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Virtual resolutions for a product of projective spaces

Christine Berkesch, Daniel Erman and Gregory G. Smith

Abstract

Syzygies capture intricate geometric properties of a subvariety in projective space.
However, when the ambient space is a product of projective spaces or a more general
smooth projective toric variety, minimal free resolutions over the Cox ring are too long
and contain many geometrically superfluous summands. In this paper, we construct
some much shorter free complexes that better encode the geometry.

1. Introduction

The geometric and algebraic sources of locally free resolutions have complementary advantages.
To see the differences, consider a smooth projective toric variety X together with its Pic(X)-
graded Cox ring S. The local version of the Hilbert syzygy theorem implies that any coherent
OX -module admits a locally free resolution of length at most dimX; see [Har77, Exercise III.6.9].
The global version of the Hilbert syzygy theorem implies that every saturated module over the
polynomial ring S has a minimal free resolution of length at most dimS − 1, so any coherent
OX -module has a locally free resolution of the same length; see [Cox95, Proposition 3.1]. Unlike
the geometric approach, this algebraic method involves only vector bundles that are a direct sum
of line bundles. When X is projective space, these geometric and algebraic constructions usually
coincide. However, when the Picard number of X is greater than 1, the locally free resolutions
arising from the minimal free resolution of an S-module are longer, and typically much longer,
than their geometric counterparts.

To enjoy the best of both worlds, we focus on a more flexible algebraic source for locally free
resolutions. The following definition, beyond providing concise terminology, highlights this source.

Definition 1.1. A free complex F := [F0 ←− F1 ←− F2 ←− · · · ] of Pic(X)-graded S-modules is
called a virtual resolution of a Pic(X)-graded S-module M if the corresponding complex F̃ of

vector bundles on X is a locally free resolution of the sheaf M̃ .

In other words, a virtual resolution is a free complex of S-modules whose higher homology
groups are supported on the irrelevant ideal of X. The benefits of allowing a limited amount
of homology are already present in other parts of commutative algebra including almost ring
theory [GR03], where one accepts homology annihilated by a given idempotent ideal, and phantom
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homology [HH93], where one admits cycles that are in the tight closure of the boundaries. We
describe a few different, and generally incomparable, processes for creating virtual resolutions.

For projective space, minimal free resolutions are important in the study of points [GGP95,
EP99], curves [Voi02, EL15], surfaces [GP99, DS00], and moduli spaces [Far09, DFS16]. Our
overarching goal is to demonstrate that the right analogues for subschemes in a smooth complete
toric variety use virtual resolutions rather than minimal free resolutions. This distinction is not
apparent on projective space because the new intersection theorem [Rob87] establishes that a free
complex with finite-length higher homology groups has to be at least as long as the minimal
free resolution. For other toric varieties such as products of projective spaces, allowing irrelevant
homology may yield simpler complexes; see Example 1.4.

Throughout this paper, we write Pn := Pn1 × Pn2 × · · · × Pnr for the product of projective
spaces with dimension vector n := (n1, n2, . . . , nr) ∈ Nr over a field k. The polynomial ring
S := k[xi,j : 1 6 i 6 r, 0 6 j 6 ni] is the Cox ring of Pn, and B :=

⋂r
i=1 〈xi,0, xi,1, . . . , xi,ni〉 is

its irrelevant ideal. We identify the Picard group of Pn with Zr and partially order the elements
via their components. If e1, e2, . . . , er is the standard basis of Zr, then the polynomial ring S
has the Zr-grading induced by deg(xi,j) := ei. We first re-prove the existence of short virtual
resolutions; compare with [EES15, Corollary 2.14].

Proposition 1.2. Every finitely generated Zr-graded B-saturated S-module has a virtual
resolution of length at most |n| := n1 + n2 + · · ·+ nr = dimPn.

Since dimS − dimPn = r, we see that a minimal free resolution can be arbitrarily long
when compared with a virtual resolution. A proof of Proposition 1.2, which relies on a locally
free resolution of the structure sheaf for the diagonal embedding Pn ↪→ Pn × Pn, appears in
Section 2.

Besides having shorter representatives, virtual resolutions also exhibit a closer relationship with
Castelnuovo–Mumford regularity than minimal free resolutions. On projective space, Castelnuovo–
Mumford regularity has two equivalent descriptions: one arising from the vanishing of sheaf
cohomology and another arising from the Betti numbers in a minimal free resolutions. However, on
more general toric varieties, the multigraded Castelnuovo–Mumford regularity is not determined by
a minimal free resolution; see [MS04, Theorem 1.5] or [BC17, Theorem 4.7]. From this perspective,
we demonstrate that virtual resolutions improve on minimal free resolutions in two ways. First,
Theorem 2.9 proves that the set of virtual resolutions of a module determines its multigraded
Castelnuovo–Mumford regularity. Second, the next theorem, from Section 3, demonstrates how
to use regularity to extract a virtual resolution from a minimal free resolution.

Theorem 1.3. Let M be a finitely generated Zr-graded B-saturated S-module that is d-regular.
If G is the free subcomplex of a minimal free resolution of M consisting of all summands generated
in degree at most d + n, then G is a virtual resolution of M .

This subcomplex is seldom a resolution. For convenience, we refer to the free complex G as
the virtual resolution of the pair (M,d). Algorithm 3.4 shows that it can be constructed without
computing the entire minimal free resolution.

Our first example illustrates that a virtual resolution can be much shorter and much thinner
than the minimal free resolution. It follows that a majority of the summands in the minimal free
resolution are unneeded when building a locally free resolution of the structure sheaf.
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Example 1.4. A hyperelliptic curve C of genus 4 can be embedded as a curve of bidegree (2, 8) in
P1 × P2; see [Har77, Theorem IV.5.4]. For instance, the B-saturated S-ideal I generated by

x31,1x2,0−x31,1x2,1+x31,0x2,2 ,

x21,0x
2
2,0+x21,1x

2
2,1+x1,0x1,1x

2
2,2 ,

x21,1x
3
2,0−x21,1x22,0x2,1−x1,0x1,1x22,1x2,2−x21,0x32,2 ,

x1,0x1,1x
3
2,0+x1,0x1,1x

2
2,0x2,1−x21,0x22,1x2,2+x21,1x2,0x

2
2,2+x21,1x2,1x

2
2,2 ,

x1,1x
3
2,0x

2
2,1+x1,1x

2
2,0x

3
2,1−x1,0x42,1x2,2−x1,0x32,0x22,2+x1,0x

2
2,0x2,1x

2
2,2−x1,1x2,0x42,2−x1,1x2,1x42,2 ,

x1,1x
5
2,0+x1,1x

4
2,0x2,1−x1,0x22,0x22,1x2,2+x1,1x

2
2,1x

3
2,2+x1,0x

5
2,2 ,

x1,0x
5
2,0+x1,0x

4
2,0x2,1+x1,1x

4
2,1x2,2+x1,1x

3
2,0x

2
2,2+x1,1x

2
2,0x2,1x

2
2,2+x1,0x

2
2,1x

3
2,2 ,

x82,0+2x72,0x2,1+x62,0x
2
2,1+x62,1x

2
2,2+3x32,0x

2
2,1x

3
2,2+3x22,0x

3
2,1x

3
2,2−x2,0x72,2−x2,1x72,2

defines such a curve. Macaulay2 [GS19] shows that the minimal free resolution of S/I has the
form

S1 ←−

S(−3,−1)1

⊕
S(−2,−2)1

⊕
S(−2,−3)2

⊕
S(−1,−5)3

⊕
S(0,−8)1

←−−

S(−3,−3)3

⊕
S(−2,−5)6

⊕
S(−1,−7)1

⊕
S(−1,−8)2

←−

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)1

←− S(−3,−7)1 ←− 0 . (1.1)

Using the Riemann–Roch theorem [Har77, Theorem IV.1.3], one verifies that the module S/I is
(4, 2)-regular, so the virtual resolution of the pair

(
S/I, (4, 2)

)
has the much simpler form

S1 ←−

S(−3,−1)1

⊕
S(−2,−2)1

⊕
S(−2,−3)2

ϕ←−− S(−3,−3)3 ←− 0 . (1.2)

If the ideal J ⊂ S is the image of the first map in (1.2), then we have J = I ∩Q for some ideal Q
whose radical contains the irrelevant ideal. Using Proposition 2.5, we can even conclude that S/J
is Cohen–Macaulay and J is the ideal of maximal minors of the 4× 3 matrix

ϕ :=


x22,1 x22,2 −x22,0

−x1,1(x2,0 − x2,1) 0 x1,0x2,2
x1,0 −x1,1 0

0 x1,0 x1,1

 . (1.3)

As an initial step towards our larger goal, we formulate a novel analogue for properties of
points in projective space. Although any punctual subscheme of projective space is arithmetically
Cohen–Macaulay, this almost always fails for a zero-dimensional subscheme of Pn; see [GV15].
However, we do obtain a short virtual resolution just by choosing an unconventional module to
represent the structure sheaf on the punctual subscheme.

