̂)j x j

)
·W equals dimW and the fibre over the point p is a linear subspace of

dimension dimR2 −dimW . Combining the dimension of the fibres with the dimension of the
base, the dimension of Ξ is bounded above by dimR2 − 1. We deduce that the projection of
the incidence correspondence Ξ on first factor R∗

2 cannot be surjective. Therefore, a generic
quadratic form ϕℓ has maximal rank when restricted to W .

(2) By making a linear change of variables on the polynomial ring S, we may assume that xn(q) ̸= 0
and x0,x1, . . . ,xn−2 form a basis for the linear subspace of forms in S1 vanishing at the nonreal
points q and q. We may also assume that [0 : 0 : · · · : 0 : i : 1] is an affine representative of q. With
respect to these coordinates, the symmetric

(
(n+1)×(n+1)

)
-matrix associated to ϕℓ′ is

0 0 · · · 0 0 0
0 0 · · · 0 0 0...

... . . . ...
...

...
0 0 · · · 0 0 0
0 0 · · · 0 −u v
0 0 · · · 0 v u


where z := 1

2u− iv for some real numbers u and v. Suppose that ϕℓ : S1 → R is a quadratic
form that has maximal rank when restricted to the linear subspace spanned by x0,x1, . . . ,xn−2.
Hence, there exists an invertible

(
(n−1)×(n−1)

)
-matrix A, a

(
(n−2)×2

)
-matrix B, and a

(2×2)-matrix C such that the associated symmetric matrix has the block structure[
A B

BT C

]
.

The Schur complement of the block A is the (2×2)-matrix[
α β

β γ

]
:= C−BT A−1 B .

Set z := 1
2α + iβ for the real numbers α and β . It follows that the analogous Schur complement

of the symmetric matrix associated to ϕ ′ := ϕℓ+ϕℓ′ is the (2×2)-matrix[
0 0
0 α + γ

]
so the quadratic form ϕ ′ does not have maximal rank. Moreover, ϕ ′ has corank 1 if and only if
this Schur complement does not have trace zero. The locus of quadratic forms, for which the
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leading principal
(
(n−1)×(n−1)

)
-submatrix is invertible and corresponding Schur complement

has nonzero trace, is open in the Zariski topology. We need to show that this locus is nonempty.
To accomplish this, we exhibit a quadratic form having corank 1 such that the leading

principal
(
(n−1)×(n−1)

)
-submatrix of the associated symmetric matrix is invertible. Since xn

is a general linear form, the Bertini Theorem [Jou83, Théorème 6.3] shows that the hyperplane
section Y := X ∩V(xn) is reduced and nondegenerate. Moreover, as X is linearly normal,
the homogeneous coordinate ring of Y is isomorphic to R/⟨xn⟩ in degrees at most 2, so any
quadratic form on Y lifts to a quadratic form on X ; see [Zak99, Lemma 2.9b]. When X has
dimension greater than 1, the scheme Y is irreducible and no product of linear forms vanishes
on Y . Part (1) implies that there exists a quadratic form on Y whose restriction to any linear
subspace has maximal rank. Hence, the leading principal

(
(n−1)×(n−1)

)
-submatrix of the

associated symmetric matrix is invertible, and this quadratic form on Y lifts to quadratic form
on X with the required properties. When X has dimension 1, the hyperplane section Y is a
reduced nondegenerate set of points in linearly general position; see [ACGH85, p. 109]. Choose
a minimal conjugation-invariant generating set {p1, p2, . . . , pr,q1,q1,q2,q2, . . . ,qc,qc} in Y that
spans Pn−1 containing r real points and c pairs of conjugate complex points. The minimality
implies that r+c is either n or n+1. For any general real numbers a1,a2, . . . ,ar and any general
complex numbers z1,z2, . . . ,zc, the quadratic form corresponding to the linear function

a1 evp1+a2 evp2+ · · ·+ ar evpr+(z1 evq1+z1 evq1)+(z2 evq2+z2 evq2)+ · · ·+(zc evqc+zc evqc) ,

has maximal rank when restricted to the linear subspaces spanned by x0,x1, . . . ,xn−1 and
x0,x1, . . . ,xn−2. When r + c = n, the general linear combination gives a quadratic form of
rank n. The restriction to the linear subspace spanned by x0,x1, . . . ,xn−2 is the quadratic form
corresponding to the evaluations at the projections of the points to the corresponding hyperplane
V(xn−1) in Pn−1. The projections are still in linearly general position and hence the general
linear combination still has full rank. The case r+ c = n+1 is analogous. It follows that this
quadratic form on Y lifts to quadratic form on X with the required properties.

(3) Part (2) establishes that the quadratic form ϕ ′ has corank 1, so Lemma 2.2 (i) demonstrates that
this quadratic form determines a point on the differentiable manifold M. Since the irreducibility
of X ensures that no nonzero linear form is a zerodivisor on R, Lemma 2.2 (ii) shows that
the point ϕ ′ is nonsingular. Moreover, the tangent space Tϕ ′(M) consists of those linear maps
ψ : S2 → R such that ψ(g2) = 0 for all polynomials in the kernel of ϕ ′. From the chosen
coordinates in part (2), we see that the linear map ℓ′ : S2 → R does not lie in the tangent space
Tϕ ′(M) if and only if the real number α , which is defined to be the (1,1)-entry in the Schur
complement of the leading principal

(
(n−1)×(n−1)

)
-submatrix, is nonzero. The locus of

quadratic forms, for which the leading principal
(
(n−1)×(n−1)

)
-submatrix is invertible and

the (1,1)-entry in the corresponding Schur complement is nonzero, is open in the Zariski
topology. It is nonempty because there exists a real number u such that, for the linear functional
ℓ′′ := u(evq+evq), the quadratic form (ϕℓ+ϕℓ′′)+(ϕℓ′ −ϕℓ′′) satisfies all three properties. □

The second lemma brings the Euclidean topology into play.

Lemma 3.2. Assume that the real projective subvariety X in Pn is irreducible, linearly normal, and
has positive dimension. Let R be the homogeneous coordinate ring of X. Fix a nonreal point q in X
and let U ⊂ R∗

2 be a nonempty Euclidean open set.
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(i) There exist a linear functional ℓ in U and a complex number z such that, for the linear functional
ℓq := z evq+z evq, the quadratic form corresponding to ℓ+ ℓq has corank 1.

(ii) There exists a Euclidean open set U ′ containing the linear functional ℓ from part (i) and a
differentiable function λ : U ′ → R such that U ′ is a dense subset of U and, for all ℓ′ in U ′, the
quadratic form corresponding to ℓ′+λ (ℓ′)ℓq has corank 1. Moreover, the locus of points in
Pn(R) determined by the kernels of quadratic forms corresponding to elements in U ′ contains a
Euclidean open subset.

Proof. For part (i), Lemma 3.1 shows that the locus U ′′ of linear functionals ℓ : R2 → R, such that
there exists a complex number z and the linear functional ℓ′ := z evq+z evq for which the quadratic
form ϕ ′ corresponding to ℓ+ ℓ′ has corank 1 and the linear functional ℓ′ is not an element in the
tangent space Tϕ ′(M), is nonempty and Zariski open. It follows that U ′′ has a nontrivial intersection
with any nonempty Euclidean open set. Hence, we have U ′′ ∩U ̸= ∅. Any quadratic form ℓ in
U ′′∩U , together with the associated complex number z, proves part (i).

For part (ii), the determinant of the symmetric matrix associated to ϕℓ+ t ϕℓ′ is a polynomial
in R[t] having a simple root at t = 1, because the quadratic form ϕ ′ := ϕℓ +ϕℓ′ has corank 1.
By the Implicit Function Theorem, it follows that there exists a Euclidean open subset U ′ with
ϕℓ ∈U ′ ⊆U and a differentiable function λ : U ′ → R such that, for all ϕ in U ′, the quadratic form
ϕ +λ (ϕ)ϕℓ′ has corank 1. Since the linear function ℓ′ is not an element of the tangent space Tϕ ′(M),
the differential of this map is surjective at ϕℓ. Hence, this differential is an open map is some
neighbourhood of the quadratic form ϕℓ. The locus where this fails is determined by the algebraic
condition that the differential does not have full rank and is therefore lower-dimensional in U ′. □

To bound the maximum typical conjugation-invariant length, we restrict our attention to curves
with no real points.

Theorem 3.3. Assume that the real projective subvariety X is nondegenerate, geometrically irre-
ducible, and has dimension 1. Let R be the homogeneous coordinate ring of X. When X is linearly
normal and has no real points, we have the inequality mclen(X)⩽ 1+ ⌈(dimR2 −dimR1)/2⌉.

Proof. Let ℓ : R2 → R be a linear functional. We first reduce to points by identifying a suitable
hyperplane section of the curve X . Pick a nonreal point q in X . By Lemma 3.2, there is a nonempty
Euclidean open subset U ′ ⊂ R∗

2 containing ℓ in its closure and a differentiable function λ : U ′ → R
such that for all ℓ′ and ℓ′′ in U ′, the quadratic form corresponding to ℓ′′+λ (ℓ′′)ℓ′ has corank 1.
Moreover, the locus of points in Pn(R) determined by the kernels of quadratic forms corresponding
to elements in U ′ contains a Euclidean open subset. Consider the nonempty Euclidean open set
U ′′ ⊆U ′ obtained by intersecting U ′ with the nonempty Zariski open set of linear functionals such
that a generator h in S1 of the kernel of the corresponding quadratic form is a nonzero divisor on
R and X ∩V(h) is a reduced nondegenerate set of points in linearly general position. The Bertini
Theorem [Jou83, Théorème 6.3] shows that a general hyperplane section of X is reduced and
nondegenerate, and the General Position Theorem [ACGH85, p. 109] shows that the points are in
linearly general position. Hence, the linear functional ℓ is in the closure of U ′′. It suffices to show
that, for any ℓ′′ in U ′′, we have the desired inequality for clen(ℓ′′).

To produce the desired inequality, fix a general hyperplane h and consider the hyperplane section
Y := X ∩V(h) of X . As X is linearly normal, the homogeneous coordinate ring T of Y is isomorphic
to R/⟨h⟩ in degrees at most 2; see [Zak99, Lemma 2.9b]. Hence, the ring T is reduced in degree



12 G. BLEKHERMAN, R. SINN, G.G. SMITH, AND M. VELASCO

2, so every linear functional ℓ : T2 ⊗C→ C is a linear combination of point evaluations; compare
with Lemma 2.3. Since Y consists of points in linearly general position and contains no real
points, the C-vector space T2 ⊗RC has a generating set that is invariant under complex conjugation:
T2 ⊗RC is spanned by

{
evqi,evqi

∣∣ 1 ⩽ i ⩽ r
}

. It follows that the R-vector space T2 is spanned
by the set

{
evqi +evqi

∣∣ 1 ⩽ i ⩽ r
}

. Hence, the linear functional ℓ is a linear combination of
⌈(dimT2)/2⌉ conjugate pairs. For all ℓ′′ ∈U ′, there exists ℓ′ = zevq+zevq such that the quadratic
form corresponding to ℓ′′+λ (ℓ′′)ℓ′ has corank 1, so we obtain

clen(ℓ′′)⩽ 1+ clen
(
ℓ′′+λ (ℓ′′)ℓ′

)
⩽ 1+

⌈
(dimT2)/2

⌉
= 1+

⌈
(dimR2 −dimR1)/2

⌉
.

