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Abstract. We bound the Pythagoras number of a real projective subvariety: the smallest positive
integer r such that every sum of squares of linear forms in its homogeneous coordinate ring is
a sum of at most r squares. Enhancing existing methods, we exhibit three distinct upper bounds
involving known invariants. In contrast, our lower bound depends on a new invariant of a projective
subvariety called the quadratic persistence. Defined by projecting away from points, this numerical
invariant is closely related to the linear syzygies of the variety. In addition, we classify the projective
subvarieties of maximal and almost-maximal quadratic persistence, and determine their Pythagoras
numbers.
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1. Overview

Sums of squares occupy a central place in real algebraic geometry, optimization, and
number theory. Being able to represent an element in a commutative ring as a sum of
squares has substantial ramifications in the study of non-negativity and quadratic forms,
whereas the constructive aspects of these representations are indispensable in developing
efficient computational tools. The Pfister Theorem [31, Corollary XI.4.11], proving that
any nonnegative rational function in the field R.x0; x1; : : : ; xn/ is a sum of at most 2nC1

squares, serves as a motivational example. Our primary objective is to find similar effect-
ive bounds for homogeneous elements in a real affine algebra and our approach exposes
some unexpected connections between real and complex geometry.
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Given a real subvarietyX � Pn, let IX be its saturated homogeneous ideal in the poly-
nomial ring S WD RŒx0; x1; : : : ; xn� and let R WD S=IX denote its homogeneous coordin-
ate ring. Inspired by [31, Section XIII.5], the Pythagoras number py.X/ is the smallest
positive integer r such that any sum of squares of linear forms inR can be expressed as the
sum of at most r squares. We focus on homogeneous polynomials of degree 2 because the
appropriate Veronese re-embedding of X reduces the analysis to this case. Refining and
consolidating existing methods, our first theorem provides three different upper bounds
on the Pythagoras number for real projective subvarieties. To articulate this result, we set
a.X/ to be the largest number k such that the homogeneous ideal IX is generated by
quadratic polynomials and the first k � 1 maps in its minimal free resolution are repres-
ented by matrices of linear forms, and we refer to a projective subvariety as 2-regular if its
homogeneous ideal is generated by quadratic polynomials and all the maps in its minimal
free resolution are represented by matrices of linear forms; see [18, Sections 4A and 8D].

Theorem 1.1. For any real subvariety X � Pn such that the set X.R/ of real points is
not contained in a hyperplane, we have the following upper bounds:

(i)
�py.X/C1

2

�
< dimRR2;

(ii) py.X/ 6 nC 1 �min¹a.X/; codim.X/º;
(iii) py.X/ � 1 is at most the dimension of any real 2-regular variety containing X .

Together, Example 2.10, Example 2.17, and Example 2.14 illustrate that any one of
these upper bounds can be stronger than the other two.

More significantly, we devise a lower bound for the Pythagoras number of a real
subvariety. The key is to introduce a new numerical invariant for a complex projective
subvariety. For any nonnegative integer k and any subset � of k closed points in X , let
�� WPn Ü Pn�k be the rational map given by the linear projection away from � . The
quadratic persistence qp.X/ of the subvarietyX � Pn is the smallest nonnegative integer
k for which there exists a subset � of k closed points in X such that the homogeneous
ideal I�� .X/ contains no quadratic polynomials. Lemma 3.3 shows that the quadratic per-
sistence of an irreducible variety may be calculated by projecting away from a general set
of closed points, and Lemma 3.2 establishes the basic inequality qp.X/ 6 codim.X/. On
the other hand, quadratic persistence is also intimately related to linear syzygies. To state
our second major result, let `.X/ be the number of nonzero entries in the first row of the
Betti table for the homogeneous coordinate ring R regarded as an S -module; see (4.0.2)
or [18, Section 8D].

Theorem 1.2. For a non-degenerate irreducible complex subvariety X � Pn, we have
qp.X/ > `.X/.

By replacing codimension with quadratic persistence, this theorem sharpens the first
part of Green’s Kp;1-Theorem [22, Theorem 3.c.1]. Even better, we use quadratic per-
sistence to calculate `.X/ in some situations; see Proposition 4.10 and Proposition 5.12.
Fulfilling our original motivation for introducing quadratic persistence, our third theorem
gives a lower bound on the Pythagoras number of a real projective variety that does not
lie in a hyperplane and contains a nonsingular real point.
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Theorem 1.3. For any non-degenerate irreducible totally real subvariety X � Pn, we
have py.X/ > nC 1 � qp.X/ > 1C dim.X/.

Although the Pythagoras number is a semi-algebraic invariant relying on the real
structure, the lower bounds are algebraic invariants depending only on the complex geo-
metry of the subvariety.

Counterintuitively, our upper and lower bounds on the Pythagoras number agree when
the quadratic persistence is relatively large. In the maximal case, our fourth theorem
strengthens [5, Theorem 1.1] and yields yet another characterization for varieties of min-
imal degree.

Theorem 1.4. For any non-degenerate irreducible totally real subvariety X � Pn, the
following conditions are equivalent:

(a) qp.X/ D codim.X/;
(b) py.X/ D 1C dim.X/;
(c) deg.X/ D 1C codim.X/.

In the nearly maximal case, we can also compute the Pythagoras number and clas-
sify the varieties under the additional hypothesis that the homogeneous coordinate ring is
Cohen–Macaulay.

Theorem 1.5. Let X � Pn denote a non-degenerate irreducible totally real subvariety.
If X is arithmetically Cohen–Macaulay, then the following conditions are equivalent:

(a) qp.X/ D codim.X/ � 1;

(b) py.X/ D 2C dim.X/;
(c) deg.X/ D 2C codim.X/ or X is a codimension-one subvariety of a variety of min-

imal degree.