Theorem 1.5. Let Z ⊂ Pn be a zero-dimensional scheme, and let I be its corresponding
B-saturated S-ideal. There exists an S-ideal Q, whose radical contains B, such that the minimal
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free resolution of S/(I ∩Q) has length |n|. In particular, the minimal free resolution of S/(I ∩Q)
is a virtual resolution of S/I.

This theorem, proven in Section 4, does not imply that S/(I ∩Q) is itself Cohen–Macaulay,
as the components of Q will often have codimension less than |n|. However, when the ambient
variety is P1 × P1, the ring S/(I ∩ Q) will be Cohen–Macaulay of codimension 2. In this case,
Corollary 4.2 shows that there is a matrix whose maximal minors cut out Z scheme-theoretically.
Proposition 4.8 extends this to general points on any smooth toric surface.

As a second and perhaps more substantial step, we apply virtual resolutions to deformation
theory. On projective space, there are three classic situations in which the particular structure
of the minimal free resolution allows one to show that all deformations have the same struc-
ture: arithmetically Cohen–Macaulay subschemes of codimension 2, arithmetically Gorenstein
subschemes in codimension 3, and complete intersections; see [Har10, Sections 2.8 and 2.9]. We
generalize these results about unobstructed deformations in projective space as follows.

Theorem 1.6. Consider Y ⊂ Pn, and let I be the corresponding B-saturated S-ideal. Assume that
the generators of I have degrees d1,d2, . . . ,ds and that the natural map (S/I)di

→ H0
(
Y,OY (di)

)
is an isomorphism for all 1 6 i 6 s. If any one of the conditions

(i) the subscheme Y has codimension 2 and there is a d ∈ reg(S/I) such that the virtual
resolution of the pair (S/I,d) has length 2;

(ii) each factor in Pn has dimension at least 2, the subscheme Y has codimension 3, and there is
a d ∈ reg(S/I) such that the virtual resolution of the pair (S/I,d) is a self-dual complex
(up to a twist) of length 3; or

(iii) there is a d ∈ reg(S/I) such that the virtual resolution of the pair (S/I,d) is a Koszul
complex of length codimY

holds, then the embedded deformations of Y in Pn are unobstructed and the component of the
multigraded Hilbert scheme of Pn containing the point corresponding to Y is unirational.

To illustrate this theorem, we can reuse the hyperelliptic curve in Example 1.4.

Example 1.7. By reinterpreting Example 1.4, we see that the hyperelliptic curve C ⊂ P1 × P2

satisfies condition (i) in Theorem 1.6. It follows that the embedded deformations of C are
unobstructed and the corresponding component of the multigraded Hilbert scheme of P1 × P2

can be given an explicit unirational parametrization by varying the entries in the 4× 3 matrix ϕ
from (1.3).

Three other geometric applications for virtual resolutions are collected in Section 5. The
first, Proposition 5.1, provides an unmixedness result for subschemes of Pn that have a virtual
resolution whose length equals its codimension. The second, Proposition 5.5, gives sharp bounds
on the Castelnuovo–Mumford regularity of a tensor product of coherent OPn-modules; compare
with [Laz04, Proposition 1.8.8]. Lastly, Proposition 5.7 describes new vanishing results for the
higher direct images of sheaves, which are optimal in many cases.

The final section presents some promising directions for future research.

Conventions. We work in the product Pn := Pn1 × Pn2 × · · · × Pnr of projective spaces with
dimension vector n := (n1, n2, . . . , nr) ∈ Nr over a field k. Its Cox ring is the polynomial ring
S := k[xi,j : 1 6 i 6 r, 0 6 j 6 ni], and its irrelevant ideal is B :=

⋂r
i=1 〈xi,0, xi,1, . . . , xi,ni〉. The

Picard group of Pn is identified with Zr, and the elements are partially ordered componentwise.
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If e1, e2, . . . , er is the standard basis of Zr, then S has the Zr-grading induced by deg(xi,j) := ei.
We assume that all S-modules are finitely generated and Zr-graded.

2. Existence of short virtual resolutions

This section, by proving Proposition 1.2, establishes the existence of virtual resolutions whose
length is bounded above by the dimension of Pn. In particular, these virtual resolutions are typically
shorter than a minimal free resolution. Moreover, Proposition 2.5 shows that Proposition 1.2
provides the best possible uniform bound on the length of a virtual resolution. Exploiting
multigraded Castelnuovo–Mumford regularity, we also produce short virtual resolutions where
the degrees of the generators of the free modules satisfy explicit bounds. Better yet, we obtain
a converse, by showing that the set of virtual resolutions of a module determine its regularity.

Our proof of Proposition 1.2 is based on a minor variation of Beilinson’s resolution of the
diagonal; compare with [Căl05, Proposition 3.2] or [Huy06, Lemma 8.27]. Given an OXj

-module Fj
for all 1 6 j 6 n, their external tensor product is

F1 � F2 � · · ·� Fm := (p∗1F1)⊗OX
(p∗2F2)⊗OX

· · · ⊗OX
(p∗mFm) ,

where pj denotes the projection map from the Cartesian product X := X1×X2×· · ·×Xm to Xj .
In particular, for all u ∈ Zr, we have OPn(u) = OPn1 (u1)�OPn2 (u2)� · · ·�OPnr (ur). With this
notation, we can describe the resolution of the diagonal Pn ↪→ Pn × Pn.

Lemma 2.1. If T ei
Pn := OPn1 �OPn2 � · · ·�OPni−1 �TPni �OPni+1 � · · ·�OPnr for 1 6 i 6 r, then

the diagonal Pn ↪→ Pn × Pn is the zero scheme of a global section of
⊕r

i=1OPn(ei)� T ei
Pn(−ei).

Hence, the diagonal has a locally free resolution of the form

OPn×Pn ←−
r⊕
i=1

OPn(−ei)� Ωei
Pn(ei)←−

⊕
06u6n
|u|=2

OPn(−u)� Ωu
Pn(u)←· · ·← OPn(−n)� Ωn

Pn(n) ,

where Ωa
Pn := Ωa1

Pn1 � Ωa2
Pn2 � · · ·� Ωar

Pnr is the external tensor product of the exterior powers of
the cotangent bundles on the factors of Pn.

Proof. For each 1 6 i 6 r, fix a basis xi,0, xi,1, . . . , xi,ni
for H0

(
Pn,OPn(ei)

)
. The Euler sequence

on Pni yields

0←− T ei
Pn ←−

ni⊕
j=0

OPn(ei)
[xi,0 xi,1 ··· xi,ni ]←−−−−−−−−−−−−− OPn ←− 0 ;

see [CLS11, Theorem 8.1.6]. Taking into account the cohomology of line bundles on Pn, the
associated long exact sequence gives H0

(
Pn, T ei

Pn(−ei)
) ∼= ⊕ni

j=0H
0(Pn,OPn). A basis for⊕ni

j=0H
0(Pn,OPn) is given by the dual basis x∗i,0, x

∗
i,1, . . . , x

∗
i,ni

. Let ∂/∂xi,j denote the image of

x∗i,j in H0
(
Pn, TPn(−ei)

)
.

Consider s ∈ H0
(
Pn × Pn,

⊕r
i=1OPn(ei)� T ei

Pn(−ei)
)

given by

s :=

(
n1∑
j=0

x1,j
∂

∂y1,j
,

n2∑
j=0

x2,j
∂

∂y2,j
, . . . ,

nr∑
j=0

xr,j
∂

∂yr,j

)
,

where xi,j and yi,j are the coordinates on the first and second factor of Pn × Pn respectively. We
claim that the zero scheme of s equals the diagonal in Pn × Pn. By symmetry, it suffices to check
this on a single affine open neighborhood. If x1,0x2,0 · · ·xr,0 6= 0 and y1,0y2,0 · · · yr,0 6= 0, then the

464



Virtual resolutions

Euler relations yield

ni∑
j=0

xi,j
∂

∂yi,j
= xi,0

(
− 1

yi,0

ni∑
j=1

yi,j
∂

∂yi,j

)
+

ni∑
j=1

xi,j
∂

∂yi,j
=

1

yi,0

ni∑
j=1

(xi,jyi,0 − xi,0yi,j)
∂

∂yi,j

for each 1 6 i 6 r. It follows that s = 0 if and only if xi,j/xi,0 = yi,j/yi,0 for all 1 6 i 6 r and
1 6 j 6 ni. Hence, the global section s vanishes precisely on the diagonal Pn ↪→ Pn × Pn.

The Koszul complex associated with s is the required locally free resolution of the diagonal
because Pn is smooth and the codimension of the diagonal equals the rank of the vector bundle⊕r

i=1OPn(ei)� T ei
Pn(−ei); see [Laz04, Section B.2]. Since Ωei

Pn = HomOPn (T ei
Pn ,OPn), we have

k∧(
OPn(−ei)� Ωei

Pn(ei)
)

=
⊕

06u6n
|u|=k

OPn(−u)� Ωu
Pn(u)

for 0 6 k 6 |n|.