Lastly, we conclude that mclen(X)⩽ 1+
⌈
(dimR2 −dimR1)/2

⌉
because any ℓ ∈ R∗

2 is the limit of
linear functionals of conjugation-invariant length at most this bound. □

4. NONNEGATIVE MULTIPLIERS ON SURFACES

This section presents the major technical result in the paper: we exhibit cohomological conditions
on a real surface that lead to certificates for nonnegativity. Assume that the real projective variety X
is totally real, meaning the set of real points in X is Zariski dense in the set of complex points or,
equivalently, the variety has a nonsingular real point. A divisor D on X is a Cartier divisor that is
locally defined by a rational function with real coefficients. The divisor D determines the invertible
sheaf or line bundle OX(D) on X .

A global section f in H0(X ,OX(2D)
)

is nonnegative if its sign at every real point in X is not
negative. The sign is well-defined at a real point because f is locally defined by a rational function
with real coefficients, the ratio of any two local representatives is the square of an invertible section
of OX evaluated at the real point, and the square of any real number is nonnegative. Similarly, a
global section f in H0(X ,OX(2D)

)
is a sum of squares if there exists global sections h1,h2, . . . ,hr in

H0(X ,OX(D)
)

such that f = h2
1 +h2

2 + · · ·+h2
r . Both of these properties make sense for line bundles

associated to an even divisor, i.e., the square of a line bundle on X : OX(2D) = OX(D)⊗OX(D).
Building on these concepts, we introduce the following terminology.

Definition 4.1. A divisor E supports multipliers for a divisor D if, for any nonnegative global section
f in H0(X ,OX(2D)

)
, there exists a nonzero global section g in H0(X ,OX(2E)

)
such that the product

g f in H0(X ,OX(2D+2E)
)

is a sum of squares.

The next result gives effective conditions for a divisor on a real surface X to support multipliers
for another divisor. For any integer i and any divisor D on X , set hi(X ,D) := dimH i(X ,OX(D)

)
.

Theorem 4.2. Assume that X is a totally-real geometrically-integral projective surface. Let D and
E be divisors on X with D free (the line bundle OX(D) is globally generated), D+E very ample,
and H0(X ,OX(E −D)

)
= H1(X ,OX(D+E)

)
= H1(X ,OX(2E)

)
= 0. The inequality

h0(X ,D+E)> 1+
⌈

h0(X ,2D+2E)−h0(X ,2E)−h0(X ,D+E)−h1(X ,E −D)

2

⌉
implies that the divisor E supports multipliers for the divisor D.

Proof by contrapositive. Suppose that the divisor E does not support multipliers for the divisor
D. We first identify a special witness for this failure to support multipliers. By definition, there
exists a nonnegative global section f in H0(X ,OX(2D)

)
such that, for any nonzero global section

g in H0(X ,OX(2E)
)
, the product g f in H0(X ,OX(2D+2E)

)
is not a sum of squares. Since X
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is totally real and geometrically integral, the cone Σ2D+2E formed by the sums of squares in
H0(X ,OX(2D+2E)

)
is pointed (closed in the Euclidean topology and contains no lines); see [BSV19,

Proposition 2.5]. We deduce that the linear space f ·H0(X ,OX(2E)
)

and the cone Σ2D+2E are
well-separated: there is a linear functional that is positive on the nonzero elements in the linear
space and negative on the nonzero elements in the cone. Continuity implies that this property
also holds for any global section f ′ sufficiently close to f in the Euclidean norm. Since the
base locus of the divisor D is empty, there exist global sections h1,h2, . . . ,hk in H0(X ,OX(D)

)
that have no common zero on X . Hence, for any sufficiently small positive real number ε , the
global section f ′ := f + ε(h2

1 + h2
2 + · · ·+ h2

k) is positive and f ′ ·H0(X ,OX(2E)
)
∩Σ2D+2E = {0}.

It follows that the set of positive global sections f ′ in H0(X ,OX(2D)
)

such that the linear space
f ′ ·H0(X ,OX(2E)

)
and the cone Σ2D+2E are well-separated has nonempty interior in the Euclidean

topology on H0(X ,OX(2D)
)
; compare with [BSV19, Theorem 3.1]. As a consequence, this nonempty

Euclidean open set must intersect the Zariski open set of global sections f ′′ in H0(X ,OX(2D)
)

for
which the curve Y on X defined by the vanishing of f ′′ is reduced and geometrically integral. Our
assumption that D is free, combined with the Bertini Theorem [Jou83, Théorème 6.3], ensure
that this Zariski open set is nonempty. Therefore, we may assume that the global section f in
H0(X ,OX(2D)

)
is nonnegative and that the associated curve Y = V( f ) on X is geometrically integral

and contains no real points.
We now show that the curve Y in X is equipped with some special linear functionals. Consider

the section ring R̂ :=
⊕

n∈NH0(X ,OX(nD+nE)
)

of the surface X . As an algebraic counterpart to Y ,
let T be the quotient ring of R̂ by the ideal generated by the linear subspace f ·H0(X ,OX(2E)

)
in

R̂2 = H0(X ,OX(2D+2E)
)
. Since f ·H0(X ,OX(2E)

)
∩Σ2D+2E = {0}, the image of the cone Σ2D+2E

in T2 is pointed. Hence, there exists a Euclidean open subset of linear functionals from T2 to R that
are positive on the nonzero squares of elements from T1 = R̂1 = H0(X ,OX(D+E)

)
. As a second

variant of Y , let Ŷ be the image of Y in P
(
H0(X ,OX(D+E)

)∗) under the morphism determined by the
complete linear series of the line bundle OY (D+E). By hypothesis, the divisor D+E is very ample
on X , so its restriction to the subvariety Y is also very ample. It follows that Ŷ is isomorphic to Y and
it contains no real points. In addition, the projective curve Ŷ is linearly normal and its homogeneous
coordinate ring B̂ is the subalgebra of the section ring T̂ :=

⊕
n∈NH0(Y,OY (nD+nE)

)
generated

by H0(Y,OX(D+E)
)
. Tensoring the short exact sequence

0 OX(−2D) OX OY 0

of coherent sheaves with the line bundle OX(D+E) and the line bundle OX(2D+2E), we obtain the
following two short exact sequences in cohomology

0 H0(X ,OX(D+E)
)

H0(X ,OY (D+E)
)

H1(X ,OX(E −D)
)

0

0 H0(X ,OX(2E)
)

H0(X ,OX(2D+2E)
)

H0(X ,OY (2D+2E)
)

0 ,

because H0(X ,OX(E −D)
)
= H1(X ,OX(D+E)

)
= H1(X ,OX(2E)

)
= 0. We deduce that

dim T̂1 = h0(Y,D+E) = h0(X ,D+E)+h1(X ,E −D)⩾ dimT1 ,

dim T̂2 = h0(Y,2D+2E) = h0(X ,2D+2E)−h0(X ,2E) = dimT2 ,

and T2 ∼= T̂2. This canonical isomorphism implies that there exists a Euclidean open subset of linear
functionals from T̂2 to R that are positive on nonzero squares of the elements from T1 ⊆ T̂1. From the
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inclusion B̂ ⊆ T̂ , we conclude that there exists a nonempty Euclidean open set U of linear functionals
from B̂2 to R that are positive on nonzero squares of the elements from T1 ⊆ T̂1 = B̂1.

To complete the proof, we produce the appropriate inequality. Applied to the projective curve Ŷ ,
Theorem 3.3 shows that there exists a linear functional ℓ ∈U such that

clen(ℓ)⩽ mclen(X)⩽ 1+
⌈
(dim B̂2 −dim B̂1)/2

⌉
⩽ 1+

⌈
(dim T̂2 −dim T̂1)/2

⌉
.

By construction, the linear functional ℓ : B̂2 →R is positive on the nonzero squares of elements from
T1 ⊆ B̂1, so the associated quadratic form ϕℓ is positive definite on T1. Since the dimension of T1 is
bounded above by the number clen(ℓ) of positive eigenvalues of the form, we have the inequality

h0(X ,D+E) = dimT1 ⩽ 1+
⌈
(dim T̂2 −dim T̂1)/2

⌉
. □

When the divisors D and E are sufficiently positive, the inequality in Theorem 4.2 can be rephrased
in terms of Euler characteristics. For any integer m, the Euler characteristic the divisor mD on X is
the integer χ(mD) := ∑i(−1)i hi(X ,mD).

Corollary 4.3. Assume that X is a totally-real geometrically-integral projective surface. Let D and
E be divisors on X with D free, D+E very ample and h0(X ,E −D) = 0. When hi(X ,mE) = 0 and
hi(X ,mD+mE) = 0 for any positive integers i and m, the inequality

χ(2E)+h1(X ,E −D)> χ(−D−E)

implies that the divisor E supports multipliers for the divisor D. When X is nonsingular and KX is its
canonical divisor, this inequality is equivalent to h0(X ,2E)+h1(X ,E −D)> h0(X ,KX +D+E).

Proof. For the first part, it suffices to prove that the inequality in Theorem 4.2 follows from the
first inequality. Because X is a surface, the Riemann–Roch Theorem [Bea96, Theorem I.12] shows
that χ(mE) and χ(mD+mE) are quadratic polynomials in m with half-integer coefficients whose
constant terms equal 1. Setting χ(E) = 1+ b1m+ b2m2 and χ(mD+mE) = 1+ a1m+ a2m2 for
some coefficients b1,b2,a1,a2 in Z

[1
2

]
, the inequality χ(2E)+h1(X ,E−D)> χ(−D−E) becomes

1+2b1 +4b2 +h1(X ,E −D)> 1−a1 +a2

⇔ a1 +a2 >
2+a1 +a2 −h1(X ,E −D)

2
+a2 − (1+b1 +2b2) .

Since χ(D+E) = 1+a1 +a2 is an integer, the left side of this last inequality is an integer and the
right side is either an integer or half-integer. For any integer k, the inequality k

2 ⩾
⌈ k

2 −
1
2

⌉
gives

χ(D+E)−1 = a1 +a2 >

⌈
1+a1 +a2 −h1(X ,E −D)

2
+a2 − (1+b1 +2b2)

⌉
=

⌈
χ(2D+2E)−χ(2E)−χ(D+E)−h1(E −D)

2

⌉
.

For any positive integers i and m, the hypothesis that hi(X ,mE) = 0 and hi(X ,mD+mE) = 0
implies that χ(X ,mE) = h0(X ,mE) and χ(mD+mE) = h0(mD+mE). Hence, we obtain the
desired inequality

h0(X ,D+E)> 1+
⌈

h0(X ,2D+2E)−h0(X ,2E)−h0(X ,D+E)−h1(X ,E −D)

2

⌉
.
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For the second part, the surface X is nonsingular. Serre Duality [Bea96, Theorem I.11] shows
that χ(−D−E) = χ(KX +D+E). Since the divisor D+E is very ample (and thereby ample),
the Kodaira Vanishing Theorem [Laz04, Theorem 4.2.1] asserts that hi(X ,KX +D+E) = 0 for all
positive integers i. We conclude that χ(KX +D+E) = h0(X ,KX +D+E). □

In some situations, Theorem 4.2 can also be used inductively. A variety is strongly totally-real
if the real points of every nonempty Zariski open set are dense in the Euclidean topology on
X . Equivalently, every real point of X is a central point: it lies in the Euclidean closure of the
nonsingular real points; see [BCR98, §7.6]. For instance, this holds whenever the nonsingular real
points of X are dense in the Euclidean topology, so it holds for nonsingular surfaces. On any strongly
totally-real surface, a multiplier g in H0(X ,OX(2E)

)
constructed via Theorem 4.2 is necessarily a

nonnegative global section, which allows for the repeated applications of Theorem 4.2. To formalize
this idea, we generalize Definition 4.1.