This fifth result is a counterpart to the third part of Green’s Kp;1-Theorem [22, The-
orem 3.c.1] where quadratic persistence supplants the degree of a morphism. More dir-
ectly, Theorem 1.2 and Theorem 1.3 establish the second part of Green’s Kp;1-Theorem
for totally real projective varieties. Many of the implications between the three conditions
in both Theorem 1.4 and Theorem 1.5 continue to hold under weaker assumptions on the
subvariety X ; see Section 3.

Explicit bounds in special cases

To better assess the power of our geometric approach, we produce concrete bounds on
the Pythagoras numbers and the quadratic persistence for projective curves and toric sub-
varieties. Corollary 2.9 proves that the Pythagoras number for a canonical real curve is
bounded above by its real gonality: the lowest degree of a real non-constant morphism
from the curve to the real projective line. Using Green’s Conjecture [39] for a general
canonical curve X � Pg�1, Example 2.10 specializes the bounds from Theorem 1.1, and
Example 4.7 shows that the quadratic persistence is strictly larger than the number `.X/
of nonzero entries in the first row of the Betti table for its homogeneous coordinate ring.
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Similarly, for a high-degree curve X � Pn, Corollary 2.8 bounds the Pythagoras num-
ber via its gonality and, using the Gonality Conjecture [17], Example 4.9 establishes that
qp.X/ > `.X/. The close relationship between the Pythagoras number and these other
sophisticated numerical invariants is remarkable, and the observations about quadratic
persistence answer [25, Question 5.8] negatively.

When compared to curves, the proofs of the analogous bounds for projective toric sub-
varieties reverse the flow of information. Instead of the well-known invariant for curves,
Corollary 2.15 proves that the Pythagoras number of an embedded projective toric sub-
variety XP\Zd � Pn is bounded above by a simple new invariant: the minimal number
of parallel lines needed to cover all of the lattice points in the polytope P � Rd . For
toric surfaces, this invariant – disguised as the lattice width of a polygon – is already
related to linear syzygies; see [11, Definition 1.5 and Conjecture 1.6]. Proposition 5.12
computes the quadratic persistence for any toric subvariety associated to a tall prism (the
product of a lattice polytope and a sufficiently long interval) and, thereby, deduces both
the Pythagoras number and the number of nonzero entries in the first row of the Betti
table. In contrast with our examples for curves, we have qp.X/ D `.X/ in this situation.
Example 5.13 showcases a family for which the hypothesis on the height of the prism is
vacuous. As [35, Section 6] underscores the difficulty in describing the linear syzygy mod-
ules for the Segre–Veronese embeddings of a product of projective spaces, our numerical
success with the toric subvarieties associated to tall prisms is all the more surprising.

Pythagoras numbers in applications

Emphasizing projective subvarieties, our approach unifies various viewpoints. Hilbert’s
Theorem [29], demonstrating that every nonnegative ternary quartic is the sum of three
squares, is the primal source for the Pythagoras numbers of homogeneous elements in
a real affine algebra. From our perspective, this is the same as showing that the Pythagoras
number of the Veronese surface P2 � P5 equals 3; see Example 2.17. Unlike the inter-
vening work on rational functions, [12] again concentrates on homogeneous polynomi-
als, providing both lower and upper bounds on their Pythagoras numbers. Advancing
these ideas, [36] establishes new lower bounds that are much closer to the existing upper
bounds. By re-proving [36, Theorem 3.6], Example 5.11 hints at the universality of our
geometric paradigm.

In optimization, the Pythagoras number is typically recast in terms of the rank of
Gram matrices. Each quadratic form f 2 S WD RŒx0; x1; : : : ; xn� corresponds to a real
symmetric matrix A such that f D xTAx, where x is the column vector whose entries
are the variables x0; x1; : : : ; xn. By the spectral theorem, the quadratic form f is a sum
of squares if and only if the matrix A is positive semidefinite. As a consequence, the set of
sum-of-squares representations for a quadratic form in any real affine algebra is the inter-
section of the cone of positive-semidefinite matrices with an affine linear space, called
the Gram spectrahedron. Hence, deciding whether a quadratic form is a sum of squares is
equivalent to the feasibility of a semidefinite programming problem. Better yet, the poly-
nomial f 2 S2 is a sum of r squares if and only if the positive-semidefinite matrix A has
rank r . Thus, the Pythagoras number is the maximum rank among matrices of minimal
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rank in the Gram spectrahedra. Computationally, upper bounds on this Pythagoras number
allow [8] to improve the scalability of such optimization problems by factoring the matrix
A as BBT, where B is a real .nC 1/ � r-matrix. Although this surrogate destroys con-
vexity, [9,10] show that local methods do reliably converge to global optima. Beyond the
upper bounds in Theorem 1.1, Theorems 1.4–1.5 can both be reinterpreted as structural
results about Gram spectrahedra. For instance, Corollary 2.4 recovers [13, Theorem 3.5].

Pythagoras numbers also appear in the study of metric embeddings of graphs. As
explained in [33, Section 1], deciding whether a simple graph has an isometric embed-
ding into the .r � 1/-dimensional spherical metric space is tantamount to solving a matrix
completion problem. Specifically, given a graph G with nC 1 vertices, one seeks the
smallest number r 2 N such that, for any positive-semidefinite matrix M, there exists
a positive-semidefinite matrix N of rank r satisfying M i;i D N i;i for all 1 6 i 6 nC 1

and M i;j D N i;j for each edge ¹i; j º in the graph G. Determining the Pythagoras num-
ber of the subvariety XG � Pn, defined as zero-locus of the quadratic monomials xixj
for every pair ¹i; j º of distinct vertices that do not form an edge in the graph G, is the
algebro-geometric reformulation. Example 2.13 and Example 2.14 specialize the bounds
in Theorem 1.1 for cycles and the Petersen graph respectively. Providing even further
evidence of the broad scope of the geometric approach, Corollary 2.11 rediscovers [33,
Lemma 2.7], and Remark 2.12 raises an enticing analogy between the treewidth of a graph
and the dimension of a 2-regular variety.