Proof of Proposition 1.2. Let π1 and π2 be the projections of Pn × Pn onto the first and second
factors, respectively. For any u ∈ Zr, the Fujita vanishing theorem [Fuj83, Theorem 1] implies

that Ωu
Pn(u + d) ⊗ M̃ has no higher cohomology for any sufficiently positive d ∈ Zr. Let K

be the locally free resolution of the diagonal Pn ↪→ Pn × Pn described in Lemma 2.1. Both
hypercohomology spectral sequences, namely

′E
p,q
2 := Hp

(
Rqπ1∗

(
π∗2M̃(d)⊗OPn×Pn K

))
and ′′E

p,q
2 := Rpπ1∗ Hq

(
π∗2M̃(d)⊗OPn×Pn K

)
,

converge to Rp+qπ1∗
(
π∗2M̃(d) ⊗OPn×Pn K

)
; see [GD61, Section 12.4]. Since K is a locally free

resolution of the diagonal, it follows that ′′E0,0
2
∼= M̃(d) and ′′Ep,q2 = 0 when either p 6= 0 or q 6= 0;

compare with [Huy06, Proposition 8.28]. Hence, we conclude that

Rp+qπ1∗
(
π∗2M̃(d)⊗OPn×Pn K

) ∼= {M̃(d) if p = 0 = q ,

0 otherwise .

On the other hand, the first page of the other hypercohomology spectral sequence is

′E
p,q
1 = Rqπ1∗

(
π∗2M̃(d)⊗OPn×Pn K−p

)
= Rqπ1∗

( ⊕
06u6n
|u|=−p

OPn(−u)�
(
Ωu
Pn ⊗ M̃(u + d)

))

=
⊕

06u6n
|u|=−p

OPn(−u)⊗k H
q
(
Pn,Ωu

Pn ⊗ M̃(u + d)
)
.

Our positivity assumption on d implies that Hq
(
Pn,Ωu

Pn ⊗ M̃(u + d)
)

= 0 for all q > 0, so
′Ep,q1 is concentrated in a single row. Applying the functor F 7→

⊕
v∈Nr H0

(
Pn,F(v)

)
, we obtain

a virtual resolution of M in which the ith module is⊕
06u6n
|u|=i

S(−u)⊗k H
q
(
Pn,Ωu

Pn ⊗ M̃(u + d)
)
.

Remark 2.2. By scrutinizing the linear free resolutions of well-chosen truncated twisted modules,
Corollary 2.14 in [EES15] also establishes the existence of short virtual resolutions on Pn. Although
the proof of Proposition 1.2 and [EES15, Proposition 2.7] use somewhat different notions of a
“sufficiently positive” degree d ∈ Zr, both are quite similar to Castelnuovo–Mumford regularity.
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The next examples demonstrate why we want more than just these short virtual resolutions
arising from the proof of Proposition 1.2.

Example 2.3. Consider the hyperelliptic curve C ⊂ P1 × P2 from Example 1.4. Using d := (2, 2)
in the construction from the proof of Proposition 1.2 yields a virtual resolution of the form

S(−2,−2)17 ←−
S(−2,−3)26

⊕
S(−3,−2)15

←−
S(−2,−4)9

⊕
S(−3,−3)22

←− S(−3,−4)7 ←− 0 .

Compared to the virtual resolution in (1.2), the length of this complex is longer, the rank of the
free modules is higher, and the degrees of the generators are larger.

Example 2.4. If X is the union of m distinct points on P1 × P1, then for any sufficiently positive
d = (d1, d2), the construction in the proof of Proposition 1.2 yields a virtual resolution of the
form

S(−d1,−d2)m ←−
S(−d1 − 1,−d2)m

⊕
S(−d1,−d2 − 1)m

←− S(−d1 − 1,−d2 − 1)m ←− 0 .

Unlike the minimal free resolution, the Betti table of this free complex is independent of the
geometry of the points, so even short virtual resolutions can obscure the geometric information.

As a counterpoint to Proposition 1.2, we provide a lower bound on the length of a virtual
resolution. Extending the well-known result for projective space, we show that the codimension
of any associated prime of M gives a lower bound on the length of any virtual resolution of M .

Proposition 2.5. Let M be a finitely generated Zr-graded S-module. Let Q be an associated
prime of M that does not contain the irrelevant ideal B, and let

F := [F0 ←− F1 ←− · · · ←− Fp ←− 0]

be a virtual resolution of M . These hypotheses yield the following:

(i) We have codimQ 6 p.

(ii) If Q is the prime ideal for a closed point of Pn, then we have p > |n|.
(iii) If p 6 min{ni + 1: 1 6 i 6 r}, then F is a free resolution of H0(F ).

Proof. When we localize at the prime ideal Q, the resolution F becomes a free SQ-resolution of MQ.
Part (i) then follows from the fact that, over the local ring SQ, the projective dimension of a module
is always greater than or equal to the codimension of a module; see [Eis95, Proposition 18.2].
Part (ii) is immediate, as codimQ = |n| if Q is the prime ideal for a closed point of Pn.

For part (iii), assume to the contrary that F is not a free resolution of H0(F ). It follows that
Hj(F ) 6= 0 for some j > 0; choose the maximal such j. Since F is a virtual resolution of M , the
module Hj(F ) must be supported on the irrelevant ideal B. Let Pi := 〈xi,0, xi,1, . . . , xi,ni〉 be the
component of the irrelevant ideal B corresponding to the factor Pni ; there is an index i such that(
Hj(F )

)
Pi
6= 0. Localizing at Pi yields a complex FPi of the form

· · · ←− (Fj−1)Pi ←− (Fj)Pi ←− (Fj+1)Pi ←− · · · ←− (Fp)Pi ←− 0 ,

where the homology Hj(FPi) is supported on the maximal ideal of the local ring SPi . We deduce
that p > p − j > codimPi = ni + 1 from the Peskine–Szpiro acyclicity lemma; see [Eis95,
Lemma 20.11]. However, this contradicts our assumption that p 6 min{ni + 1: 1 6 i 6 r}.
Therefore, we conclude that the complex F is a free resolution of H0(F ).
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The following simple corollary is useful in applications such as Theorem 1.6.

Corollary 2.6. Let I be a B-saturated S-ideal, and let F = [F0 ←− F1 ←− · · · ←− Fp ←− 0]
be a virtual resolution of S/I. If F0 = S and p < min{ni + 1: 1 6 i 6 r}, then the complex F is
a free resolution of S/I.

Proof. By part (iii) of Proposition 2.5, the complex F is a free resolution of H0(F ). The hypothesis
F0 = S implies that H0(F ) = S/J for some ideal J . Since I is B-saturated and F is a virtual
resolution of S/I, we deduce that I equals the B-saturation of J . If we had I 6= J , then it would
follow that S/J has an associated prime Q that contains the irrelevant ideal B. However, the
codimension of Q is at least min{ni + 1: 1 6 i 6 r}. As F is a free resolution of S/J , this would
yield p > min{ni + 1: 1 6 i 6 r} and therefore a contradiction; see [Eis95, Proposition 18.2].

Just like in projective space, one can find subvarieties of codimension c which do not admit a
virtual resolution of length c.

Example 2.7. Working in P2 × P2, consider the B-saturated S-ideal J := 〈x1,0, x1,1〉 ∩ 〈x2,0, x2,1〉.
The minimal free resolution of S/J has the form

S ←− S(−1,−1)4 ←−
S(−2,−1)2

⊕
S(−1,−2)2

←− S(−2,−2)←− 0 .

Although the codimension of every associated prime of J is 2, there is no virtual resolution of S/J
of length 2. If we had such a free complex F = [F0 ←− F1 ←− F2 ←− 0], then Corollary 2.6
would imply that F is a minimal free resolution of S/J , which would give a contradiction.

Remark 2.8. Proposition 5.1 analyzes when a subscheme has a virtual resolution of its structure
sheaf whose length equals its codimension—a special case of equality in part (i) of Proposition 2.5.

We next refine our results on short virtual resolutions by developing effective degree bounds.
Following [MS04, Definition 1.1], a finitely generated Zr-graded B-saturated S-module M is
m-regular, for some m ∈ Zr, if H i

B(M)p = 0 for all i > 1 and all p ∈
⋃

(m − q + Nr), where
the union is over all q ∈ Nr such that |q| = i − 1. The (multigraded Castelnuovo–Mumford)
regularity of M is regM := {p ∈ Zr : M is p-regular}. Let ∆i ⊂ Zr denote the set of twists of
the summands in the ith step of the minimal free resolution of the irrelevant ideal B.