Definition 4.4. Let D and E be divisors on X . For any positive integer t, a sequence (D0,D1, . . . ,Dt)
of divisors on X is a t-step transfer from D to E if D = D0, E = Dt , and the divisor Di supports
multipliers for the divisor Di−1 for all 1 ⩽ i ⩽ t.

Given a t-step transfer from D to E, the next corollary shows that the problem of deciding whether
a global section in H0(X ,OX(2D)

)
is nonnegative reduces to solving t semidefinite programming

problems and deciding whether a global section in H0(X ,OX(2E)
)

is nonnegative.

Corollary 4.5. Assume that X is strongly-totally-real geometrically-integral projective surface. Let
(D0,D1, . . . ,Dt) be a t-step transfer on X from a divisor D to a divisor E. A global section f0 in
H0(X ,OX(2D)

)
is nonnegative if and only if, for any integer i satisfying 1 ⩽ i ⩽ t, there exists a non-

negative global section fi in H0(X ,OX(2Di)
)

and a sums-of-squares hi in H0(X ,OX(2Di−1 +2Di)
)

such that fi−1 fi = hi. Moreover, if ft is a sum of squares, then both the multiplier ft · ft−1 · · · f1 in
H0(X ,OX(∑

t
i=1 Di)

)
and the product ft · ft−1 · · · f1 · f0 in H0(X ,OX(∑

t
i=0 Di)

)
are sums of squares.

Proof. By definition, the divisor Di supports multipliers on the divisor Di−1 for any integer i
satisfying 1 ⩽ i ⩽ t. Hence, for any nonnegative global section fi−1 in H0(X ,OX(2Di−1)

)
, there

exists a global section fi in H0(X ,OX(2Di)
)

and a sum-of-squares hi in H0(X ,OX(2Di−1 +2Di)
)

such
that fi−1 fi = hi. Since X is strongly totally-real, this equality establishes that fi is also nonnegative.
As this equality holds for all 1 ⩽ i ⩽ t, the nonnegativity of f0 implies that nonnegativity of ft .
Conversely, when ft is a nonnegative global section and the equality fi−1 fi = hi holds for all 1⩽ i⩽ t,
we successively deduce that ft−1, ft−2, . . . , f1, f0 are all nonnegative.

Now assume that ft in H0(X ,OX(Dt)
)

is a sum of squares. To show the last claim, we assume
that t ⩾ 2 and even. The odd case follows similarly. Since products of sums of squares are again
sums of squares, we see that both the multiplier ft ft−1 ft−2 · · · f1 f0 = ( ft ft−1) · · ·( f4 f3)( f2 f1) and
the product ft ft−1 ft−2 · · · f1 f0 = ft( ft−1 ft−2) · · ·( f3 f2)( f1 f0) are sums of squares. □

We end this section by clarifying the difference between the nonnegativity of global sections
and the nonnegativity of homogeneous forms. For a free divisor D on X , consider the morphism
ν : X → P

(
H0(X ,OX(D)

)∗) determined by the complete linear series of the line bundle OX(D). Let
X ′ := ν(X) be the image subvariety and let R′ be its homogeneous coordinate ring. The pullback
under ν of a homogeneous element in R′

2 that is nonnegative on X ′ is a nonnegative global section
in H0(X ,OX(2D)

)
. However, there could be nonnegative global sections in H0(X ,OX(2D)

)
that do
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not correspond to nonnegative elements in R′
2. Indeed, the definitions of nonnegativity on X and X ′

may not coincide because the target X ′ could have real points that are not images under ν of the real
points in X . To avoid this disparity, we offer the following definition.

Definition 4.6. A morphism µ : X → X ′ between real varieties is strongly dominant if the set of real
points in X ′ with the Euclidean topology have the image of the real points in X as a dense subset. A
free divisor D on X is strongly dominant if the morphism from X to its image subvariety under the
associated complete linear series is strongly dominant.

By design, the nonnegativity of a homogeneous element in R′
2 is equivalent to the nonnegativity

of a global section in H0(X ,OX(2D)
)

whenever the free divisor D is strongly dominant. For the sake
of completeness, we exhibit a free divisor on a smooth surface that is not strongly dominant.

Example 4.7. Consider the surface Q3,1 in P3 defined by x2
0 − x2

1 − x2
2 − x2

3 in R[x0,x1,x2,x3]. In
the affine open subset defined by x0 ̸= 0, the real points in Q3,1 form a sphere S2. Choose real
line L disjoint from this sphere. It follows that the line L intersects the subvariety Q3,1 in a pair of
complex conjugate points q and q. Let Q3,1(0,2) to be the blow-up of Q3,1 at these two points. The
real points of Q3,1(0,2) are in bijection with the real points of Q3,1 under the canonical morphism
π : Q3,1(0,2)→ Q3,1. Write E1 and E2 for the exceptional divisors on Q3,1(0,2) over the points q
and q respectively, and set H to be the pullback to Q3,1(0,2) of the hyperplane class in P3 to Q3,1.
The complete linear system of the real divisor H −E1 −E2 corresponds to a pencil of hyperplanes
in P3 containing the line L. The corresponding morphism ν : Q3,1(0,2)→ P1 maps the real points
in Q3,1(0,2) to the closed interval consisting of those hyperplanes which intersect the sphere. Since
this interval is not dense in the Euclidean topology on the real points in P1, we conclude that the
divisor H −E1 −E2 is not strongly dominant. ⋄

5. APPLICATIONS TO TORIC SURFACES

In this section, we apply Theorem 4.2 to the construction of nonnegativity certificates on toric
surfaces.

A binary Laurent polynomial is an expression f = ∑(a,b)∈S c(a,b)xayb where S ⊆ Z2 is a given
finite set of exponents and c(a,b) are real numbers. If C ⊆ R2 is any subset, we say that f has
monomial support on C if S ⊆ C and that f is nonnegative if f (α,β ) ⩾ 0 for every nonzero real
numbers α,β (i.e. for (α,β ) ∈ (R∗)2 in the real points of the 2-dimensional algebraic torus). In this
section, we study the problem of certifying the nonnegativity of binary Laurent polynomials with
monomial support on 2P where P is a given lattice polygon.

The main result of this section is Theorem 5.1 which provides a combinatorial criterion on another
lattice polygon Q so that 2Q supports multipliers for all nonnegative Laurent polynomials f with
monomial support on 2P. To state our main result we introduce the following terminology: If
A ⊆ R2 then the number of reduced connected components of A is one less than the number of
connected components of A and a lattice translate of A is a set of the form A+m for m ∈ Z2. We
write #A for the number of lattice points contained in A and A◦ for the interior of A.

Theorem 5.1. Assume that P and Q are convex lattice polygons such that no lattice translate of P is
contained in Q. Let h be the total number of reduced connected components of the set differences
P\Q′ as Q′ ranges over all lattice translates of Q. The inequality

#(2Q)+h > #
(
(P+Q)◦

)



NONNEGATIVITY ON SURFACES 17

implies that Q supports multipliers for P (i.e. for every nonnegative Laurent polynomial f with
monomial support in 2P there exists a Laurent polynomial g with monomial support in 2Q such that
f g is a sum of squares of Laurent polynomials with monomial support in 2(P+Q)).

If X is a toric variety and D is a torus-invariant Weil divisor on X then the action of the torus
T on X defines a grading of the cohomology groups of D. At the level of global sections this
is well-known allowing us to identify the global sections of OX(D) with the lattice points of the
polytope PD ⊆ MR corresponding to D. What is less well-known is that a similar "visualization" of
higher cohomology groups is also possible thanks to a theorem of Altmann, Buczynski, Kastner
and Winz [ABKW20, Theorem III.6] whose proof was greatly simplified by Altmann and Ploog
in [AP20, Main Theorem] which gives us a topological interpretation of the graded components
H i(X ,D)(m) for m ∈ M and any torus invariant Cartier divisor D.

To precisely describe their result we need to introduce more specific notation. Assume M is the
lattice of characters of a torus T and let N be the lattice of one-parameter subgroups of T . Let
⟨·, ·⟩ : M×N → Z denote the natural pairing between them. Recall that a toric variety is specified
by a rational polyhedral fan F in N. Let u1,u2, . . . ,un ∈ N be the first lattice points in each ray of F
and recall [Ful93] that there is a correspondence between such rays and the torus invariant divisors
Di on X . If D = ∑a jD j define the polytope PD ⊆ M⊗ZR corresponding to D as

PD := {m ∈ M⊗R | ⟨m,ui⟩⩾−aifor i = 1,2, . . . ,n}.

Recall that the global sections of OX(D) are in correspondence with the lattice points PD ∩M. There
are easy combinatorial criteria for determining when D is a Cartier divisor [CLS11, Theorem 4.2.8]
and when D is nef [CLS11, Theorem 6.3.12 and Proposition 6.1.1]. Furthermore every torus-invariant
Cartier divisor D is linearly equivalent to a difference of T -invariant nef divisors D = D+−D− and
any such decomposition can be used to compute the cohomology groups of D via the following.

Theorem 5.2 ([AP20, Main Theorem]). If X is a projective toric variety and D = D+−D− is a
difference of nef divisors with corresponding polytopes ∆+,∆− ⊆ MR then there is an isomorphism
of vector spaces

H i(X ,OX [D]
)
(m)∼= H̃ i−1(

∆
− \ (∆+−m)

)
where H̃ i denotes the reduced singular cohomology groups of a topological space and ∆+−m
means the translate by −m of ∆+ in MR.

Proof of Theorem 5.1. Let X be the normal toric variety defined by the normal fan of the lattice
polygon P+Q. Via the usual correspondence [CLS11, Proposition 6.1.10], the polygons P and Q
define torus-invariant Weil divisors DP and DQ on X whose corresponding sheaves have spaces of
global sections spanned by the lattice points of P and Q respectively. Restricting sections to the
points of the torus T ⊆ X we obtain a correspondence between Laurent polynomials supported in P
(resp. Q) and global sections of H0(X ,DP) (resp. H0(X ,DQ)).

Furthermore the divisors DP and DQ are Cartier divisors with Cartier data given by the vertices
of P and Q [CLS11, Theorem 4.2.8]. Since the vertices of P and Q are global sections of the
corresponding line bundles we conclude that DP and DQ are basepoint-free and therefore nef
divisors on X [CLS11, Theorem 6.3.12 and Proposition 6.1.1]. Applying Theorem 5.2 we obtain:
1. hi(X ,mD)= 0 for any positive integer i, any positive integer m, and any divisor D in {DQ,DP,DP+

DQ}. This follows from writing D = D−0.
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2. The quantity h1(X ,DQ −DP) equals the total sum of the dimensions of the reduced singular
cohomology groups H̃0 (P\ (Q−m)) as m ranges over Z2. So h1(X ,DQ −DP) agrees with the
quantity h defined in the statement of the Theorem.