Organization

Section 2 proves all three of the upper bounds in Theorem 1.1. Examples show that
these upper bounds on the Pythagoras number of a real subvariety can be sharp and
are frequently inequivalent. In Section 3, we introduce quadratic persistence, outline the
essential properties of this new numerical invariant, and derive the lower bounds appear-
ing in Theorem 1.3. Section 4 relates the quadratic persistence of a complex subvariety
to the linear syzygies of its homogeneous ideal via the Bernstein–Gelfand–Gelfand cor-
respondence. Finally, Section 5 hones our bounds on the quadratic persistence for some
projective toric subvarieties.

Conventions

Throughout the article, the set of nonnegative integers is denoted by N. For any n 2 N, let
S WD RŒx0; x1; : : : ; xn� be the polynomial ring with the standard N-grading induced by
setting deg.xi / D 1 for all 0 6 i 6 n. A real quadratic function f is positive semidefinite
if it is nonnegative on RnC1. We write SC for the closed convex cone of positive-semi-
definite forms in S2.

A real projective subvariety X � Pn WD Proj.S/ is a reduced subscheme of project-
ive space over the field R of real numbers. Likewise, a complex projective subvariety
X � Pn WD Proj.CŒx0; x1; : : : ; xn�/ is a reduced subscheme of projective space over the
field C of complex numbers. We do not require a variety to be irreducible. A projective
subvariety is non-degenerate if it is not contained in a hyperplane. The varietyX is totally
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real if the set X.R/ of real points is Zariski dense in its set X.C/ of complex points or,
equivalently, if every irreducible component of X has a nonsingular real point.

2. Upper bounds on the Pythagoras number

We provide three different upper bounds on the Pythagoras number of a projective sub-
variety. In addition, we specialize these results to obtain concrete upper bounds on the
Pythagoras numbers of several classes including varieties of small degree, projective
curves, varieties associated to graphs, and toric subvarieties. We also show that these
bounds are often sharp and, in general, incomparable.

An upper bound through convex geometry

To establish our first bound, we exploit the existence of low-rank matrices on sufficiently
large affine subspaces of quadratic forms that intersect the cone SC of positive-semi-
definite forms. Given a real subvariety X � Pn, write IX for its saturated homogeneous
ideal in S WD RŒx0; x1; : : : ; xn� and R WD S=IX for its homogeneous coordinate ring. Let

†X WD ¹f 2 R2 j there exist g1; g2; : : : ; gr 2 R1 such that f D g21 C g
2
2 C � � � C g

2
r º

be the convex cone of sums of squares in R2 and define the Pythagoras number of the
variety X to be

py.X/ WD min
®
r 2 N j for all f 2 †X ; there exists g1; g2; : : : ; gr 2 R1

such that f D g21 C g
2
2 C � � � C g

2
r

¯
:

We strengthen the non-strict inequality derived from [12, Theorem 4.4 and Corollary 5.3].

Theorem 2.1. Let X � Pn be a real subvariety such that X.R/ is non-degenerate. When
the ideal IX contains at least one nonzero quadratic form, we have the inequality�

py.X/C 1
2

�
< dimR.R2/:

Proof. Set I WD IX , let �2WS2 ! R2 D S2=I2 denote the degree-two piece of the canon-
ical quotient map, and set r WD py.X/ � 1. Fix a nonzero f 2 †X . Since X is non-
degenerate, there exists a polynomial representative f 2 S2 such that �2. Qf / D f and
Qf is also a sum of squares. Each nonzero quadratic form in S corresponds to a real sym-

metric .nC 1/ � .nC 1/-matrix, and this form is a sum of squares in S if and only if the
matrix is positive semidefinite. Better yet, the form is a sum of r squares if and only if
the corresponding positive-semidefinite matrix has rank r . Let A be the affine subspace
of symmetric matrices corresponding to Qf C I2, that is all polynomial representatives
of f . By construction, the affine subspace A has dimension equal to dimR.I2/ and co-
dimension equal to dimR.R2/. Moreover, A has a nonempty intersection with the cone
SC of positive-semidefinite matrices because f 2 †X . Since X.R/ is non-degenerate,
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the vector space I2 does not contain a sum of squares and the intersection A \ SC is
compact. If codim.A/ D dimR.R2/ <

�py.X/C1
2

�
D
�
rC2
2

�
, then [2, Proposition II.13.1]

implies that there exists a matrix in A \ SC with rank at most r D py.X/ � 1. How-
ever, this would contradict the definition of the Pythagoras number, so we deduce that
codim.A/ D dimR.R2/ >

�py.X/C1
2

�
D
�
rC2
2

�
.

It remains to prove that the equality codim.A/ D dimR.R2/ D
�
rC2
2

�
D
�py.X/C1

2

�
is

also impossible. If r D 0 and dimRR2 D 1, then the Macaulay Characterization The-
orem [28, Theorem 6.3.8] shows that the Hilbert function of X equals 1 for all integers
greater than 1, so X is a single point and, hence, degenerate. Finally, suppose that r > 0
and dimRR2 D

�
rC2
2

�
. Since every quadratic form in S2 has rank at most nC 1, we see

that py.X/ 6 nC 1. However, the ideal I contains, by hypothesis, at least one nonzero
quadratic form, so it follows that py.X/ < nC 1 and r C 2 6 nC 1. Thus, [2, Propos-
ition II.13.4] proves that there is a matrix in A \ SC with rank at most r D py.X/ � 1,
which again contradicts the definition of the Pythagoras number.