Theorem 2.9. For a finitely generated Zr-graded B-saturated S-module M , we have d ∈ regM
if and only if the module M(d) has a virtual resolution F0 ←− F1 ←− · · · ←− F|n| ←− 0 such
that for all 0 6 i 6 |n|, the degree of each generator of Fi belongs to ∆i + Nr and its Hilbert
polynomial and Hilbert function agree on Nr.

When r = 1, we have ∆i = {−i}, and this theorem specializes to the existence of linear
resolutions on projective space; see [Laz04, Proposition 1.8.8]. Since the minimal free resolution
of S/B is a cellular resolution described explicitly by [BS98, Corollary 2.13], it follows that
∆0 := {0} and that for i > 1, we have ∆i := {−a ∈ Zr : 0 6 a− 1 6 n and |a| = r + i− 1}. We
first illustrate Theorem 2.9 in the case of a hypersurface.

Example 2.10. Given a homogeneous polynomial f ∈ S of degree d, the regularity of S/ 〈f〉
has a unique minimal element e, where ej := max{0, dj − 1}. As a consequence, it follows that
0 ∈ reg(S/ 〈f〉) if and only if dj 6 1 for all j.

Before proving Theorem 2.9, we need two technical lemmas.
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Lemma 2.11. For 0 6 i 6 |n|, b ∈ ∆i+Nr, and a ∈ Nr \{0}, we have H |a|+i
(
Pn,OPn(b−a)

)
= 0.

Proof. We induct on r. For the base case r = 1, we have nonzero higher cohomology for the given
line bundle on Pn1 only if |a|+ i = a1 + i = n1. Since b ∈ ∆i + N = {−i}+ N, or b1 > −i, we
have b1 − a1 > −i− (n1 − i) = −n1 > −n1 − 1, so OPn(b1 − a1) has no higher cohomology.

For the induction step, we first consider the case where at least one entry of b−a is nonnegative,
and we assume for a contradiction that H |a|+i

(
Pn,OPn(b− a)

)
6= 0. Since |a|+ i > 0, we may

also assume, by reordering the factors, that the first entry of b− a is strictly negative and the
last entry is nonnegative. We write b− a = (b′ − a′, br − ar) and n = (n′, nr) in Zr−1 ⊕ Z. Since
H |a|+i(Pn,OPn(b−a)) 6= 0, the Künneth formula implies that H |a|+i

(
Pn′ ,OPn′ (b

′ − a′)
)
6= 0. De-

creasing the first entry of b′−a′ will not alter this nonvanishing. Setting a′′ := a′+(ar, 0, 0, . . . , 0),
we obtain a′′ ∈ Nr−1 \ {0}, |a′′| = |a′| + ar = |a|, and H |a

′′|+i(Pn′ ,OPn′ (b
′ − a′′)

)
6= 0, which

contradicts the induction hypothesis.

It remains to consider the case where all entries of b− a are strictly negative. Hence, we can
assume |a|+ i = |n|. The hypothesis b ∈ ∆i + Nr implies that |b| > −r − i+ 1. Combining these
yields |b− a| =

∑
i bi − ai = |b| − |a| > (−r − i+ 1)− (|n| − i) = − |n| − r + 1. But the most

positive line bundle with top-dimensional cohomology is the canonical bundle, and this inequality
shows that OPn(b− a) cannot have top-dimensional cohomology.

Remark 2.12. Proposition 5.7 develops a related vanishing result for derived pushforwards.

Lemma 2.13. Let F be a 0-regular OPn-module, and let 0 6 a 6 n. If Hp
(
Pn,F ⊗ Ωa(a)

)
6= 0,

then we have −a ∈ ∆|a|−p + Nr.

Proof. If a = 0, then we have Ωa(a) = OPn , and the statement follows immediately from the
0-regularity of F . Thus, we assume a 6= 0. After possibly reordering the factors of Pn, we may
write a = (a′,0) ∈ Zr′ ⊕ Zr−r′ , where every entry of a′ is strictly positive. For any k > 1, we
have (−a′,0) ∈ ∆k + Nr ⇐⇒ (−a′,−1) ∈ ∆k + Nr ⇐⇒ |a′| + (r − r′) 6 k + r − 1. Setting
k = |a| − p = |a′| − p establishes that −a = (−a′,0) ∈ ∆|a|−p + Nr is equivalent to p < r′.

We next use truncated Koszul complexes to build a locally free resolution of Ωa
Pn(a). For

j > r′, we have aj = 0 and Ω
aj
Pnj (aj) ∼= OPnj . For 1 6 j 6 r′, the truncated Koszul complex

twisted by OPnj (aj), namely

OPnj (−1)
(nj+1

aj+1
) ←− OPnj (−2)

(nj+1

aj+2
) ←− · · · ←− OPnj (−nj − 1 + aj)

(nj+1

nj+1
) ←− 0 ,

resolves Ω
aj
Pnj (aj). Taking external tensor products gives a locally free resolution G of Ωa

Pn(a).

Any summand OPn(c) in Gi has the form c = (c′,0) ∈ Zr′ ⊕Zr−r′ , where |c′| = −r′− i. Tensoring
the locally free resolution G with F gives a resolution of F ⊗ Ωa

Pn(a).

Since Hp(F ⊗ Ωa
Pn(a)) 6= 0, breaking the resolution F ⊗ G into short exact sequences implies

that for some index i, we have Hp+i(F⊗Gi) 6= 0. Hence, there exists a c = (c′,0) with |c′| = −r′−i
such that Hp+i

(
Pn,F(c)

)
6= 0. Since F is 0-regular, we have |c| = |c′| < −(p+ i). Therefore, we

conclude that p < − |c′| − i = (r′ + i)− i = r′ and a ∈ ∆|a|−p + Nr.

Proof of Theorem 2.9. Assume that M(d) has a virtual resolution F of the specified form and
that its Hilbert polynomial and Hilbert function agree on Nr. Since M is B-saturated, it suffices
to show that H |a|(Pn, M̃(d − a)) = 0 for all a ∈ Nr − {0}. By splitting up F into short exact
sequences, it suffices to show that H |a|+i(Pn, F̃i(−a)) = 0 for all a ∈ Nr \ {0}. This is the content
of Lemma 2.11.
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For the converse, let K denote the locally free resolution of the diagonal Pn ↪→ Pn × Pn

described in Lemma 2.1. Let π1 and π2 be the projections onto the first and second factors of
Pn×Pn, respectively. The sheaf M̃(d) is quasi-isomorphic to the complex F = Rπ1∗

(
π∗2M̃(d)⊗K

)
,

where

Fj =
⊕
|a|−p=j

Hp
(
Pn, M̃(d)⊗ Ωa

Pn(a)
)
⊗OPn(−a) .

Lemma 2.13 says that Hp
(
Pn, M̃(d)⊗ Ωa

Pn(a)
)
6= 0 only if −a ∈ ∆|a|−p + Nr = ∆j + Nr. Since

each Fj is a sum of line bundles, the corresponding S-module Fj is free. It follows that the
complex F := [F0 ←− F1 ←− · · · ←− F|n| ←− 0] is a virtual resolution of M(d) with the desired
form. Finally, the module M is B-saturated so H0

B(M) = 0, and the hypothesis d ∈ regM implies
that H1

B

(
M(d)

)
p

= 0 for all p ∈ Nr, so the Hilbert polynomial and Hilbert function of M(d)
agree on Nr.

3. Simpler virtual resolutions

We describe, in this section, an effective method for producing interesting virtual resolutions of
a given S-module. Unlike in the previous section, the free complex is ordinarily not linear or
acyclic. Our construction depends on a B-saturated module M as well as an element d ∈ regM .
Although Theorem 3.1 defines the corresponding virtual resolution as a subcomplex of a minimal
free resolution of M , Algorithm 3.4 shows that the subcomplex can be assembled without first
computing the entire minimal free resolution.

Theorem 3.1. For a finitely generated Zr-graded S-module M , consider a minimal free resolu-
tion F of M . For a degree d ∈ Zr and each i, let Gi be the direct sum of all free summands of Fi
whose generator is in degree at most d + n, and let ϕi be the restriction of the ith differential
of F to Gi.

(i) For all i, we have ϕi(Gi) ⊆ Gi−1 and ϕi ◦ ϕi+1 = 0, so G forms a free complex.

(ii) Up to isomorphism, G depends only on M and d.

(iii) If M is B-saturated and d ∈ regM , then the complex G is a virtual resolution of M .

When M is B-saturated and d ∈ regM , the complex G is the virtual resolution of the pair (M,d).

Proof of Theorem 1.3. This theorem is simply a restatement of part (iii) of Theorem 3.1.

To illustrate the basic idea behind the proof of Theorem 3.1, we revisit our first example.

Example 3.2. Let C be the hyperelliptic curve in P1 × P2 defined by the ideal I in Example 1.4.
The free complex in (1.2) is the virtual resolution of the pair

(
S/I, (4, 2)

)
, and it is a subcomplex

of the minimal free resolution (1.1) of S/I. The corresponding quotient complex E is

S(−1,−5)3

⊕
S(0,−8)1

←−

S(−2,−5)6

⊕
S(−1,−7)1

⊕
S(−1,−8)2

←−

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)1

←− S(−3,−7)1 ←− 0 .