By Corollary 4.3 and Theorem 4.2, we conclude that a sufficient condition for DQ to support
multipliers for DP is given by the inequality

φQ(2)+h > φP+Q(−1)

where φE(m) = χ(OX [mDE ]) coincides with the Ehrhart polynomial of E ∈ {Q,P+Q}. By Ehrhart
reciprocity (or toric Serre duality) the right-hand side equals the number of interior lattice points of
P+Q, proving the claim. □

Any multiplier g constructed via Theorem 5.1 is necessarily nonnegative. Iterated application
of Theorem 5.1 can therefore lead to rational sum-of-square certificates of nonnegativity provided
the multiplier polygons Q are chosen judiciously. This follows from [BSV16, Theorem 1.1]
applied to the case of surfaces: on totally-real non-degenerate surfaces of minimal degree, every
nonnegative quadric is a sum of squares. Surfaces of minimal degree are classified (by Bertini) and
happen to be toric, corresponding to the 2∆ = conv{(0,0),(2,0),(0,2)} and Lawrence prisms of
dimension 2. A lattice polygon S is a Lawrence prism with heights h1,h2 if it is lattice congruent to
conv(0,e1,h1e2,e1 +h2e2) for some nonnegative integers h1,h2.

Example 5.3. Let P be a square in Z2 with side length 2. Hence, the forms with support in 2P
correspond to bihomogeneous forms in two sets of variables (x1,y1) and (x2,y2) which have degree
4 with respect to each pair (xi,yi). For the polytope Q, we choose a square in Z2 with side length
1. As illustrated in Figure 5.4, we have h = 0, #(2Q) = 9 and #(P+Q)◦ = 4. Thus, Theorem 5.1
establishes that Q supports multipliers for P. Since Q is a Lawrence prism every nonnegative
multiplier g is a sum of squares. ⋄

FIGURE 5.4. The lattice polygons P = 2Q, Q, and P+Q

Let X ⊂ P3 be the toric surface corresponding to embedding P1 ×P1 via the line bundle O(1)×
O(1), and let R denote the graded coordinate ring of X . Example 5.3 shows that degree 4 nonnegative
forms on X have a sum of squares multiplier of degree 2. We now generalize this to multiplier
degree bounds for nonnegative forms of degree 2d on X . This is done by iteratively transferring
nonnegativity to simpler polygons, until we can descend to a variety of minimal degree. This is
a warm-up to our improvement of Hilbert’s bounds for ternary forms, but polygonal geometry of
rectangles is slightly simpler than that of triangles.

Example 5.5. Let P = [0,d]2 be the square in Z2 with side length d, which corresponds to degree
d forms on X = P1 ×P1. We let Q be the square with side length d − 1. Then we have h = 0,
#(2Q) = (2d−1)2 and #(P+Q)◦ = (2d−2)2. Therefore, we transfer nonnegativity from 2P to 2Q:
given a nonnegative form g0 with support in 2P we can find a nonnegative form g1 with support
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in 2Q such that g0g1 is a sum of squares. We can now apply this result to g1 and continue. We
produce a sequence of nonnegative multipliers g1, . . . ,gd−1 with gi ∈ R2d−2i such that gigi+1 is
a sum of squares for i = 0, . . . ,d − 2. Note that gd−1 is a sum of squares in R2. It follows that
for any nonnegative form f of degree 2d on X there exists a sum of squares multiplier g with
degg = d(d −1) such that f g is a sum of squares, see Corollary 4.5.

We can improve on this bound by utilizing rectangles instead of squares. Concretely, we can now
lower the degree from 2d to 2d −6 in two steps, while in the previous strategy we went from 2d to
2d −4. So let P be again the square in Z2 with side length d, and take Q1 = [0,d −1]× [0,d −2] to
be the (d−1)× (d−2) rectangle. Then h = 0, #(2Q1) = (2d−1)(2d−3) and #(P+Q1)

◦ = (2d−
2)(2d −3). Therefore we can transfer nonnegativity from the d ×d square to the (d −1)× (d −2)
rectangle. Next, let Q2 be the (d−3)× (d−3) square. Then we have h = 0, #(2Q2) = (d−5)2 and
#(Q1+Q2)

◦ = (d−5)×(d−6). Therefore we can transfer nonnegativity from the (d−1)×(d−2)
rectangle to the (d −3)× (d −3) square. So in two steps, we went from P = [0,d]2 to [0,d −3]2

improving the degree bounds faster than in the first strategy which only used squares.
This allows us to improve degree bounds. For instance when d ≡ 1 mod 3, we have that a

nonnegative form f of degree 2d on P1 × P1 has a sum of squares multiplier g with degg =
d(d −1)− 1

3d(d −1) = 2
3d(d −1) such that f g is a sum of squares, see Corollary 4.5.

We do not make any claims on optimality of these bounds, especially for high degree d. It is
possible to use polygons that are different from rectangles, and they may lead to tighter bounds. ⋄

We now use the freedom of choosing multipliers with special support to give an improvement to
Hilbert’s rational sum-of-squares certificates for ternary forms. We first explain Hilbert’s method.
Let ∆ be the right triangle with vertices (0,0), (1,0) and (0,1). We call the polygon d ·∆ the
Veronese triangle of degree d.

Example 5.6 (Hilbert’s bound for ternary forms). [Hil93] shows that for any nonnegative ternary
form f of degree 2d, there exists a nonnegative form g1 of degree 2d − 4 such that g1 f is a sum
of squares. We can derive this result from Theorem 5.1 by setting P = d ·∆ to be the Veronese
triangle of degree d and Q = (d −2) ·∆ to be the Veronese triangle of degree d −2. We have h = 0,
#(2Q) =

(2d−2
2

)
and #(P+Q)◦ =

(2d−3
2

)
, and therefore we can transfer nonnegativity from P to Q.

We can now apply the result to g1 and produce a multiplier g2 of degree 2d−8 such that g2g1 is a
sum of squares. Applying this result iteratively we eventually produce a nonnegative multiplier gk
of degree either 2 or 4, such that gkgk−1 is a sum of squares. We observe that gk must be a sum of
squares, since nonnegative ternary quartics and quadrics are sums of squares by Hilbert’s earlier
result [Hil88]. Therefore we see that a nonnegative form of degree 2d has a sum of squares multiplier
g such that f g is a sum of squares and degg = 1

2d(d − 2) when d is even, and degg = 1
2(d − 1)2

when d is odd, see Corollary 4.5. ⋄
Remark 5.7. We cannot drop degree by more than 4 in Hilbert’s method using our inequality: if P
is the Veronese triangle of degree d and Q is the Veronese triangle of degree d−3, then the numbers
come out to be h = 0, #(2Q) =

(2d−4
2

)
and #(P+Q)◦ =

(2d−4
2

)
. Thus we obtain equality, instead of

strict inequality in Theorem 5.1. For the cases of ternary sextics and octics, i.e. d = 3,4 we know
that we cannot transfer nonnegativity of degree 2d to degree 2d −6 [BSV19], and therefore we see
that the bound of Theorem 5.1 is tight in these cases.

Even though we cannot immediately go from degree d Veronese triangle to degree d−3 Veronese
triangle, we note that the inequality from degree d −2 Veronese triangle has some slack in it (see
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Example 5.6). Therefore, we may choose a smaller polytope for Q than the d −2 Veronese triangle,
and this allows us to arrive at a variety of minimal degree faster, similar to Example 5.5.

FIGURE 5.8. Left: P (blue), Q (magenta) and P+Q (emerald). Right: Q (magenta)
and 2Q (emerald).

Example 5.9 (Improving Hilbert’s bound for degree 10). Let P be the Veronese triangle of degree 5,
and Q be the Lawrence prism with heights 3 and 2. Then, as can be seen in Figure 5.8, #(2Q) = 18
and #(P+Q)◦ = 20 and furthermore h = 3 since there are exactly three lattice translates of Q which
disconnect P. Since all nonnegative Laurent polynomials with support in 2Q are sums of squares by
[BSV19], it follows that any nonnegative ternary form f of degree 10 has a sum of squares multiplier
g of degree 6 such that g f is a sum of squares. This improves Hilbert’s bound from 1893, which
was the best known bound.

Applying Hilbert’s 1893 result iteratively to a ternary form f of degree 10 leads to a sum-of-
squares multiplier g of degree 8. Using the flexibility in choosing polygons that are not Veronese
triangles, our method shows that the multiplier g can be taken to be a ternary sextic, whose monomial
support lies in twice a Lawrence prism so that g is already a sum of squares. Using our method, we
do not need a second iteration step. ⋄

Example 5.10 (Improving Hilbert’s bound for general degrees). Given two nonnegative integers d
and m, let T (d,m) be the lattice trapezoid defined by inequalities x ⩾ 0, 0 ⩽ y ⩽ d−m, and x+y ⩽ d.
The trapezoid T (d,m) corresponds to forms of degree d vanishing to order m at a torus-invariant
point of P2. We can think of T (d,m) as the Veronese triangle of degree d with a cut off corner.

Let P = T (d1,m1) and Q = T (d2,m2) (see Figure 5.8, which shows T (8,2) in emerald on the
left). Then

#(2Q) =

(
2d2 +2

2

)
−
(

2m2 +1
2

)
and #(P+Q)◦ =

(
d1 +d2 −1

2

)
−
(

m1 +m2

2

)
.

We take d2 ⩽ d1.
As we observed in Example 5.6, Hilbert’s proof took m1 = m2 = 0 and d2 = d1 −2, and choosing

m1 = m2 = 0 and d2 = d1 −3 is not possible, since the strict inequality required to apply Theorem
5.1 is an equality. However, we can decrease the degree by 3, if we first “bite off" a corner of the
Veronese triangle.

This leads to the following procedure: take one step to “bite" off a corner of the degree d
Veronese triangle d∆ as much as possible. At the start we have m1 = 0 and d1 = d2 = d, so that
#(P+Q)◦ =

(2d−1
2

)
−
(m2

2

)
and #(2Q) =

(2d+2
2

)
−
(2m2+1

2

)
. We can make m2 ≈ 2

√
d. For the next
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step we have d1 = d and m1 ≈ 2
√

d. Then we can take d2 = d1 −3 and m2 = m1 −3:

#(2Q)−#(P+Q)◦ =

(
2m1 −4

2

)
−
(

2m1 −5
2

)
> 0 .

From this inequality we see that we can continue decreasing the degree by 3 until the “bitten off"
corner (i.e. m1) falls below 3. Then we repeat.