An upper bound from differential topology

To prove our second bound, we rely on a topological argument originating in Hilbert’s
proof [29] that every nonnegative ternary quartic is a sum of three squares. More recently,
[13, Theorem 3.5] and [5, Section 2] develop variants. Our version depends on a tech-
nical property of a basepoint-free linear series; compare with the p-basepoint-free prop-
erty in [6, Subsection 1.2]. Following [15, Definition 6.0.23], a linear series W � R1 is
basepoint-free if the linear forms inW have no common zeroes (neither real nor complex)
on the underlying variety X .

Theorem 2.2. Let X � Pn be a real subvariety such that X.R/ is non-degenerate. If
k 2 N is the smallest integer such that any basepoint-free linear seriesW � R1 of dimen-
sion k generates all of R2, then we have py.X/ 6 k.

Proof. Any linear series of dimension at most dim.X/ determines a nonempty subscheme
ofX , so we may assume that k > dim.X/ and a general linear series inR1 of dimension k
is basepoint-free. For any positive integer r , let &r W

Lr
iD1R1 ! R2 be the map defined

by &.g1; g2; : : : ; gr / D
Pr
iD1 g

2
i . It suffices to prove that Im.&k/ D †X .

We begin with a connectedness observation. Since X.R/ is non-degenerate, we may
regard &r as a continuous map from P .

Lr
iD1R1/ to P .R2/, where both spaces are en-

dowed with the Euclidean topology as in [5, Lemma 2.2]. As a continuous map between
compact Hausdorff spaces, it is both proper and closed. The differential d&r at the point
.g1; g2; : : : ; gr / sends the r-tuple of linear forms .h1; h2; : : : ; hr / to the sum 2

Pr
iD1 higi ,

so the image is the graded component of the ideal generated by linear forms, namely
the R-vector space hg1; g2; : : : ; gri2. The defining condition for k implies that the dif-
ferential d&k is surjective at all points .g1; g2; : : : ; gk/ where the homogeneous poly-
nomials g1; g2; : : : ; gk are linearly independent and do not have a common zero on X .
If ƒ denotes the branch locus of &k and � is the Zariski closure of all quadratic forms
that are singular at a smooth point of X (also known as the discriminant variety), then
ˆ WD †X n .ƒ [�/ is a dense subset of †X in the Euclidean topology. The implicit
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function theorem shows that the subset Im.&k/ \ˆ is open. The subset Im.&k/ \ˆ is
also closed (in ˆ) because the map &k is closed and the hypothesis that k > dim.X/
ensures that it is nonempty. Thus, the intersection Im.&k/ \ˆ is a union of connected
components of ˆ.

Using this connectivity, we complete the proof. A real quadratic form lies in the set
� \ int.†X / if and only if there exists a conjugate pair of complex points inX at which it
is singular, so � \ int.†X / has codimension at least 2 in R2. Since dim†X D dimRR2,
we see that †X n� is connected. If ˆ is also connected, as occurs when the branch
locus ƒ is empty, then we have ˆ � Im.&k/. If not, then ƒ is a divisor and two con-
nected components of ˆ are separated by an irreducible component Z of the branch
locus ƒ. In particular, there is a real smooth point z on the hypersurface Z lying in
int.†X / n�. Since z 2 ƒ n�, there exists g1; g2; : : : ; gk 2 R1 having no common zero
in X such that z D g21 C g

2
2 C � � � C g

2
k

, but the R-vector space hg1; g2; : : : ; gki2 � R2
has codimension 1 contradicting the defining condition for k. It follows that ƒ � �,
which implies that ˆ is connected. Since ˆ is dense in †X and &k is closed, we conclude
that Im.&k/ D †X .

The bound in Theorem 2.2 is hard to determine precisely. Nonetheless, it is related to
the Green–Lazarsfeld index, which is defined to be

a.X/ WD max¹j 2 N j TorSk .R;R/2Ck D 0 for all k 6 j º:

In other words, a.X/ is the largest k 2 N such that the homogeneous ideal IX is generated
by quadrics and the first k � 1 maps in its minimal free resolution are represented by
matrices of linear forms; see Remark 4.1 and [18, page 155].

Corollary 2.3. For any real subvariety X � Pn such that X.R/ is non-degenerate, we
have

py.X/ 6 nC 1 �min¹a.X/; codim.X/º:

Proof. Theorem 6 in [6] demonstrates that any basepoint-free linear series of dimension
nC 1 � k generates all of R2 when the homogeneous ideal IX is generated by quad-
rics and its first k � 1 syzygies are linear. Thus, the assertion follows immediately from
Theorem 2.2.

We also recover [13, Theorem 3.5].

Corollary 2.4. Let X � Pn be an irreducible real subvariety such that X.R/ is non-
degenerate. If X is arithmetically Cohen–Macaulay and degX D 2C codimX , then we
have py.X/ 6 2C dim.X/.

Proof. When X is hypersurface, the statement is trivial. If X is not a hypersurface,
then [24, Theorem 4.3] shows that X is an arithmetically Cohen–Macaulay variety such
that degX D 2C codimX if and only if a.X/ D codim.X/ � 1. Hence, Corollary 2.3
establishes that py.X/ 6 2C dim.X/.
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Upper bounds via embeddings

Our third bound comes from embeddings into a special type of variety. We start with an
elementary inequality among Pythagoras numbers.

Lemma 2.5. An inclusion of real subvarieties X � X 0 � Pn produces the inequality
py.X/ 6 py.X 0/.