Restricting attention to the terms of degree (∗,−8), we have

S(0,−8)1 ←− S(−1,−8)2 ←− S(−2,−8)1 ←− 0 ,
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which looks like a twist of the Koszul complex on x1,0 and x1,1. In fact, the (∗,−8), (∗,−7), and
(∗,−5) strands each appear to have homology supported on the irrelevant ideal. This suggests that
the complex Ẽ is quasi-isomorphic to zero, and that is what we show in the proof of Theorem 3.1.

Lemma 3.3. Let E be a bounded complex of coherent OPn-modules. If E ⊗ OPn(b) has no
hypercohomology for all 0 6 b 6 n, then E is quasi-isomorphic to 0.

Proof. By [EES15, Theorem 1.1], any bounded complex of coherent OPn-modules is quasi-
isomorphic to a Beilinson monad whose terms involve the hypercohomology evaluated at the
line bundles of the form 0 6 b 6 n. The hypothesis on vanishing hypercohomology ensures that
this Beilinson monad of E is the 0 monad, and hence E is quasi-isomorphic to 0. While [EES15,
Theorem 1.1] is stated for a sheaf, the authors remark in equation (1) on page 8 that a similar
statement holds for bounded complexes of coherent sheaves.

Proof of Theorem 3.1. For part (i), write Fi = Gi⊕Ei for each i. Each generating degree e of Ei
satisfies e 66 d+n. It follows that, for degree reasons, there are no nonzero maps from Gi to Ei−1.
The ith differential ∂i : Fi → Fi−1 has a block decomposition

∂i =

[Gi Ei

Gi−1 ϕi ∗
Ei−1 0 ∗

]
,

so ϕi(Gi) ⊆ Gi−1 and ∂i ◦ ∂i+1 = 0 implies that ϕi ◦ ϕi+1 = 0. As G depends only on F and d,
part (ii) follows from the fact that the minimal free resolution of M is unique up to isomorphism.
For part (iii), we may replace M with M(d) and d with 0. Let G be the virtual resolution of
the pair (M,0), and consider the short exact sequence of complexes 0 → G → F → E → 0. It
suffices to show that the complex Ẽ of sheaves is quasi-isomorphic to zero.

Fix some b, where 0 6 b 6 n. If a 66 n, then the line bundle OPn(−a+b) has no global sections.

It follows that each summand of F̃ (b) with global sections belongs to G̃(b). If H i
(
Pn, F̃ (b)

)
is

the complex obtained by applying the functor F 7→ H i(Pn,F) to the complex F̃ (b), then we
have H0

(
Pn, F̃ (b)

)
= H0

(
Pn, G̃(b)

)
. The notation H i

(
Pn, F̃ (b)

)
should not be confused with

the hypercohomology group Hi
(
Pn, F̃ (b)

)
, which equals H i

(
Pn, M̃(b)

)
because F̃ is a locally

free resolution of the sheaf M̃ . Since 0 ∈ regM and b > 0, the Hilbert polynomial and Hilbert
function of M agree in degree b. Because F is a minimal free resolution of M , it follows that the
strand [F ]b := [(F0)b ←− (F1)b ←− · · · ] is quasi-isomorphic to Mb, and hence

H0
(
Pn, F̃ (b)

)
= Mb

∼= [F ]b = H0
(
Pn, F̃ (b)

) ∼= H0
(
Pn, G̃(b)

)
.

If the line bundle OPn(−a + n) has global sections, then we see that OPn(−a + b) has no higher

cohomology. Therefore, the only summands in F̃ that can potentially have higher cohomology
are those that also appear in Ẽ. Thus, for all i > 0, we have H i

(
Pn, F̃ (b)

)
= H i

(
Pn, Ẽ(b)

)
and

H i
(
Pn, G̃(b)

)
= 0. It follows that H0

(
Pn, G̃(b)

) ∼= H0
(
Pn, G̃(b)

)
and Hi

(
Pn, G̃(b)

)
= 0 for all

i > 0. Hence, the long exact sequence in hypercohomology yields

Hi
(
Pn, Ẽ(b)

)
=

{
0 if i = 0 ,

Hi
(
Pn, F̃ (b)

)
if i > 0 .

Since b ∈ regM , the sheaf M̃(b) has no higher cohomology and F̃ (b) has no higher hypercoho-
mology. By Lemma 3.3, we conclude that Ẽ is quasi-isomorphic to 0.
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Although Theorem 3.1 presents the virtual resolution of the pair (M,d) as a subcomplex of
a minimal free resolution, the following algorithm shows that we can compute a virtual resolution
of the pair (M,d) without first computing an entire minimal free resolution. Our approach is
similar to that in [MS04, Theorem 1.5], which allows one to certify that an element belongs
to the regularity of a module from just part of its minimal free resolution. Alternatively, one
can verify that an element belongs to the regularity by using the Tate resolutions appearing in
[EES15, Section 4]; the package TateOnProducts [EESS18] already implements these algorithms
in Macaulay2 [GS19]. For a module M and a degree d ∈ Zr, let M6d denote the submodule
generated by

⊕
a6dMa.

Algorithm 3.4 (Computing virtual resolutions of a pair).

Input: A finitely generated Zr-graded B-saturated S-module M and
a vector d ∈ Zr such that d ∈ regM .

Output: The virtual resolution G of the pair (M,d).

Initialize K := M and i := 0;
While K 6= 0 do

Choose a homogeneous minimal set G of generators for K;
Initialize Gi :=

⊕
g∈G S

(
−deg(g)

)
and ϕi : Gi → K to be the corresponding surjection;

Set K := (Kerϕi)6d+n;
Set i := i+ 1;

Return G := [G0
ϕ1←−− G1

ϕ2←−− G2 ←− · · · ].

Proof of correctness. Let G be the complex produced by the algorithm, let F be the minimal free
resolution of M , and let G′ be the virtual resolution of (M,d). Let ϕ, ∂, and ψ be the differentials
of G, F , and G′, respectively. We have G0 = F0 = G′0, as d ∈ regM implies that M is generated
in degree at most d by [MS04, Theorem 1.3].

The definition of G′ implies that (Im ∂i)6d+n equals Imψi. We use induction on i to prove that
Imϕi = (Im ∂i)6d+n. When i = 1, we have Imϕ1 = (Im ∂1)6d+n. For i > 1, the key observation is
(Im ∂i)6d+n = (Ker ∂i−1)6d+n =

(
Ker ∂i−1|Gi−1

)
6d+n

, where the second equality holds because

any element in (Ker ∂i−1)6d+n depends only on the restriction of ∂i−1 to Gi−1. By induction,
we have Imϕi−1 = (Im ∂i−1)6d+n, so

(
Ker ∂i−1|Gi−1

)
6d+n

=
(
Kerϕi−1

)
6d+n

= Imϕi. Therefore,

we conclude that Imϕi = Imψi for all i and G ∼= G′.

Remark 3.5. Although Algorithm 3.4 bears a similarity with the linear resolutions considered in
[EES15, Proposition 2.7], the free modules appearing in a given term of our virtual resolutions
need not be generated in a single degree, and our complexes need not be acyclic.

The following example demonstrates that the virtual resolution of a pair does depend on the
choice of element in the regularity.

Example 3.6. Let Z ⊂ P1×P1×P2 be the subscheme consisting of six general points, and let I be
the corresponding B-saturated S-ideal. Macaulay2 [GS19] shows that the minimal free resolution
of S/I has the form S1 ←− S37 ←− S120 ←− S166 ←− S120 ←− S45 ←− S7 ←− 0, where for
brevity we have omitted the twists. Using [MS04, Proposition 6.7], it follows that, up to symmetry
in the first two factors, the minimal elements in the regularity of S/I are (5, 0, 0), (2, 1, 0), (1, 0, 1),
and (0, 0, 2). Table 3.1 compares some basic numerical invariants for the minimal free resolution
and the corresponding virtual resolutions. The total Betti numbers of a free complex F are the
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Table 3.1. Comparison of various free complexes associated with Z

Type of free complex Total Betti numbers Number of twists

minimal free resolution of S/I (1, 37, 120, 166, 120, 45, 7) 78

virtual resolution of the pair
(
S/I, (5, 0, 0)

)
(1, 24, 50, 33, 6) 18

virtual resolution of the pair
(
S/I, (2, 1, 0)

)
(1, 29, 73, 66, 21) 22

virtual resolution of the pair
(
S/I, (1, 0, 1)

)
(1, 25, 63, 57, 18) 15

virtual resolution of the pair
(
S/I, (0, 0, 2)

)
(1, 22, 51, 42, 12) 13

ranks of the terms Fi ignoring the twists. Since Z has codimension 4, part (i) of Proposition 2.5
implies that any virtual resolution for S/I must have length at least 4, so the minimum is
achieved by all of these virtual resolutions. All four virtual resolutions also have a nonzero first
homology module, which is supported on the irrelevant ideal. The first three virtual resolutions
also have nonzero second homology modules. By examining the twists, we see that no pair of
these virtual resolutions are comparable. This corresponds to the fact that reg(S/I) has several
distinct minimal elements.