In this process we take roughly d/3 steps and, in each step (except roughly
√

d “biting off"
steps), we decrease the degree by 3. Therefore, the total degree of the multiplier is bounded by
d2

6 + lower order terms, which is an asymptotic improvement over Hilbert’s bound, which has a
leading order of d2

4 . ⋄

6. APPLICATIONS TO DEL PEZZO SURFACES

We now characterize nonnegative global sections for all even divisors on totally-real del Pezzo
surfaces having degree at least 3. Beyond their prominence in the theory of algebraic surfaces, del
Pezzo surfaces are interesting within real algebraic geometry because they admit several distinct
real structures. More significantly, these surfaces are a successor to varieties of minimal degree
(surfaces X in Pn such that deg(X) = 1+ codim(X)); see [Dol12, §8.1]. Indeed, the linearly normal
nonsingular surfaces of almost minimal degree (surfaces X in Pn such that deg(X) = 2+ codim(X))
are del Pezzo surfaces of degree at least 3 embedded via their anticanonical linear series; see
[Dol12, §8.3]. From this perspective, our characterization extends the degree bounds for sum-of-
squares multipliers on surfaces of minimal degree in [BSV19, Theorem 1.2].

The theorem in this section encapsulates the major insights by showing that certificates of
nonnegativity for global sections of a divisor 2D may always be obtained from analogous certificates
for simpler divisors.

Theorem 6.1. Let X be a totally-real del Pezzo surface having degree at least 3 and canonical divisor
KX . For any nonzero real effective divisor D on X, there exists a finite sequence D0,D1, . . . ,Dk of
effective divisors on X with D0 = D such that −KX ·Di <−KX ·Di−1, Di supports multipliers for
Di−1 for all 1 ⩽ i ⩽ k, and Dk is either zero or a positive multiple of a conic bundle. In particular,
the length k of the sequence is bounded above by −KX ·D.

Before delving into the proof, we recount some features of del Pezzo surfaces. A del Pezzo surface
is a nonsingular geometrically-irreducible surface X whose anticanonical divisor −KX is ample; see
[Dol12, Definition 8.1.2]. Its degree is the self-intersection number d := KX ·KX , which satisfies
1 ⩽ d ⩽ 9; see [Dol12, Proposition 8.1.6]. Over C, del Pezzo surfaces form a single sequence with
one exception. Other than P1 ×P1 which has degree 8, a del Pezzo surface is a blow-up of P2 at
9− d general points: no three lie on a line, no six line on a conic, and no eight lie on a singular
cubic with one of the points at the singularity; see [Dol12, Proposition 8.1.18]. Hence, the del Pezzo
surfaces having degree d greater than 5 are all normal toric varieties. However, there are infinitely
many nonisomorphic del Pezzo surfaces of each degree less than 5; see [Dol12, Sections 8.5–8.8].

Over the complex numbers, the birational geometry of del Pezzo surfaces is comparatively simple.
The Picard group of a del Pezzo surface is a free abelian group of rank 10− d. For the special
case P1 ×P1, the Picard group is generated by the divisor classes of the two rulings. Otherwise,
X = Blp1,p2,...,p9−d(P2) and the Picard group Pic(X) is generated by the pullback H of the hyperplane
class on P2 (under the canonical morphism π : X → P2) and the classes of the exceptional divisors
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E1,E2, . . . ,E9−d , which are the preimages of the points p1, p2, . . . , p9−d . In particular, we have
KX =−3H +E1 +E2 + · · ·+E9−d . Moreover, the intersection product is determined by H ·H = 1,
H ·Ei = 0 for all 1⩽ i⩽ 9−r, and Ei ·Ej =−δi, j for all 1⩽ i⩽ j ⩽ 9−r. A (−1)-curve on a surface
X is a divisor class C satisfying C ·C =−1 and KX ·C =−1 where KX is the canonical divisor on X .
When 1 ⩽ d ⩽ 7, the cone of curves on a del Pezzo surface of degree d is the closed cone in the real
vector space Pic(X)⊗ZR generated by the classes of (−1)-curves; see [Dol12, Theorem 8.2.19].
Moreover, the finitely many (−1)-curves are explicitly enumerated in [Dol12, Proposition 8.2.15].

Over the real numbers, the classification of del Pezzo surfaces is more involved because a complex
del Pezzo surface may have more than one real structure. The two del Pezzo surfaces of degree 8 in
the subsequent example begin to reveal some of the intricacies; see [Rus02, Proposition 1.2].

Example 6.2. Consider the totally-real surfaces Q2,2 and Q3,1 in P3 defined by x2
0 + x2

1 − x2
2 − x2

3
and x2

0 + x2
1 + x3

2 − x2
3 respectively. Over C, these subvarieties are isomorphic (in fact, projectively

equivalent) because their defining quadratic polynomials have the same rank. No such isomorphism
exists over R, because the quadratic polynomials have different signatures. Topologically, the set
Q2,2(R) of real points is the torus S1×S1 and Q3,1(R) is the sphere S2 which are not homeomorphic.
Geometrically, the real variety Q2,2 is ruled by real lines, whereas conjugation on P3 exchanges the
complex lines of the two rulings through each real point of Q3,1. ⋄

More generally, a real structure on a complex variety is a choice of an antiholomorphic involution.
The real points are, by definition, the subset of points fixed by the involution. For any real scheme X ,
its complexification XC := X ×Spec(R) Spec(C) has a canonical antiholomorphic involution induced
by complex conjugation on C. The study of equivalence classes of real structures on a complex
projective variety XC is equivalent to the study of isomorphism classes of real projective varieties
X whose complexification is isomorphic over C to XC; see [Rus02, §1]. The ensuing example,
constructed via an antiholomorphic involution, manifests a real del Pezzo surface of degree 4 whose
real points form a disconnected topological space; see [Rus02, Example 2] for further details.

Example 6.3. Let Γ be a nonsingular real plane cubic curve having two real components. Choose
a general real point p1 on Γ. The intersection of Γ with its polar curve with respect to p1 has
degree 6. Since p1 is a general point on Γ, this intersection contains of four distinct real points
p2, p3, p4, p5 on Γ (in addition to p1) such that the tangent to Γ at pi passes through p1 for all
2 ⩽ i ⩽ 5; see [Dol12, Theorem 1.1.1]. Let DC := Blp1,p2,...,p5(P2) be the associated complex del
Pezzo surface of degree 4. The de Jonquières birational involution of P2 is uniquely determined by
the property that its restriction to a general line L passing through p1 coincides with the involution
of P1 that interchanges the residual intersection points of L with Γ and fixes p1; see [Dol12, §7.3.6].
This birational involution lifts to an antiholomorphic involution τ : DC → DC that sends E1 to
2H−E1−E2−E3−E4−E5 and sends Ei to H−E1−Ei for all 2 ⩽ i ⩽ 5. Hence, every (−1)-curve
C on D satisfies C · τ(C) = 1. Setting D to be the totally-real del Pezzo surface corresponding to this
antiholomorphic involution on DC, we see that its set of real points is S2 ⊔S2. ⋄

To catalogue the relevant real structures on complex del Pezzo surfaces, we collect some notation.
For nonnegative integers a and b, let Qa,b be the real subvariety in Pa+b−1 defined by the quadratic
polynomial x2

0 + x2
1 + · · ·+ x2

a−1 − x2
a − x2

a+1 − ·· · − x2
a+b−1 in R[x0,x1, . . . ,xa+b−1]. For any real

surface X , let X(a,2b) be the real surface obtained from X by blowing-up a distinct real points and
b pairs of conjugate nonreal points. With these definitions, we have Q2,2 ∼= Q2,1 ×Q2,1, P2(2,0)∼=
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Q2,2(1,0), and P2(0,2)∼= Q3,1(1,0). Table 6.4 lists the 24 totally-real del Pezzo surfaces of degree
at least 3; see [Rus02, Proposition 1.2 and Corollaries 2.4, 3.2–3.3] or [Kol01, Proposition 86] for a
complete classification including those containing no real points. In Table 6.4, the column heading
"ρ(XR)" stands for the rank of the real Picard group of X and the column heading "# real (−1)’s" is
an abbreviation for the number of real (−1)-curves on X .

TABLE 6.4. Totally-real del Pezzo surfaces of degree at least 3

Degree X ρ(XR) # real (−1)’s

9 P2 1 0

8 P2(1,0) 2 1
8 Q2,2 2 0
8 Q3,1 1 0

7 P2(2,0) 3 3
7 P2(0,2) 2 1

6 P2(3,0) 4 6
6 P2(1,2) 3 6
6 Q3,1(0,2) 2 0
6 Q2,2(0,2) 3 0

5 P2(4,0) 5 10
5 P2(2,2) 4 4

Degree X ρ(XR) # real (−1)’s

5 P2(0,4) 3 2

4 P2(5,0) 6 16
4 P2(3,2) 5 8
4 P2(1,4) 4 4
4 Q3,1(0,4) 3 0
4 Q2,2(0,4) 4 0
4 D 2 0

3 P2(6,0) 7 27
3 P2(4,2) 6 15
3 P2(2,4) 5 7
3 P2(0,6) 4 3
3 D(1,0) 3 3

Over the real numbers, the birational geometry of surfaces is more complicated: the real Picard
group may have smaller rank and there are more possibilities for the extremal rays in the cone of
curves. Conic bundles provide one new kind of extremal ray. On a del Pezzo surface X , a conic
bundle is a divisor class B such that B ·B = 0 and −KX ·B = 2. By the Riemann–Roch Theorem,
the complete linear series of B defines a surjective morphism πB : X → P1 such that every fibre is
isomorphic to a plane conic. As [Kol01, Theorem 29] establishes that a conic bundle can be an
extremal ray only when the rank of the real Picard group is 2, the following example shows that
inventorying the minimal conic bundles is relatively straightforward.

Example 6.5. From Table 6.4, we see that there are 5 totally-real del Pezzo surfaces with real Picard
rank equal to 2. Since any 2-dimensional closed convex cone has two extremal rays, there are just
two divisors classes on each surface to analyze.
• Suppose that X = P2(1,0). Let H denote the pullback of the hyperplane class on P2 and let E1 be

the exceptional divisor over the distinguished real point in P2. The extremal rays on X are the real
(−1)-curve E1 and the real conic bundle B := H −E1. Moreover, [Kol01, Theorem 29] implies
that πB

(
X(R)

)
= P1(R).

• Suppose that X = Q2,2 ∼= Q2,1 ×Q2,1. The extremal rays on X are given by the divisor classes of
the two real rulings which are real conic bundles. In either case, we have πB

(
X(R)

)
= P1(R).

• Suppose that X = P2(0,2)∼= Q2,2(1,0). One extremal ray contracts the real (−1)-curve and the
other contracts the disjoint pair of conjugate exceptional curves, so there is no conic bundle. As
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overkill, [Kol01, Theorem 29] also proves that a conic bundle can only be an extremal ray on a
del Pezzo surface having even degree.