Proof. Let R0 WD RŒx0; x1; : : : ; xn�=IX 0 denote the homogeneous coordinate ring of X 0

in Pn. The inclusion X � X 0 corresponds to an N-graded surjective ring homomorphism
'WR0 ! R, so every square in R is the image of a square in R0 and †X D '.†X 0/. If an
element f 2 †X satisfies f D '.f 0/ for some f 0 2 †X 0 and f 0 can be expressed as
a sum of k squares, then we obtain an expression for g involving at most k squares by
applying '. It follows that py.X/ 6 py.X 0/.

To capitalize on this lemma, we need to know the Pythagoras numbers for a class
of subvarieties. With this in mind, a subvariety X 0 � Pn is 2-regular (in the sense of
Castelnuovo–Mumford) if its homogeneous ideal IX 0 is generated by quadratic poly-
nomials and all the maps in its minimal free resolution are represented by matrices of
linear forms or, equivalently, a.X 0/ D1; see [18, Section 4A]. Fortuitously, [6, Corol-
lary 32] shows that the Pythagoras number for any totally real 2-regular subvariety X 0

is 1C dim.X 0/. Motivated by this, our third bound revolves around embeddings into
2-regular subvarieties.

Theorem 2.6. For any real subvariety X � Pn such that X.R/ is non-degenerate, its
Pythagoras number py.X/ is at most one more than the minimum dimension of any real
2-regular variety that contains it.

Proof. Let X 0 be a real 2-regular variety such that X � X 0 � Pn. Since a.X 0/ D1,
Corollary 2.3 gives py.X 0/ 6 nC 1 � codimX 0 D 1C dim.X 0/ and Lemma 2.5 com-
pletes the proof.

Proof of Theorem 1.1. Theorem 2.1 proves the first part, Corollary 2.3 proves the second,
and Theorem 2.6 proves the third.

For irreducible subvarieties, we can improve this bound. An embedded projective sub-
variety X 0 � Pn has minimal degree if it is non-degenerate and degX 0 D 1C codimX 0.
Theorem 0.4 in [20] gives a complete classification of 2-regular varieties: the irreducible
components are varieties of minimal degree that meet in a particularly simple way. There-
fore, to bound the Pythagoras number of an irreducible subvariety, one need only consider
the varieties of minimal degree that contain it. Moreover, the Del Pezzo–Bertini Theorem
[21, Theorem 1] proves that an irreducible variety of minimal degree is either a quadric
hypersurface, a rational normal scroll, or a cone over the Veronese surface P2 � P5. Con-
centrating on just the rational normal scrolls that contain an irreducible variety produces
the next bound. As in [18, Section 6C], a projective subvarietyX � Pn is linearly normal
if the canonical map H 0.Pn;OPn.1//! H 0.X;OX .1// is surjective.
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Corollary 2.7. Let X � Pn be a non-degenerate irreducible real subvariety. If X is
linearly normal, then the Pythagoras number py.X/ is at most

min
®
nC 2 � dimRH

0.X;OX .1/˝L�1/ j L is a real line bundle on X
such that dimRH

0.X;L/ > 2
¯
:

Proof. In light of Theorem 2.6, it suffices to prove that the dimension of a rational normal
scroll containingX equals nC 1 � dimRH

0.X;OX .1/˝L�1/ for some real line bundle
L on X satisfying dimRH

0.X;L/ > 2. Paragraph 2.2 in [38] indicates that we can con-
struct from any pencil of divisors in jLj onX satisfying dimRH

0.X;OX .1/˝L�1/ > 2

a rational normal scrollX 0 � Pn which containsX . SinceX 0 is variety of minimal degree
and deg.X 0/ D dimRH

0.X;OX .1/˝L�1/, it follows that

dim.X 0/ D nC 1 � dimRH
0.X;OX .1/˝L�1/:

To illustrate this corollary, we specialize to curves whose hyperplane section is non-
special. Emulating the definition in [18, Section 8C], the real gonality of a real curve is
the lowest degree of a real non-constant morphism from the curve to the real projective
line. In particular, the real gonality of a real curve X � Pn is at least the gonality of its
complexification X �Spec.R/ Spec.C/.

Corollary 2.8. Let X � Pn be a linearly normal irreducible nonsingular real curve of
genus g and real gonality ı. If X has degree at least 2g � 1C ı, then py.X/ 6 1C ı.

Proof. Since the real gonality of X is ı, there is a non-constant morphism $ WX ! P1

of schemes over R having degree ı. Fix a real divisor D in the complete linear series
of the real line bundle $�.OP1.1//. We must have dimRH

0.X;OX .D// D 2 because
otherwise there would be a real point Q 2 X such that dimRH

0.X;OX .D �Q// > 2

and the line bundle OX .D �Q/ would define a real morphism to P1 of smaller degree.
Let H be a hyperplane section of X and let K be the canonical divisor on X . It fol-
lows that deg.H/ > 2g � 1C ı and deg.K/ D 2g � 2, so deg.K �H CD/ < 0 and
deg.K �H/ < 0. As dimRH

0.X;OX .K �H CD//D 0D dimRH
0.X;OX .K �H//,

the Riemann–Roch Theorem shows that

dimRH
0.X;OX .H �D// D deg.H/ � ı C 1 � g

and
nC 1 D dimRH

0.X;OX .H// D deg.H/C 1 � g:

Therefore, Corollary 2.7 establishes that

py.X/ 6 nC 2 � dimRH
0.X;OX .H �D// D 1C ı:

For a canonical curve (a non-hyperelliptic smooth curve of genus g at least 3 embed-
ded by its canonical linear series), we get a slightly better bound.