4. Virtual resolutions for punctual schemes

This section formulates and proves an extension of a property of points in projective space. While
every punctual scheme in projective space is arithmetically Cohen–Macaulay, this fails when the
ambient space is a product of projective spaces; the minimal free resolution is nearly always too
long. However, by using virtual resolutions, we obtain a unexpected variant for points in Pn.

To state this analogue, recall that the irrelevant ideal on Pn is B =
⋂r
i=1 〈xi,0, xi,1, . . . , xi,ni〉.

For a vector a ∈ Nr, set Ba :=
⋂r
i=1 〈xi,0, xi,1, . . . , xi,ni〉

ai . With this notation, we may easily
choose a different algebra to represent the structure sheaf on our punctual subscheme. In contrast
with the virtual resolutions in Section 3, the next theorem produces acyclic free complexes.

Theorem 4.1. If Z ⊂ Pn is a zero-dimensional scheme and I is the corresponding B-saturated
S-ideal, then there exists an a ∈ Nr with ar = 0 such that the minimal free resolution of S/(I∩Ba)
has length equal to |n| = dimPn. Moreover, any a ∈ Nr with ar = 0 and other entries sufficiently
positive yields such a virtual resolution of S/I.

Proof of Theorem 1.5. Applying Theorem 4.1, it suffices to choose Q = Ba for any a ∈ Nr with
ar = 0 and other entries sufficiently positive.

While Theorem 4.1 establishes that for appropriate a ∈ Nr, the projective dimension of
S/(I ∩ Ba) equals the codimension of Z, this does not mean that the algebra S/(I ∩ Ba) is
Cohen–Macaulay; the ideal I ∩Ba will often fail to be unmixed. For instance, on P2 × P2, the
ideals 〈xi,0, xi,1, xi,2〉 for 1 6 i 6 2 have codimension 3 whereas a zero-dimensional scheme Z
would have codimension 4. Nevertheless, we do get Cohen–Macaulayness in one case.

Corollary 4.2. If Z ⊂ P1 × P1 is a zero-dimensional subscheme and I is the corresponding
B-saturated S-ideal, then there exists an ideal Q whose radical is 〈x1,0, x1,1〉 such that

(i) the algebra S/(I ∩Q) is Cohen–Macaulay, and

(ii) there exists an (m+ 1)×m matrix over S whose maximal minors generate I ∩Q.
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Proof. Theorem 4.1 yields an a ∈ Nr such that I ∩Ba has projective dimension 2. On P1 × P1,
the irrelevant ideal B also has codimension 2, so S/(I ∩ Ba) has codimension 2. Thus, the
algebra S/(I ∩Ba) is Cohen–Macaulay. The second statement is an immediate consequence of
the Hilbert–Burch theorem [Eis95, Theorem 20.15].

Remark 4.3. Although we focus on products of projective spaces, our proofs for both Theorem 4.1
and Corollary 4.2 can be adapted to hold in the more general context of iterated projective
bundles. For instance, let X be the Hirzebruch surface with Cox ring S = k[y0, y1, y2, y3], where
the variables have degrees (1, 0), (1, 0), (−2, 1), and (0, 1), respectively. Let Z ⊂ X be the
scheme-theoretic intersection of y50y

2
2 + y1y

2
3 and y0y1 + y2y

3
1. If I is the B-saturated S-ideal of Z,

then S/I has projective dimension 3 and S/(I ∩ 〈y0, y1〉a) has projective dimension 2 for any
a > 4.

As with the proof of Theorem 3.1, we collect two lemmas before proving Theorem 4.1.

Lemma 4.4. If Z ⊂ Pn is a zero-dimensional scheme and I is the corresponding B-saturated
S-ideal, then there exists an a ∈ Zr with ar = 0 such that the depth of (S/I)>a is r. Moreover,
this holds for any a ∈ Zr with ar = 0 and other entries sufficiently positive.

Proof. Extending the ground field does not change the depth of a module, so we assume that k
is an infinite field. Since dim(S/I)>a = dim(S/I) = r, the depth of S/I is bounded above by r.
For each 1 6 i 6 r, choose a general linear element `i in 〈xi,0, xi,1, . . . , xi,ni〉. We claim that the
elements `1, `2, . . . , `r form a regular sequence on (S/I)>a.

Let M :=
⊕

b∈Nr H0
(
Z,OZ(b)

)
. By construction, the elements `1, `2, . . . , `r form a regular

sequence on M . Since I is B-saturated, it follows that H0
B(S/I) = 0. The exact sequence relating

local cohomology and sheaf cohomology [CLS11, Theorem 9.5.7] gives

0
(
H1
B(S/I)

)
>0 M S/I 0

0
(
H1
B(S/I)

)
>0 M S/I 0 .

·`i ·`i ·`i

The middle vertical arrow is an isomorphism because `i does not vanish on any point in Z. Hence,
the snake lemma [Eis95, Exercise A3.10] implies that the right vertical arrow is injective.

Focusing on the last component of Zr, we identify the Cox ring R := k[xr,0, xr,1, . . . , xr,nr ]
of the factor Pnr with the subring (S)(0,∗) :=

⊕
α∈N(S)(0,α) of S. For any c′ ∈ Zr−1, consider

the R-module (S/I)(c′,∗) :=
⊕

α∈N(S)(c′,α). These modules form a directed set: for c′, c′′ ∈ Zs−1

with c′′ > c′, multiplication by the form `
c′′1−c′1
1 `

c′′2−c′2
2 · · · `c

′′
s−1−c′s−1

s−1 gives (S/I)(c′,∗) ⊆ (S/I)(c′′,∗).
Each R-module (S/I)(c′,∗) is a submodule of (M)(c′,∗), and (M)(c′,∗) ∼= (M)(0,∗). It follows that
the (S/I)(c′,∗) form an increasing sequence of finitely generated R-submodules of (M)(0,∗), so
this sequence stabilizes. In particular, if a′ ∈ Zr−1 is sufficiently positive, then the inclusion
(S/I)(c′,∗) ⊆ (S/I)(c′+ei,∗) is an isomorphism for each c′ > a′ and each 1 6 i 6 r − 1. Hence,
`1, `2, . . . , `r−1 form a regular sequence on (S/I)>(a′,0), and

(S/I)>(a′,0)

〈`1, `2, . . . , `r−1〉
∼= (S/I)(a′,∗) .

Since the ideal I is B-saturated, the homogeneous element `r is regular on S/I, so it is also
regular on the R-module (S/I)(a′,∗). Set a = (a′, 0); the Auslander–Buchsbaum formula [Eis95,
Theorem 19.9] completes the proof.
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Remark 4.5. The proof of Lemma 4.4 shows that (S/I)>a has a multigraded regular sequence
of length r, but neither S/(I ∩ Ba) nor S/Ba generally has a multigraded regular sequence of
length r.

Lemma 4.6. If a := (a1, a2, . . . , ai, 0, . . . , 0) ∈ Zr for some 1 6 i 6 r, then the projective
dimension of S/Ba is at most n1 + n2 + · · ·+ ni + 1.

Proof. We proceed by induction on i. The case i = 1 is just the Hilbert syzygy theorem [Eis95,
Theorem 1.3] applied to the Cox ring of Pn1 . When i > 1, set a′ := (a1, a2, . . . , ai−1, 0, . . . , 0) and
a′′ := (0, . . . , 0, ai, 0, . . . , 0), so that a = a′ + a′′ and Ba = Ba′ ∩Ba′′ . The short exact sequence
0←− S/(Ba′ +Ba′′)←− S/Ba′ ←− S/Ba ←− 0 yields

pdim
(
S/Ba

)
6 max

{
pdim

(
S/Ba′

)
,pdim

(
S/Ba′′

)
, pdim

(
S/
(
Ba′ +Ba′′

))
− 1
}
. (4.1)

By induction, the projective dimension of S/Ba′ is at most n1 +n2 + · · ·+ni−1 +1. By the Hilbert
syzygy theorem on Pni , the projective dimension of S/Ba′′ is at most ni + 1. Since Ba′ and Ba′′

are supported on disjoint sets of variables, pdim
(
S/(Ba′+Ba′′)

)
= pdim(S/Ba′) +pdim(S/Ba′′),

which is at most n1 + n2 + · · ·+ ni + 2. Applying (4.1), we obtain the result.