• Suppose that X = Q3,1(0,2). Let L1 and L2 be the pullback of the two rulings on Q3,1 and let E1
and E2 be the exceptional divisors over the distinguished pair of conjugate nonreal points. One
extremal ray contracts the disjoint pair of conjugate exceptional curves. The second is the real
conic bundle B := L1 +L2 −E1 −E2. [Kol01, Theorem 29] confirms that πB : X → P1 has two
singular fibres, so the image πB

(
X(R)

)
is a closed interval in P1(R) whose endpoints correspond

to the singular fibres.
• Suppose that X =D. Let H denote the pullback of the hyperplane class on P2 and let E1,E2, . . . ,E5

be the exceptional divisors over the special real points in P2. The extremal rays on X are the
two real conic bundles H −E1 and 2H −E2 −E3 −E4 −E5. In both cases, [Kol01, Theorem 29]
establishes that πB : X → P1 has four singular fibres, so the image πB

(
X(R)

)
consists of 2 disjoint

closed intervals in P1(R) whose endpoints correspond to the singular fibres. ⋄

Remark 6.6. Applying the minimal model program for real algebraic surface [Kol01, Theorem 30],
we see that every totally-real del Pezzo surface X of degree at least 3 is obtained from P2, Q2,2, Q3,1,
or D from a sequence of blow-ups at either a real point or a pair of conjugate nonreal points. The
birational map associated to either type of blow-up is strongly dominant over R. It follows that any
real conic bundle on X is the pullback of a minimal conic bundle appearing in Example 6.5.

Global sections of a real conic bundle may require modified certificates of nonnegativity.

Remark 6.7. Let B be a real conic bundle on a totally-real del Pezzo surface X and let πB : X → P1

be the associated surjective morphism. For any positive integer c, consider f in H0(X ,OX(2cB)
)
.

The global section f is the pullback of a unique homogeneous polynomial g in R[x0,x1] of degree 2c.
Moreover, f is nonnegative if and only if g is nonnegative on πB

(
X(R)

)
. When πB

(
X(R)

)
= P1(R),

every nonnegative g can be expressed as a sum of squares in R[x0,x1]. For the remaining cases,
choose real coordinates on P1 such that [1 : 0] is not in πB

(
X(R)

)
. Under the map [x0 : x1] 7→ x0/x1,

the image πB
(
X(R)

)
corresponds to the closed interval [a0,a1] or the disjoint union [a0,a1]⊔ [a2,a3].

In the first case, every nonnegative g can be expressed as h0 +h1(a0 x1 − x0)(x0 −a1 x1) where h0
and h1 are sums of squares in R[x0,x1]. In second case, every nonnegative g can be expressed as
h0 +h1(x0 −a1 x1)(x0 −a2 x1)+h2(a0 x1 −x0)(x0 −a4 x1) where h0, h1, and h2 are sums of squares.

Given this background on totally-real del Pezzo surfaces having degree at least 3, we now present
four lemmas about divisors needed for our proof of Theorem 6.1. A divisor D on a surface X is nef
if D ·C ⩾ 0 for any effective divisor C.

Lemma 6.8. Let X be a totally-real del Pezzo surface of degree at least 3. Assume that D is a
nonzero effective divisor on X. When the divisor D is not nef, there exists a divisor E on X, which is
either a real (−1)-curve or the sum of a disjoint pair of conjugate complex (−1)-curves, such that
H0(X ,OX(D)

)
= H0(X ,OX(D−E)

)
. When the divisor D is nef but not ample, then either

(i) there exists a real (−1)-curve C such that D ·C = 0,
(ii) there is a pair (C,C) of disjoint conjugate (−1)-curves such that D ·C = D ·C = 0, or

(iii) D is a positive multiple of a conic bundle.
In cases (i) and (ii), there exists a real birational morphism π : X → X ′ from X to a totally-real del
Pezzo surface X ′ of larger degree than X and a nef divisor N on X ′ such that D = π∗(N).
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Proof. Since the divisor D is not nef, there exists a (−1)-curve C such that D ·C < 0. Assuming that
C ̸=C and C ·C ̸= 0, the divisor B :=C+C would be a real conic bundle satisfying D ·B < 0, which
contradicts the hypothesis that D is effective because every conic bundle is nef. It follows that either
C is real or (C,C) is a disjoint pair of conjugate (−1)-curves. Let E be the real divisor defined by
either C or C+C. The long exact sequence in cohomology associated to the short exact sequence

0 OX(D−E) OX(D) OE(D) 0

yields the desired equality of global sections.
Suppose that D is nef but not ample. When d ⩽ 7, there exists a (−1)-curve C such that D ·C = 0.

Assuming that C ̸=C and C ·C ̸= 0, the divisor B :=C+C is a real conic bundle satisfying D ·B = 0
which implies that D is a positive multiple of B. When either C is real or (C,C) is a disjoint pair
of conjugate (−1)-curves, let E be the real divisor defined by either C or C+C. The target of the
real birational morphism π : X → X ′ that contracts E is a totally-real del Pezzo surface of higher
degree. Since D ·E = 0, we see that D is a pullback of a nef divisor on X ′. Lastly, when 8 ⩽ d ⩽ 9,
the hypothesis that D is nef but not ample implies that d = 8 and there are two options: D is either
a positive multiple of H −E1 on X = P1(1,0) or a positive multiple of a real ruling on X = Q2,2.
Thus, Example 6.5 implies that the D is a positive multiple of a conic bundle in these cases. □

Every ample divisor D on a complex del Pezzo surface having degree at least 3 can be written
as D = A+N where A is the minimal ample divisor defined in Table 6.9 and N is some nef divisor.
When X is a real, the minimal ample divisor is real, so the nef divisor N is also real.

TABLE 6.9. Minimal ample divisor on complex del Pezzo surfaces

Degree X A

9 P2 H =−1
3KX

8 Blp1(P2) 2H −E1
8 P1 ×P1 L1 +L2 =−1

2KX

d ⩽ 7 Blp1,p2,...,p9−d(P2) −KX

Lemma 6.10. Let X be a totally-real del Pezzo surface of degree d at least 3 and let A denote the
minimal ample divisor on X. There exists a real effective divisor C and nef divisors N and M such
that A =C+N, −KX =C+M and a general section of M is a smooth rational curve. When d ⩽ 7
or X = P2(1,0), the divisor C can be chosen to be a real (−1)-curve or a real conic bundle.

Proof. Suppose that 8 ⩽ d ⩽ 9. When X = P2, setting C := H, N := 0, and M := 2H implies that
A =C+N, −KX =C+M, and a general section of M is smooth rational curve. When X = P2(1,0),
setting C := H −E1, N := H, and M := 2H ensures that A =C+N, −KX =C+M and the genus
formula [Bea96, I.15] shows that a section of M has genus zero. When X is Q2,2 or Q3,1, let L1
and L2 be the divisors classes of the two rulings. Setting C := A, N := 0, and M := L1 +L2, we see
that A =C+N, −KX =C+M, and the genus formula again shows that a general section of M is a
smooth rational curve.

Suppose that 3 ⩽ d ⩽ 7. When the surface X contains a real (−1)-curve C, set N :=−KX −C and
M := N. For any (−1)-curve C′, we have N ·C′ = 1−C ·C′. Since d ⩾ 3, any two (−1)-curves on
X intersect in a most one point; see [Dol12, Proposition 8.2.15]. It follows that N is nef. Combining
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the definition of a (−1)-curve and the genus formula, we deduce that general section of M is a
smooth rational curve. When the surface X does not contain a real (−1)-curve, Table 6.4 shows that
d ⩾ 4. Moreover, Example 6.5 and Remark 6.6 also establish that X has a real conic bundle B. Set
C := B, N :=−KX −B, and M := N so that A =C+N and −KX =C+M. The divisor class N is
nef because no del Pezzo surface of degree at least 4 contains a triangle which implies that B ·C′ ⩽ 1
for any (−1)-curve C′; see [Dol12, §8.4.1, §8.4.2, §8.5.1, §8.6.3]. Combining the definition of a
conic bundle and the genus formula, we see that general section of M is a smooth rational curve. □

Lemma 6.11. Every nef divisor N on a del Pezzo surface X is effective. Moreover, for any positive
integer i and any nonnegative integer m, we have hi(X ,mN) = 0.

Proof. Since −KX is ample, the divisor class N − 1
mKX is ample for any positive integer m; see

[Laz04, Corollary 1.4.10]. Hence, the Nakai Criterion [Laz04, Theorem 1.2.23] establishes that
(mN −KX)

2 > 0 for any nonnegative integer m, which implies that mN −KX is big and nef; see
[Laz04, Theorem 2.2.16]. The Kawamata–Viehweg Vanishing Theorem [Laz04, Theorem 4.3.1]
demonstrates that hi(X ,(mN −KX)+KX

)
= 0 for any positive integer i. The effectiveness of mN

then follows from the Riemann–Roch Theorem. □

Lemma 6.12. For any ample divisor D on a totally-real del Pezzo surface of degree at least 3, there
exists a nonzero effective divisor C such that E := D−C is effective and supports multipliers for D.

Proof. Let X be a totally-real del Pezzo surface of degree d where d ⩾ 3. Lemma 6.10 proves that
there exists a nonzero effective divisor C on X and nef divisors N and M on X such that A =C+N,
−KX = C+M, and a general section of M is a smooth rational curve. We claim that the divisor
E := D−C is effective and supports multipliers for D.

Suppose that E = 0. Since M ̸= 0, it follows that d ⩾ 8 and there are four cases: the pair (X ,D) is
(P2,H), (P2,2H),

(
Blp1(P2),2H −E1

)
or (P1 ×P1,L1 +L2). In all of these cases, the nonnegative

global sections of OX(2D) coincide with the sums of squares because the surface X embedded the
very ample line bundle OX(D) is a variety of minimal degree; see [BSV16, Theorem 1.1].

Suppose that E ̸= 0. To prove the claim, it is enough to verify the hypotheses of Corollary 4.3.
Since the divisor D is ample, there exists a unique nef divisor N′ such that D = A+N′. It follows
that E = D−C = N+N′ is nef and Lemma 6.11 shows that E is effective and hi(X ,mE) = 0 for any
positive integers i and m. The divisor E −D =−C has negative intersection with the ample divisor
−KX which gives h0(X ,E −D) = 0. The assumption that d ⩾ 3 ensures that the minimal ample
divisor A on X is very ample, so the divisor D = A+N′ is free and the divisor D+E = A+N +2N′

is very ample. Hence, Lemma 6.11 also shows that hi(X ,mD+mE) = 0 for any positive integers i
and m. All that remains is to confirm the inequality h0(X ,2E)+h1(X ,E −D)> h0(X ,KX +D+E).
The choice of C ensures that KX +D+E = 2E −M. Consider the short exact sequence

0 OX(2E −M) OX(2E) OM(2E|M) 0 .

As D+E = A+N +2N′ is big and nef, the Kawamata–Viehweg Vanishing Theorem demonstrates
that h1(X ,2E −M) = h1(X ,KX +D+E) = 0, so we obtain the exact sequence

0 H0(X ,OX(2E −M)
)

H0(X ,OX(2E)
)

H0(M,OM(2E|M)
)

0 .

The divisor 2E = 2(N +N′) being nef establishes that 2E ·M ⩾ 0. It follows that 2E|M is a divisor
of nonnegative degree on the smooth rational curve M, so h0(M,OM(2E|M)

)
> 0. We conclude that

h0(X ,2E)+h1(X ,E −D)⩾ h0(X ,2E)> h0(X ,2E −M) = h0(X ,KX +D+E). □
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We now prove the main result of this section.