Corollary 2.9. If X � Pg�1 is a canonical real curve of real gonality ı, then we have
py.X/ 6 ı.
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Proof. Just as in the proof of Corollary 2.8, let D denote a real divisor on the curve X
of degree ı such that dimRH

0.X;OX .D// D 2. Since the canonical divisor K on X
corresponds to a hyperplane section, the Riemann–Roch Theorem shows that

dimRH
0.X;OX .K �D// D � deg.D/ � 1C g C dimRH

0.X;OX .D//

D g C 1 � ı:

Thus, Corollary 2.7 demonstrates that py.X/ 6 .g � 1/C 2 � .g C 1 � ı/ D ı.

For general real canonical curves, we can compare our three bounds.

Example 2.10 (Bounds for general canonical curves). Suppose that X � Pg�1 is a gen-
eral real canonical curve and let K denote its canonical divisor. Since degK D 2g � 2,
the Riemann–Roch Theorem shows that

dimRH
0.X;OX .2K// D 2.2g � 2/C 1 � g D 3g � 3;

so the first bound derived from Theorem 2.1 is

py.X/ 6
j1
2
.
p
24g � 23 � 1/

k
6 b

p
6gc:

Green’s Conjecture [18, Conjecture 9.6] asserts that a.X/ 6
�
1
2
.g � 1/

˘
� 1 and it is

known to hold for general curves [39]. Thus, the second bound obtained from Corol-
lary 2.3 is

py.X/ 6 g �
j1
2
.g � 1/

k
C 1 D

j1
2
.g C 4/

k
:

Lastly, the Brill–Noether Theorem [18, Theorem 8.16] implies that the (complex) gon-
ality of a general curve is

�
1
2
.g C 3/

˘
, so the third bound from Corollary 2.9 is at best

py.X/ 6
�
1
2
.g C 3/

˘
. In particular, for all sufficiently large g, the first bound is stronger

than the other two bounds. ˘

Specific bounds for graphs

Restricting our attention to certain unions of coordinate spaces allows us to compare our
three bounds on the Pythagoras number. We focus on varieties defined by the Stanley–
Reisner ideal of the clique complex of a graph or, equivalently, the edge ideal of the
complementary graph. Remarkably, all three bounds have explicit formulations in terms
of well-known numerical invariants of the underlying graph.

To be more precise, letG be a graph (with no multiple edges or loops) whose vertex set
is ¹0; 1; : : : ; nº. The homogeneous ideal IG in S WD RŒx0; x1; : : : ; xn� is generated by the
quadratic monomials xixj for every pair ¹i; j º of distinct vertices that do not form an edge
in the graph G; see [28, Section 9.1]. The associated subvariety is XG WD V.IG/ � Pn

and its homogeneous coordinate ring is RG WD RŒx0; x1; : : : ; xn�=IG . If the graph G also
has m edges, then the definition of the ideal IG implies that

dimR.RG/2 D

�
nC 2

2

�
�

�
nC 1

2

�
Cm D nCmC 1:
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Hence, the first bound derived from Theorem 2.1 is

py.XG/ 6
j1
2
.
p
8nC 8mC 9 � 1/

k
:

Using “Gram dimension” as a synonym for the Pythagoras number, this bound also
appears in the introduction to [33].

For the second bound, we translate both the Green–Lazarsfeld index and the dimen-
sion of XG into numerical graph invariants. To do this for the index a.XG/, recall that
a cycle in the graph G of length m > 3, as defined in [16, Section 1.3], is determined by
a sequence of distinct vertices v0; v1; : : : ; vm�1 such that each of the pairs

¹v0; v1º; ¹v1; v2º; : : : ; ¹vm�2; vm�1º; ¹vm�1; v0º

is an edge in the graph. An edge that joins two vertices of a cycle but is not itself an
edge of the cycle is called a chord and an induced cycle has no chords. Theorem 2.1 in
[19] proves that the Green–Lazarsfeld index a.XG/ is 3 less than minimal length of an
induced cycle in G having length at least 4. To reinterpret dim.XG/, recall that a clique
in the graph G is a subset of vertices such that every pair of distinct vertices forms an
edge and the clique number !.G/ is the number of vertices in a maximum clique; see
[16, Section 5.5]. Lemma 1.5.4 in [28] shows that the primary decomposition of IG is
the intersection of monomial prime ideals generated by the variables corresponding to the
complement of a maximum clique, so dim.XG/ D !.G/ � 1. Thus, if �.G/ is the minimal
length of an induced cycle in G having length at least 4, then Corollary 2.3 gives

py.XG/ 6 max¹n � �.G/C 4; !.G/º:

The third type of bound depends on a more subtle numerical invariant of G. A graph
is chordal if every induced cycle has exactly three vertices; again see [16, Section 5.5].
Proposition 12.4.4 in [16] demonstrates that the treewidth of G is one less than the size of
the largest clique in a chordal graph containing G with the smallest clique number. In this
setting, the explicit form of the third bound rediscovers [33, Lemma 2.7].

Corollary 2.11. For any graph G, the Pythagoras number py.XG/ of its associated
subvariety is at most one more than the treewidth of the underlying graph G.

Proof. The definition of Stanley–Reisner ideals implies that one has an containment of
graphs G � G0 if and only if one has a containment of varieties XG � XG0 . The Fröberg
Theorem [28, Theorem 9.2.3] asserts that the Stanley–Reisner ideal IG0 is 2-regular if and
only if the graph G0 is chordal. Therefore, the minimum dimension of any real 2-regular
variety containingXG is at most the treewidth ofG and appealing to Theorem 2.6 finishes
the proof.