Proof of Theorem 4.1. Let a ∈ Zr with ar = 0 and other entries sufficiently positive. There is
a short exact sequence 0 ←− S/Ba ←− S/(I ∩ Ba) ←− (S/I)>a ←− 0. By Proposition 2.5,
it suffices to prove that the projective dimension of S/(I ∩ Ba) is at most n1 + n2 + · · · + nr.
Lemma 4.4 shows that (S/I)>a has projective dimension n1 + n2 + · · · + nr, and Lemma 4.6
shows that S/Ba has projective dimension at most n1 + n2 + · · ·+ nr−1 + 1. It follows that the
projective dimension of S/(I ∩Ba) is at most n1 + n2 + · · ·+ nr as well.

The next example compares the virtual resolutions produced by Theorems 1.3 and 1.5; neither
seems to have a definitive advantage over the other.

Example 4.7. As in Example 3.6, let Z ⊂ P1 × P1 × P2 be the subscheme consisting of six general
points, and let I be the corresponding B-saturated S-ideal. Table 4.1 compares some basic
numerical invariants for virtual resolutions arising from Theorem 4.1. Since the virtual resolutions
in Table 4.1 involve nonminimal generators for I, they are different from those in Table 3.1.
Conversely, the virtual resolutions appearing in Table 3.1 cannot be obtained from Theorem 1.5
because those free complexes are not acyclic.

Table 4.1. Comparison of various free complexes associated with Z

Type of free complex Total Betti numbers Number of twists

minimal free resolution of S/I (1, 37, 120, 166, 120, 45, 7) 78

virtual resolution from a = (2, 1, 0) (1, 17, 34, 24, 6) 12

virtual resolution from a = (3, 3, 0) (1, 22, 42, 27, 6) 13

We end this section by extending Corollary 4.2 to any smooth projective toric surface.

Proposition 4.8. Fix a smooth projective toric surface X. Let Z ⊂ X be the subscheme
consisting of m general points, and let I be the corresponding B-saturated S-ideal. There
exists a virtual resolution F := [S ←− F1

ϕ←−− F2 ←− 0] of S/I such that rank(F1) =
rank(F2) + 1, the maximal minors of ϕ generate an ideal J with I = (J : B∞), and S/J
is Cohen–Macaulay.
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Proof. Any smooth projective toric surface can be realized as a blowup π : X → Y , where Y
is P2 or a Hirzebruch surface [CLS11, Theorem 10.4.3]. Since π(Z) ⊂ Y is a punctual scheme,
we can apply the Hilbert–Burch theorem when Y is P2, or Corollary 4.2 and Remark 4.3 when Y
is a Hirzebruch surface, to obtain a resolution of Oπ(Z) of the form OY ←− E1 ←− E2 ←− 0,
where E1 and E2 are sums of line bundles on Y . Our genericity hypothesis implies that Z does
not intersect the exceptional locus of π, so π∗OY ←− π∗E1 ←− π∗E2 ←− 0 is a locally free
resolution of OZ . The corresponding complex of S-modules is the desired virtual resolution
for S/I.

Example 4.9. Consider the del Pezzo surface X of degree 7 or, equivalently, the smooth Fano
toric surface obtained by blowing up the projective plane at two torus-fixed points. The Cox ring
of X is S := k[y0, y1, . . . , y4] equipped with the Z3-grading induced by

deg(y0) :=
[
1
0
0

]
, deg(y1) :=

[−1
1
0

]
, deg(y2) :=

[ 1
−1
1

]
, deg(y3) :=

[ 0
1
−1

]
, deg(y4) :=

[
0
0
1

]
.

With this choice of basis for Pic(X), the nef cone equals the positive orthant. Let Z ⊂ X
be the subscheme consisting of the three points [1 : 1 : 1 : 1 : 1], [2 : 1 : 3 : 1 : 5], and
[7 : 1 : 11 : 1 : 13] (expressed in Cox coordinates), and let I be the corresponding B-saturated
S-ideal. Macaulay2 [GS19] shows that the minimal free resolution of S/I has the form

S1 ←−

S(−1, 0,−1)1

⊕
S(0,−1,−1)1

⊕
S(−1,−1, 0)1

⊕
S(0, 0,−3)1

⊕
S(−3, 0, 0)1

←−

S(0,−2,−2)1

⊕
S(−1,−1,−1)2

⊕
S(−2,−1, 0)1

⊕
S(−1, 0,−3)1

⊕
S(−3, 0,−1)1

←−
S(−1,−1,−2)1

⊕
S(−2,−1,−1)1

←− 0 .

However, there is a virtual resolution of S/I having the form

S1 ←− S(0,−2, 0)3 ←− S(0,−3, 0)2 ←− 0 .

Example 4.10. Let Z ⊂ P1 × P1 be the subscheme consisting of m general points, and let I be
the corresponding B-saturated S-ideal. Not only is there a Hilbert–Burch-type virtual resolution
of S/I, it can be chosen to be a Koszul complex. Since dimH0

(
P1×P1,OP1×P1(i, j)

)
= (i+1)(j+1),

the generality of the points implies that dimH0
(
P1×P1,OZ(i, j)

)
= min{(i+1)(j+1),m}. Hence,

if m = 2k for some k ∈ N, then two independent global sections of OP1×P1(1, k) vanish on Z. Using

this pair, we obtain a virtual resolution of S/I of the form S ←− S(−1,−k)2 ←− S(−2,−2k)←− 0.
On the other hand, if m = 2k + 1, then there are independent global sections of OP1×P1(1, k)
and OP1×P1(1, k + 1) that vanish on Z, so we obtain a virtual resolution of S/I having the
form

S ←−
S(−1,−k)
⊕

S(−1,−k − 1)
←− S(−2,−2k − 1)←− 0 .

Question 4.11. Does Proposition 4.8 hold for any punctual scheme in a smooth toric surface?
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5. Geometric applications

In this section, we showcase four geometric applications of virtual resolutions. In particular,
each of these support our overarching thesis that replacing minimal free resolutions by virtual
resolutions yields the best geometric results for subschemes of Pn.

Unmixedness

Given a subscheme that has a virtual resolution whose length equals its codimension, we prove
an unmixedness result. Closely related to Proposition 2.5, this extends the classical unmixedness
result for arithmetically Cohen–Macaulay subschemes; see [Eis95, Corollary 18.14].

Proposition 5.1. Let Z ⊂ Pn be a closed subscheme of codimension c, and let I be the
corresponding B-saturated S-ideal. If S/I has a virtual resolution of length c, then every associated
prime of I has codimension c.

Proof. Let Q be an associated prime of I, and let F denote a virtual resolution of S/I having
length c. Our hypothesis on Z implies that codimQ > c. Since Q does not contain the irrelevant
ideal B, localizing at Q annihilates the homology of F that is supported at B. Thus, the
complex FQ is a free SQ-resolution of (S/I)Q. Since the projective dimension of a module is at least
its codimension [Eis95, Proposition 18.2], it follows that c > codimSQ

(S/I)Q = codimQ > c.

Deformation theory

Using virtual resolutions, we generalize results about unobstructed deformations for arithmetically
Cohen–Macaulay subschemes of codimension 2, arithmetically Gorenstein subschemes of codi-
mension 3, and complete intersections. We first observe that the Piene–Schlessinger comparison
theorem [PS85] applies more generally by relating the deformations of a closed subscheme Y ⊆ Pn

with deformations of a corresponding graded module over the Cox ring.

Theorem 5.2. Let Y ⊂ Pn be a closed subscheme, and let I be a homogeneous S-ideal defining Y
scheme-theoretically and generated in degrees d1,d2, . . . ,ds. If the map (S/I)di

→ H0
(
Y,OY (di)

)
is an isomorphism for all 1 6 i 6 s, then the embedded deformation theory of Y ⊂ Pn is equivalent
to the degree zero embedded deformation theory of V(I) ⊂ Spec(S).

Proof. Piene and Schlessinger’s proof of the comparison theorem [PS85] goes through essentially
verbatim by replacing projective space and its coordinate ring with Pn and its Cox ring S.

Proof of Theorem 1.6. If e ∈ reg(S/I) and F is the virtual resolution of the pair (S/I, e), then we
have H0(F ) = S/J for some ideal J whose B-saturation equals I. By Theorem 1.3, the generating
degrees for J are a subset of those for I. It follows that (S/J)d = H0

(
Y,OY (d)

)
for each degree d

of a generator for J . Therefore, Theorem 5.2 implies that the embedded deformation theory of Y
is equivalent to the degree zero embedded deformation theory of the subscheme V(J) ⊂ Spec(S).

(i) The virtual resolution F has length 2, so Proposition 2.5 implies that F is the minimal free
resolution of S/J . Thus, S/J is Cohen–Macaulay of codimension 2, and [Art76, Section 5] or
[Sch77] implies that its embedded deformations are unobstructed.

(ii) The virtual resolution F has length 3 and min{ni + 1: 1 6 i 6 r} > 3, so Proposition 2.5
implies that F is the minimal free resolution of S/J . Thus, S/J is Gorenstein of codimension 3,
and [Mir92, Theorem 2.1] implies that its embedded deformations are unobstructed.