Proof of Theorem 6.1. Suppose that D is not nef. Lemma 6.8 shows that there exists a divisor E on
X , which is either a real (−1)-curve or the sum of a disjoint pair of conjugate (−1)-curves, such
that H0(X ,OX(D)

)
= H0(X ,OX(D−E)

)
. Iterating this step a finite number of times, we reach a nef

divisor D′. By construction, we have −KX ·D′ <−KX ·D and D′ supports multipliers for D.
For some nonnegative integer j, we may assume that there exists divisors D0,D1, . . . ,D j with

D0 = D such that −KX ·Di−1 <−KX ·Di and Di supports multipliers for Di−1 for all 1 ⩽ i ⩽ j, and
Dj is nef. If Dj = 0 or Dj is a multiple of a conic bundle, then we are done. If Dj ̸= 0 and not ample,
Lemma 6.8 shows that there exists a sequence of birational morphisms, contracting a real (−1)-curve
or a conjugate pair of (−1)-curves at each step, such that the composition π : X → X ′ is a strongly
dominant morphism onto a real del Pezzo surface of degree greater than d := deg(X) and Dj is
the pullback under π of an ample divisor D′

j on X ′. Since π is strongly dominant, the nonnegative
global sections of OX(Dj) coincide with the nonnegative global sections of OX ′(D′

j). Hence, we may
work on X ′ or, equivalently, assume that Dj is ample. If Dj is ample, the Lemma 6.12 demonstrates
that there exists a nonzero effective divisor C such that Dj+1 := Dj −C is effective and supports
multipliers for Dj. Since −KX is ample and C is effective, we must have −KX ·Dj+1 < −KX ·Dj.
This process must terminate after at most −KX ·D steps. □

From the algorithm outlined in the proof of Theorem 6.1, we see that nonnegativity certificates
on totally-real del Pezzo surfaces of degree at least 3 can be computed via an explicit sequence of
semidefinite programs. The next example shows that these semidefinite programs depend on the real
structure on X .

Example 6.13. Let X be a real cubic surface in P3 and let f be a nonnegative global section in
H0(X ,OX(−2KX)

)
. Equivalently, f is a homogeneous quartic polynomial which is nonnegative on

X(R). To highlight the importance of the real structure, we consider on two cases: P2(6,0) and
D(1,0). In both of these cases, the surface contains at least one real (−1)-curve C, so the divisor
−KX −C supports multipliers for −KX . In other words, there exists a nonnegative global section
g in H0(X ,OX(−2KX −2C)

)
and a sum-of-squares h in H0(X ,OX(−4KX −2C)

)
such that f g = h.

Moreover, B := −KX −C is a real conic bundle. When X = P2(6,0), the contraction associated
to B is surjective on real points, so g is a sum-of-squares of global sections in H0(X ,OX(B)

)
and f = h/g. When X = D(1,0), the contraction associated to B sends the real points X(R) to
the disjoint union [a1,a2]⊔ [a3,a4]. As in Remark 6.7, the nonnegative global section g can be
expressed as g0+c1(x0−a1 x1)(x0−a2 x1)+c2(a0 x1−x0)(x0−a4 x1) where g0 is a sum-of-squares
in H0(X ,OX(B)

)
and c1,c2 are nonnegative real numbers, so we obtain

f =
h

g0 + c1(x0 −a1 x1)(x0 −a2 x1)+ c2(a0 x1 − x0)(x0 −a4 x1)
.

Solely in terms of degree bounds, a nonnegative quartic form on a cubic surface admits a quadratic
nonnegative multiplier. In the first case (but not the second), the multiplier is a sum of squares. ⋄
Remark 6.14. Combining Theorem 6.1 and Remark 6.7, we see that there are three kinds of
multiplier certificates on del Pezzo surfaces having degree at least 3. Table 6.15 summarizes the
relationship between surface type and nonnegativity certificates.

Although modified certificates are necessary to characterize nonnegativity for arbitrary divisors
on a del Pezzo surface, we demonstrate that sums of squares may suffice for a specific divisor.
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TABLE 6.15. Three kinds of multiplier certificates

Surface type Nonnegativity certificate type

Admits a birational morphism to D Modified SOS multiplier with 2 intervals
Admits a birational morphism to Q3,1(0,2) Modified SOS multiplier with 1 interval
Otherwise SOS-multipliers

Example 6.16. The surface Q3,1(0,2) embedded via its anticanonical bundle is a subvariety X
in P6 of degree 6. A nonnegative quadratic form f on X is a nonnegative global section of
H0(X ,OX(−2KX)

)
. The divisor B := L1 + L2 −E1 −E2 be the unique real conic bundle on X .

Following the algorithm outlined in the proof of Theorem 6.1, the divisor D :=−KX −B = L1 +L2
supports multipliers for the divisor −KX and the divisor 0 supports multipliers for D. Hence, there
exists an equation of the form f g = h where g and h are sums of squares. More precisely, g is a sum
of squares of linear forms vanishing on B, h is a sum of squares of quadratic forms vanishing on B,
and f admits a quadratic sum-of-squares multiplier. ⋄

7. ASYMPTOTIC MULTIPLIERS BOUNDS

This section gives asymptotic bounds for the degree of multipliers on certain embedded surfaces. We
provide quadratic upper bounds on the growth rate rather than exact bounds, because we have more
control over the transfer steps than the base case of the induction. Nevertheless, our novel results
constitute the first multiplier bounds for nonrational surfaces beyond the elementary recursive degree
estimates that apply to all real varieties; compare with [LPR20, Theorem 1.5.7]. In hindsight, our
methods handle a totally-real smooth surface X with a very ample divisor A such that −KX ·A > 0.
Despite apparently aligning with algebraic surfaces of Kodaira dimension −∞, it is unclear whether
this is an artifact of our techniques or reflects some deeper aspect of nonnegativity certificates.

As in the minimal model program for algebraic surfaces, our approach exploits the (−1)-curves
on a surface. We start by showing how a single (−1)-curve can produce 1-step transfers.

Lemma 7.1. Assume that X is a totally-real smooth surface with a very ample divisor A. Let
π : Z := Blp(X) → X be the blow-up of X at a real point p, let E := π−1(p) be the exceptional
divisor, and set H := π∗(A). Fix a positive integer m and choose a nonnegative integer ℓ such that
the divisor ℓH −KZ is big and nef.

(i) For any positive integer k and any integer d satisfying d ⩾ 2m+ k+ ℓ, the inequality

2d(−KZ ·H)− (2m+ k)(k+1)−χ(OZ)> 0

implies that the divisor dH − (m+ k)E supports multipliers on the divisor dH −mE.
(ii) For any integer d satisfying d ⩾ 2m+ ℓ, the inequality

(1−2d)
(
H · (H +KZ)

)
+m(m−1)−χ(OZ)> 0

implies that the divisor (d −1)H supports multipliers on the divisor dH −mE.

Before proving the lemma, we list a few rudimentary properties of the surface Z. Firstly, we
have KZ = π∗(KX)+E. Secondly, the divisor 2H −E on Z is very ample; for example see [BS96,
Theorem 2.1]. Thirdly, for any sufficiently large integer ℓ, the Nakai Criterion implies that the
divisor ℓH −KZ on Z is big and nef, because (ℓH −KZ)

2 = ℓ2A2−2ℓA ·KX +(KX)
2−1 and A2 > 0.
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Proof. To establish part (i), it suffices to verify the hypotheses of Corollary 4.3. Set D0 := dH −mE
and D1 := dH − (m+ k)E. The inequality d ⩾ 2m+ k+ ℓ means that there exists a nonnegative
integer j such that d = 2m+ j+ k+ ℓ. As the sum of an very ample divisor and a free divisor, both
D0 = m(2H −E)+( j+k+ ℓ)H and D0 +D1 = (2m+k)(2H −E)+2( j+ ℓ)H are very ample and
thereby free; see [Har77, §II.7, Exercise 7.5d]. Since k > 0 and the divisor E is effective, the equality
D1 −D0 = −kE shows that h0(Z,D1 −D0) = 0. The divisor ℓ′H −KZ being big and nef, for all
integers ℓ′ ⩾ ℓ, guarantees that, for any positive integer c, the divisors

cD0 −KZ = cm(2H −E)+
(
c( j+ k+ ℓ)H −KZ

)
,

cD0 + cD1 −KZ = (2m+ k)(2H −E)+
(
2c( j+ ℓ)H −KZ

)
are also big and nef. Hence, the Kawamata–Viehweg Vanishing Theorem gives hi(Z,cD0) = 0 and
hi(Z,cD0 + cD1

)
= 0 for any positive integers i and c. All that remains is confirm the inequality

χ(2D1)+h1(Z,D1 −D0)> χ(−D0 −D1). Applying the Riemann–Roch Formula, we deduce that

χ(2D1)+h1(Z,D1 −D0)−χ(−D0 −D1)

= χ(2D1)−χ(D1 −D0)+h2(X ,D1 −D0)−χ(−D0 −D1)

⩾ 1
2

(
(2D1)

2 −2D1 ·KZ − (D1 −D0)
2 +(D1 −D0) ·KZ − (D0 +D1)

2 − (D0 +D1) ·KZ
)
−χ(OZ)

= D2
1 −D1 ·KZ −D2

0 −D0 ·KZ −χ(OZ)

= d2H2 − (m+ k)2 −dH ·KZ −m−d2H2 +m2 −dH ·KZ − (m+ k)−χ(OZ)

= 2d(−KZ ·H)− (2m+ k)(k+1)−χ(OZ),

which is positive by assumption.
For part (ii), it again suffices to verify the hypotheses of Corollary 4.3. Set D0 := dH −mE and

D1 := (d−1)H. The inequality d ⩾ 2m+ ℓ means that there exists a nonnegative integer j such that
d = 2m+ j+ ℓ. As the sum of an very ample and a free divisor, both D0 = m(2H −E)+( j+ ℓ)H
and D0 +D1 are very ample and free. Since H · (D1 −D0) = H · (mE −H) =−H2 < 0, the divisor
D1 −D0 is not effective and h0(Z,D1 −D0) = 0. The divisor ℓ′H −KZ being big and nef, for all
integers ℓ′ ⩾ ℓ, also guarantees that, for any positive integer c, the divisors

cD0 −KZ = cm(2H −E)+
(
c( j+ ℓ)H −KZ

)
,

cD0 + cD1 −KZ = cm(2H −E)+
(
c(2m+2 j+ ℓ−2)H −KZ

)
are big and nef. Hence, the Kawamata–Viehweg Vanishing Theorem gives hi(Z,cD0) = 0 and
hi(Z,cD0 + cD1

)
= 0 for any positive integers i and c. As in part (i), it remains to confirm that

χ(2D1)+h1(Z,D1 −D0)> χ(−D0 −D1). Applying the Riemann–Roch Formula, we deduce that

χ(2D1)+h1(Z,D1 −D0)−χ(−D0 −D1)⩾ D2
1 −D1 ·KZ −D2

0 −D0 ·KZ −χ(OZ)

= (d −1)2H2 − (d −1)H ·KZ −d2H2 +m2 −dH ·KZ −m−χ(OZ)

= (1−2d)
(
H · (H +KZ)

)
+m(m−1)−χ(OZ)

which is again positive by assumption. □

Remark 7.2. The hypotheses in Lemma 7.1 constrain the underlying surface X . To have the
inequality 2d(−KZ ·H)− (2m+ k)(k+1)−χ(OZ)> 0 hold for some choice of positive integers m
and k and any sufficiently large integer d requires −KZ ·H > 0. As −KZ ·H =−KX ·A and A is a
very ample divisor on X , it follows that no multiple of KX can be effective, so h0(X ,cKX) = 0 for
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any positive integer c. Hence, the Enriques characterization [Bea96, Theorem VI.17] implies that X
must be a ruled surface: birationally equivalently to a product C×P1 for some nonsingular curve C.
Furthermore, the condition −KX ·A > 0 is the same as A2 > A · (A+KX). Assuming that the surface
X is embedded into projective space via the complete linear series associated to A, the adjunction
formula [Bea96, Remarks I.16] implies that the genus g(X ,A) of a general hyperplane section is
1
2

(
A · (A+KX)

)
+1. Hence, the degree of this embedded surface is greater than 2g(X ,A)−2.