Remark 2.12. Corollary 2.11 demonstrates that the upper bound in Theorem 2.6 spe-
cializes to the treewidth of a graph. For a non-degenerate subvariety X � Pn, to what
extent is this numerical invariant, namely one more that the minimum dimension of any
2-regular variety in Pn that containsX , the natural geometric generalization of treewidth?
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We contrast our three bounds on Pythagoras numbers for some specific graphs.

Example 2.13 (Bounds for cycles). For any integer n > 3, suppose that the graph G is
a cycle on nC 1 vertices. Since G also has nC 1 edges, the first bound is

py.XG/ 6
1

2
.
p
16nC 17 � 1/:

The minimum length of an induced cycle is nC 1 and !.G/ D 2, so the second bound
becomes py.XG/ 6 3. Lastly, adjoining all the chords incident to a fixed vertex yields
a chordal graph containing the cycle, so the treewidth of G is at most 2 and the third
bound also is py.XG/ 6 3. In particular, the first bound is weaker than the other two
bounds. ˘

Example 2.14 (Bounds for the Petersen graph). Suppose that the graph G is the Petersen
graph; see [16, Figure 6.6.1]. Since G has 10 vertices and 15 edges, the first bound is
py.XG/ 6 6. The minimum length of an induced cycle is 5 and !.G/ D 2, so the second
bound becomes py.XG/ 6 8. Lastly, the treewidth of the Petersen graph is known to be 4
(for example see [27, Section 3]), so the third bound is py.XG/ 6 5. Here the third bound
is stronger than the other two bounds. ˘

Specific bounds for toric subvarieties

By concentrating on projective toric subvarieties, we can relate our bounds to the numer-
ical invariants of a lattice polytope. Consider a lattice polytope P � Rd containing nC 1
lattice points, so n WD jP \ Zd j � 1. Influenced by [15, Definition 2.1.1], the associated
toric subvariety XP\Zd � Pn is the Zariski closure of the image of the map from the
d -dimensional algebraic torus to Pn given by

.t1; t2; : : : ; td / 7! Œta1
1 t

a2
2 � � � t

ad
d j .a1; a2; : : : ; ad / 2 P \ Zd �:

We caution that the variety XP\Zd may not be normal; see [15, Definition 2.3.14] for the
canonical normal toric variety associated to P . Regardless, if

R WD RŒx0; x2; : : : ; xn�=IXP\Zd

is the homogeneous coordinate ring of the subvarietyXP\Zd � Pn, thenm WD dimR.R2/

equals the number of points in the Minkowski sum .P \ Zd /C .P \ Zd /; compare with
[15, Theorem 1.1.17]. Hence, the first bound derived from Theorem 2.1 is

py.XP\Zd / 6
j1
2
.
p
8mC 1 � 1/

k
:

For the second bound, we would need a polyhedral interpretation of the Green–Lazars-
feld index a.XP\Zd /. Sadly, we are unaware of even a reasonable conjectural lower
bound for a general projective toric subvariety. However, for toric surfaces embedded
in projective space, [37, Corollary 2.1] proves that a.XP\Zd / is 3 less than the number
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of lattice points on the boundary of the polygon P . Thus, if i.P / denotes the number of
lattice points on the interior of the polygon P , then Corollary 2.3 gives

py.XP\Zd / 6 i.P /C 3:

The third bound depends on estimating the dimension of the smallest rational normal
scroll that contains the subvarietyXP\Zd . Once again, this bound can be found analysing
the lattice points.

Corollary 2.15. For any lattice polytope P � Rd , its projective toric subvariety XP\Zd

is contained in a rational normal scroll whose dimension is equal to the minimal number
of parallel lines needed to cover all of the lattice points in P , so the Pythagoras number
py.XP\Zd / is at most one more than the dimension of this rational normal scroll.

Proof. By Theorem 2.6, it suffices to find a rational normal scroll containing XP\Zd

whose dimension is equal to the minimal number of parallel lines needed to cover all of
the lattice points in P . Suppose that the lattice points in P are covered by k lines parallel
to the vector v 2 Rd . We may assume that v is a primitive lattice vector. For each index
0 6 i < k, let ai be the lattice length of the corresponding line segment covering lattice
points inP . By relabelling the lines, we may also assume that ak�1 > ak�2 > � � �> a0 > 0.
Let e1; e2; : : : ; ek denote the standard basis for Zk and consider the lattice polytope

P 0 WD conv¹0; e1; e2; : : : ; ek�1; a0ek ; e1 C a1ek ; e2 C a2ek ; : : : ; ek�1 C ak�1ekº � Rk :

By construction, the Lawrence prism P 0 is the normal full-dimensional lattice polytope
of a rational normal scroll. The affine map, which sends ek to v and the lattice points
0; e1; e2; : : : ; ek�1 to the minimal points in P relative to the vector v on the corresponding
line, defines a bijection between the lattice points in the polytopes P and P 0 and, thereby,
induces a toric inclusion XP\Zd � XP 0\Zk .

Remark 2.16. Since every line bundle on a toric variety is the image of a torus-invariant
Cartier divisor (see [15, Theorem 4.2.1]), modifying the proof of Corollary 2.7 shows that,
among all rational normal scrolls containing a toric variety, there is one having minimal
dimension such that the inclusion map is a toric morphism. Hence, the minimal number
of parallel lines needed to cover all the lattice points in the polytope P is the dimension
of the smallest rational normal scroll containing the toric variety XP\Zd .

Example 2.17 (Upper bounds for the Veronese embeddings of P2). For any integer
j > 2, consider the lattice polygon P WD conv¹.0; 0/; .j; 0/; .0; j /º � R2. The associ-
ated toric subvariety XP\Z2 is the j -th Veronese embedding P2 � P .

jC2
2 /�1; see [15,

Example 14.2.7]. Since dimR.R2/ D
�
2jC2
2

�
, the first bound is

py.XP\Z2/ 6
j1
2

�p
8.j C 1/.2j C 1/C 1 � 1

�k
:

This polygon has
�
j�1
2

�
interior lattice points, so the second bound is py.XP /6

�
j�1
2

�
C 3.