(iii) Let c := codimY . As F is a Koszul complex, we have F1 =
⊕c

i=1 S(−di). Since F is

a virtual resolution of S/I, we also see that J̃ equals the ideal sheaf IY for Y ⊂ Pn. The complex
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F̃1 ←− F̃2 ←− F̃3 ←− · · · is a locally free resolution of IY , so the normal bundle of Y in Pn is
NY/Pn := Hom

(
IY /I2Y ,OY

) ∼= ⊕c
i=1OY (di). For a fixed deformation of Y , the obstruction is a

Čech cocycle in H1(Y,NY/Pn) determined by local lifts of the syzygies; see [Har10, Theorem 6.2].
However, since Y is a scheme-theoretic complete intersection, its syzygies are all Koszul, so we
can define this cocycle by lifting those Koszul syzygies globally on Y . Hence, the Čech cocycle in
H1(Y,NY/Pn) is actually a coboundary, and the obstruction vanishes.

Remark 5.3. We suspect the hypothesis min{ni} > 2 in part (ii) of Theorem 1.6 is unnecessary.

Example 5.4. Consider the hyperelliptic curve C ⊂ P1×P2 defined in Example 1.4. Applying part (i)
of Theorem 1.6, we see that the virtual resolution from (1.2) implies that C has unobstructed
embedded deformations. Alternatively, this curve has a virtual resolution

S
[ f g ]←−−−−−

S(−2,−2)
⊕

S(−3,−1)

[−g
f

]
←−−−−− S(−5,−3)←− 0 ,

where f = x21,0x
2
2,0 + x21,1x

2
2,1 + x1,0x1,1x

2
2,2 and g = x31,0x2,2 + x31,1(x2,0 + x2,1), so part (iii) of

Theorem 1.6 provides another proof that this curve has unobstructed embedded deformations.

Regularity of tensor products

Using virtual resolutions, we can prove bounds for the regularity of a tensor product, similar to
the bounds obtained for projective space; see [Laz04, Proposition 1.8.8]. Let ei denote the ith
standard basis vector in Zr = Pic(Pn).

Proposition 5.5. Let E and F be coherent OPn-modules such that Torj(E ,F) = 0 for all j > 0.
If a ∈ reg E and b ∈ regF , then we have a + b + 1− ei ∈ reg(E ⊗ F) for each 1 6 i 6 r.

Proof. Let M and N be the B-saturated S-modules corresponding to E and F . Since M(a)
is 0-regular, Theorem 2.9 implies that it has a virtual resolution F0 ←− F1 ←− · · · , where
the degree of each generator of Fi belongs to ∆i + Nr. Similarly, N(b) has a virtual resolution
G0 ←− G1 ←− · · · satisfying the same conditions. The vanishing of Tor-groups implies that
H := F ⊗G is a virtual resolution of M(a)⊗N(b). Since ∆i + ∆j +1−ei ⊆ ∆i+j +Nr, it follows
that the degree of each generator of the free module H(1− ei)k belongs to ∆k + Nr, for each k.
Hence, Theorem 2.9 implies that

(
M(a)⊗N(b)

)
(1− ei) is 0-regular.

Remark 5.6. Proposition 5.5 is sharp. When r = 1, it recovers [Laz04, Proposition 1.8.8], as
the higher Tor-groups vanish whenever one of the two sheaves is locally free. If r > 1, then
it is possible to have 0-regular sheaves whose tensor product is not 0-regular. For instance, if
D,D′ ⊂ P1 × P2 are degree (1, 1) hypersurfaces, then the product OD ⊗OD′ is isomorphic to the
structure sheaf OC for a curve C with H1

(
C,OC(0,−1)

)
6= 0.

Vanishing of higher direct images

A relative notion of Castelnuovo–Mumford regularity with respect to a given morphism is defined
in terms of the vanishing of derived pushforwards; see [Laz04, Example 1.8.24]. Just as virtual
resolutions yield sharper bounds on multigraded Castelnuovo–Mumford regularity, they also
provide sharper bounds for the vanishing of derived pushforwards. For some 1 6 s 6 r, fix a subset
{i1, i2, . . . , is} ⊆ {1, 2, . . . , r}, and let Y be the corresponding product Pni1 × Pni2 × · · · × Pnir

of projective spaces. The canonical projection π : Pn → Y induces an inclusion π∗ : Pic(Y ) →
Pic(Pn), and we write ρ : Pic(Pn)→ Coker(π∗) = Pic(Pn)/Pic(Y ).
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Proposition 5.7. Let M be a finitely generated Zr-graded S-module, and consider a ∈ Zr. If
we have ρ(a) ∈ ρ(regM), then it follows that Riπ∗M̃(a) = 0 for all i > 0.

Proof. Since ρ(a) ∈ ρ(regM), we can choose a b ∈ Pic(Y ) such that a + π∗b ∈ regM . The

projection formula [Har77, Exercise III.8.3] gives Riπ∗M̃(a)⊗OY (b) = Riπ∗M̃(a + π∗b) for all
b ∈ Pic(Y ). Hence, by replacing a with a + π∗b, we assume that a itself lies in regM .

Let G be the virtual resolution of the pair (M,a), and consider a summand S(−c) of G. By
definition, we have c 6 a + n. It follows that −n 6 −c + a and Riπ∗OPn(−c + a) = 0 for all

i > 0. From the hypercohomology spectral sequence Ep,q2 := RpG̃−q =⇒ Rp+qM̃ , we conclude

that the higher direct images of M̃(a) also vanish.

α •

reg(S/I)
ρ

ρ(α)

ρ
(
reg(S/I)

)
•

Figure 5.1. Representation of reg(S/I) and its image under ρ

Example 5.8. Let Y ⊂ P1 × P3 be the surface defined by the B-saturated ideal

I =

〈 x1,1x
2
2,1 + x1,0x2,0x2,2 + x1,1x2,1x2,3, x

2
1,0x

2
2,1 + x1,0x1,1x

2
2,2 + x21,1x2,0x2,3,

x1,0x
4
2,1 − x1,0x2,0x32,2 + x1,0x

3
2,1x2,3 − x1,1x22,0x2,2x2,3,

x62,1 − x2,0x22,1x32,2 + 2x52,1x2,3 + x32,0x
2
2,2x2,3 − x2,0x2,1x32,2x2,3 + x42,1x

2
2,3

〉
,

and let π : P1 × P3 → P1 be the projection onto the first factor. To understand the vanishing of
the higher direct images of OY , we consider the minimal free resolution of S/I, which has the
form

S1 ←−

S(−2,−2)1

⊕
S(−1,−2)1

⊕
S(−1,−4)1

⊕
S(0,−6)1

←−
S(−2,−4)2

⊕
S(−1,−6)2

←− S(−2,−6)1 ←− 0 .

If we tensor the corresponding locally free resolution with the line bundle OY (0, 3), then none of
the terms in the resulting complex have nonzero higher direct images, so R1π∗OY (0, c) = 0 for
c > 3. However, Proposition 5.7 yields a sharper vanishing result. Since Macaulay2 [GS19] shows
that (2, 1) ∈ reg(S/I), we have R1π∗OY (0, c) = 0 for all c > 1. This bound is sharp because a
general fiber of π is a curve of genus 1.

6. Questions

We expect that virtual resolutions will produce further analogues of theorems involving minimal
free resolutions on projective space. We close by highlighting several promising directions.

The first question is to find a notion of depth that controls the minimal length of a virtual
resolution and provides an analogue of the Auslander–Buchsbaum theorem.
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Question 6.1. Given an S-module M , what invariants of M determine the length of the shortest
possible virtual resolution of M?

Even understanding this question for curves in P1 × P2 would be compelling. In light of
Theorem 1.6, this case would produce unirationality results for certain parameter spaces of curves.

Question 6.2. For what values of d, e, and g, does there exist a smooth curve in P1 × P2 of
bidegree (d, e) and genus g with a virtual resolution of the form S ←− F1 ←− F2 ←− 0?

Proposition 5.1 and Theorem 1.6 suggest that having a virtual resolution whose length equals
the codimension of the underlying variety can have significant geometric implications. As these
results parallel the arithmetic Cohen–Macaulay property over projective space, it would be
interesting to seek out analogues of being arithmetically Gorenstein.

Question 6.3. Consider a positive-dimensional subscheme Z ⊆ Pn such that ωZ = OPn(d)|Z for
some d ∈ Zr. Is there a self-dual virtual resolution of Z?

It would also be interesting to better understand scheme-theoretic complete intersections.

Question 6.4. Develop an algorithm to determine whether a subvariety Z ⊆ Pn has a virtual
resolution that is a Koszul complex. This is already interesting in the case of points on P1 × P1.

Finally, we believe that many of these results should hold for more general toric varieties.

Question 6.5. Prove an analogue of Proposition 1.2 for an arbitrary smooth toric variety.
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