The next theorem comes from repeated use of the 1-step transfers arising from (−1)-curves.

Theorem 7.3. Assume that X is a totally-real smooth surface with a very ample divisor A satisfying
−KX ·A > 0. Let π : Z := Blp(X)→ X be the blow-up of X at a real point p and set H := π∗(A).
Fix s to be the smallest positive integer such that s(−KX ·A)> A · (A+KX) and choose a positive
integer t such that 1

2 +
1
3 + · · ·+ 1

t+1 > 2(1+
√

s). For all sufficiently large integers d, there exists
an (t +1)-step transfer on Z from dH to (d −1)H.

The harmonic series being divergent affirms the existence of the positive integer t.

Proof. Let E := π−1(p) be the exceptional divisor on Z. We claim that, for any sufficiently large
integer d, there exist positive integers m0,m1, . . . ,mt such that the divisors

D0 := dH , D1 := dH −m1E , D2 := dH −m2E , . . . , Dt := dH −mtE , Dt+1 := (d −1)H

form an (t + 1)-step transfer from dH to (d − 1)H. Consider the function Λ : N→ Z defined by
Λ(d) = 2d(−KZ ·H)− χ(OZ). Since t depends only on s (and not d), this function enjoys the
following three properties. First, for any integer j satisfying 1 ⩽ j ⩽ t, there exists a positive integer
kj such that, for any sufficiently large integer d, we have

1
2( j+1)

√
Λ(d)⩽ kj ⩽

1
2 j

√
Λ(d)−1 .

Second, for any positive integer ℓ such that the divisor ℓH −KZ on Z is big and nef, and any
sufficiently large integer d, we have(

1+
1
2
+

1
3
+ · · ·+ 1

t +1

)√
Λ(d)< d − ℓ .

Third, for any sufficiently large integer d, we have d > −H · (H +KZ) and d > −(s+ 1)χ(OZ).
Assume that the integer d is large enough that both of these properties hold. Set m0 := 0 and, for all
1 ⩽ j ⩽ t, set m j := ∑

j
i=1 kj. For any 1 ⩽ j ⩽ t, the two properties give

2m j ⩽ 2
j

∑
i=1

(
1
2 j

√
Λ(d)−1

)
⩽

(
1+

1
2
+

1
3
+ · · ·+ 1

t +1

)√
Λ(d)< d − ℓ ,

so we obtain d > 2m j + ℓ > 2m j−1 + k j + ℓ. Since k j +1 ⩽ 1
2 j

√
Λ(d), we also have

(2m j−1 + k j)(k j +1)⩽ 2m j−1(k j +1)+(k j +1)2

⩽

[(
1+

1
2
+

1
3
+ · · ·+ 1

j−1

)√
Λ(d)

][√
Λ(d)
2 j

]
+

[√
Λ(d)
2 j

]2

<

(
j−1
2 j

+
1

4 j2

)
Λ(d)< Λ(d) = 2d(−KZ ·H)−χ(OZ) .
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Thus, Lemma 7.1.i demonstrates that, for all 1 ⩽ j ⩽ t, the divisor Dj supports multipliers for the
divisor Dj−1. For the last transfer, the choice of t and the first property give

mt −1 ⩾
1
2

(
1
2
+

1
3
+ · · ·+ 1

t +1

)√
Λ(d)−1 ⩾ (1+

√
s)
√

Λ(d)−1 >
√

sΛ(d) ,

so we obtain mt(mt −1)> (mt −1)2 > sΛ(d) = 2ds(−KZ ·H)− sχ(OZ). Combining the inequality
s(−KZ ·H) = s(−KX ·A)> A · (A+KX) = H · (H +KZ) with the third property, it follows that

(1−2d)
(
H · (H +KZ)

)
+mt(mt −1)−χ(OZ)

> (1−2d)
(
H · (H +KZ)

)
+2ds(−KZ ·H)− (s+1)χ(OZ)

= H · (H +KZ)+2d
(
s(−KZ ·H)−H · (H +KZ)

)
− (s+1)χ(OZ)> 0 .

Therefore, Lemma 7.1.ii proves that the divisor Dt+1 supports multipliers for the divisor Dt . □

Remark 7.4. Both Example 5.10 and the proof of Theorem 7.3 use the same inherent strategy. A
more detailed understanding of Blp(P2) in the first case is the only substantial difference.

From this theorem, we extract a quadratic upper bound on the growth rate of the degree of
multipliers on embedded ruled surfaces.

Corollary 7.5. Let X be a totally-real smooth surface with a very ample divisor A satisfying
−KX ·A > 0. For any positive integer d and any nonnegative global section f in H0(X ,OX(2dA)

)
,

there exists a nonzero sum-of-squares global section g in H0(X ,OX(2eA)
)

such that e = O(d2) and
the product f g is a sum of squares.

Proof. Let π : Z := Blp(X) → X be the blow-up of X at a real point p and set H := π∗(A). By
repeated applications of Theorem 7.3, there exists an integer d0 such that, for any d > d0, there
exists a (t +1)(d −d0)-step transfer D0,D1, . . . ,D(t+1)(d−d0) on Z := Blp(X) from the divisor dH
to the divisor d0H. Set r := (t +2)(d −d0). In particular, for any nonnegative global section f0 in
H0(X ,OX(2dA)

)
= H0(Z,OX(2dH)

)
, there exists nonnegative global sections fi in H0(Z,OZ(2Di)

)
and sums of squares gi−1,i in H0(Z,OZ(2Di−1 +2Di)

)
such that fi−1 fi = gi−1,i for all 1 ⩽ i ⩽ r.

Furthermore, from the proof of Theorem 7.3, we see that the first (t+1) global sections fi correspond
to forms of degree 2d on X and the next (t +1) global sections fi correspond to forms of degree
2(d −1) on X . Continuing this pattern, the degrees of the corresponding forms weakly decrease
until the very last form fr has degree 2d0. Invoking [LPR20, Theorem 1.3.2], the nonnegativity of
fr on X implies that there exists sums of squares g′ and g′′ such that g′ f(t+1)(d−d0) = g′′ where the
degrees of g′ and g′′ are bounded above by a constant e0 which depends only on d0. If r is odd, then
we have f0(g1,2g3,4 · · ·gr−2,r−1g′′) = f0 f1 · · · frg′ = g0,1g2,3 · · ·gr−1,rg′′. If r is odd, then we have
f0(g1,2g3,4 · · ·gr−1,rg′) = f0 f1 · · · frg′ = g0,1g2,3 · · ·gr−2,r−1g′′. Therefore, we deduce that f0 has of
sum-of-square multiplier of degree O(d2). □

Making stronger assumptions on the underlying surface allows for a more streamlined conclusion.

Proposition 7.6. Assume that X is a nondegenerate nonrational totally-real smooth surface with a
very ample divisor A such that its sectional genus g(X ,A) equals 1. Let π : Z := Blp(X)→ X be the
blow-up of X at a real point p and set H := π∗(A). For any integer d satisfying d ⩾ 5, there exists a
2-step transfer on Z from dH to (d −1)H.
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Proof. The genus formula is 2g(X ,A)− 2 = A · (A + KX), so the assumption that g(X ,A) = 1
is equivalent to 0 = A · (A+KX) = H · (H +KZ). Combined with the nondegeneracy of X , we
deduce that −KZ ·H ⩾ 2. As in Remark 7.2, it follows that Z is a ruled surface birational to
C ×P1 for some nonsingular curve C. The Euler characteristic of a surface being a birational
invariant [Bea96, Proposition III.20] implies that χ(OZ) = χ(OC×P1) = 1 − g(C). Hence, the
hypothesis that the surface X is not rational gives −χ(OZ)⩾ 0.

Let E := π−1(p) be the exceptional divisor on Z. When d ⩾ 5, we claim that the divisors
D0 := dH, D1 := dH − 2E, and D2 := (d − 1)H form a 2-step transfer on Z. Since the divisor
H −KZ is big and nef on Z and d ⩾ 5, we see that 2d(−KZ ·H)−2(2+1)−χ(OZ)⩾ 4(5)−6 > 0.
Thus, Lemma 7.1.i establishes that the divisor D1 = dH −2E supports multipliers on the divisor
D0 = dH. Similarly, as d ⩾ 2 and (1−2d)

(
H ·(H+KZ)

)
+2(2−1)−χ(OZ)⩾ 2 > 0, Lemma 7.1.ii

establishes that the divisor D2 = (d −1)H supports multipliers on the divisor D1 = dH −2E. □

We finish with a couple of examples. Consider the ruled surface X =C×P1 and let π1 : X →C be
the canonical projection onto the smooth curve C. Choose a fibre F of π1 and a section C (by a slight
abuse of notation). The Picard group of X is generated by the class of C and pullbacks of elements
from the Picard group of the curve C, and the Néon–Severi group of X is generated by C and F ; see
[Har77, Proposition V.2.3] or [Bea96, Proposition III.18]. Moreover, we have C ·F = 1, C2 = F2 = 0,
and KX ≡−2C+ωF where ω is the canonical divisor on C; see [Har77, Lemma V.2.10].

Example 7.7. For a totally-real elliptic curve C, let X be the ruled surface C ×P1. Choose a
point p on C and consider a divisor A ≡C+(3p)F . This divisor is very ample and coincides with
the Segre embedding of X into P5 as a surface of degree 6. The canonical divisor is KX = −2C,
so A · (A+KX) = 0. It follows that the sectional genus g(X ,A) is 1. Therefore, Proposition 7.6
establishes that, for all d ⩾ 5, there is a 2-step transfer from dA to (d −1)A. ⋄

Example 7.8. Let C be a totally-real nonsingular curve of genus g that is not hyperelliptic and let
X be the ruled surface X = C×P1. For an integer m > 0, consider the divisor A := m(C+ωF).
The divisor A is very ample because it is a multiple of C+ωF which is the pullback of hyperplane
class under the Segre embedding of the closed immersion κ × id : C×P1 → Pg−1 ×P1 where κ is
the canonical embedding of C. Since −KX ·A = mdeg(ω)> 0, Theorem 7.3 produces asymptotic
transfer results for such surfaces. From the equality A · (A+KX) = (2m2 −m)deg(ω), we see that
the ration (A · (A+KX)/(−KX ·A) = 2m−1 can be made arbitrarily large. We conclude that the
number of transfer steps required to pass from dA to (d − 1)A via Theorem 7.3 is not uniformly
bounded on all surfaces satisfying −KX ·A > 0. ⋄
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