Lastly, j C 1 horizontal lines cover all the lattice points in P , so the third bound is
py.XP\Z2/ 6 j C 2. For j D 2, the second bound is stronger than the other two and is
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optimal becauseXP\Z2 is a variety of minimal degree. On the other hand, the third bound
is at least as strong as the other two for all j > 3. For lower bounds on the Pythagoras
number of the Veronese embeddings of P2, see Example 5.11. ˘

3. Quadratic persistence

This section introduces a numerical invariant of a projective subvariety, which we call
the quadratic persistence. By definition, this invariant encodes information about the
behaviour of the variety under projections away from certain linear subspaces. After sum-
marizing the fundamental features of this new invariant, we analyse varieties with large
quadratic persistence and find a lower bound on the Pythagoras number of an irreducible
totally real variety.

Properties of quadratic persistence

Let X � Pn be a complex subvariety prescribed by the saturated homogeneous ideal IX
in polynomial ring CŒx0; x1; : : : ; xn�. For any subset Z � Pn, the intersection of all lin-
ear subspaces of Pn which each contain every point in Z is denoted by Span.Z/. Given
a finite set � of closed points in X spanning a .k � 1/-plane and a complementary linear
subspace Pn�k in Pn, the projection away from � is the rational map �� WPn Ü Pn�k

defined by sending a closed point q 2 Pn n Span.�/ to the intersection of Pn�k with
the k-plane Span.¹qº [ �/. To be notationally consistent, we write I�� .X/ for the satur-
ated homogeneous ideal of the image ��.X/ � Pn�k . With these preparations, we now
present the key numerical invariant.

Definition 3.1. For a complex subvariety X � Pn, the quadratic persistence qp.X/ is
the smallest k 2 N for which there exists a finite set � of closed points in X such that
k D j�j and the homogeneous ideal I�� .X/ contains no quadratic polynomials.

The definition of quadratic persistence leads to some easy inequalities.

Lemma 3.2. Let X � Pn be a complex subvariety.

(i) If X is non-degenerate, then we have the upper bound qp.X/ 6 codim.X/.
(ii) An inclusion of varieties X � X 0 produces the inequality qp.X 0/ 6 qp.X/.

Proof. (i) Fix an irreducible component Z of X . Since X is non-degenerate, there is
a set � of closed points in X nZ such that

j�j D codim.Span.Z/;Pn/ and Span.� [Z/ D Pn:

For any set � 0 of closed points in Z such that j� 0j D codim.Z;Span.Z// and the projec-
tion away from � 0 is dominant when restricted to Z, the projection away from � [ � 0 is
also dominant when restricted to Z because

codim.Span.Z/;Pn/C codim.Z;Span.Z// D codim.Z;Pn/:

Thus, the ideal I��[�0 .X/
contains no quadratic polynomials and qp.X/ 6 codim.Z;Pn/.



G. Blekherman, R. Sinn, G. G. Smith, M. Velasco 940

(ii) For any finite set � � X � X 0, we have I�� .X/ � I�� .X
0/ which gives

qp.X/ > qp.X 0/:

To better understand quadratic persistence, we examine an auxiliary function that
counts the quadrics kept under an inner projection. More precisely, for any finite subset �
of closed points in X , set ��.X/ WD dim.I�� .X//2. Beyond recording the basic attributes
of this function, the following result shows that the quadratic persistence of an irreducible
subvariety is computed by projecting away from a general set of closed points. Part (v)
appears implicitly in [25, Theorem 3.1 (a)].

Lemma 3.3. Let X � Pn be a complex subvariety.

(i) For any finite set � of closed points in X , the number ��.X/ is the dimension of the
linear subspace spanned by the quadrics in IX that are singular in Pn at the points
of � .

(ii) An inclusion � � � 0 of finite subsets of X gives the inequality ��.X/ > ��0.X/.

(iii) For any r 2 N, the function that sends the r-tuple .p1; p2; : : : ; pr / 2 X r of closed
points to �¹p1;p2;:::;pr º.X/ is upper semi-continuous.

(iv) For any r 2 N, the locus in X r on which the function

.p1; p2; : : : ; pr / 7! �¹p1;p2;:::;pr º.X/

achieves its minimum is Zariski open.

(v) For any finite set � of closed points in X , we have qp.X/ 6 j�j C qp.��.X//.
(vi) For any closed point p 2 X , the difference dimC.IX /2 � �¹pº.X/ is the dimension

of the linear subspace spanned by the gradients of the quadrics in IX evaluated at
an affine representative of the point p.

(vii) For any closed point p 2 X , we have dimC.IX /2 � �¹pº.X/ 6 codimX .

Proof. (i) Choose coordinates x0; x1; : : : ; xn on Pn so that the linear subspace spanned
by � is cut out by the variables xk�1; xk ; : : : ; xn. It follows that

I�� .X/ D IX \CŒxk�1; xk ; : : : ; xn�I

see [14, Theorem 8.5.8]. Hence, the graded piece .I�� .X//2 consists of the quadratic poly-
nomials in IX that do not involve the variables x0; x1; : : : ; xk�2. These are precisely the
quadrics in IX that are singular along the linear subspace spanned by � or, equivalently,
at the points in � .

(ii) Since � � � 0, the quadrics in IX singular along � 0 are contained among those
singular along � , so part (i) implies that ��.X/ > ��0.X/.

(iii) For any r 2 N, consider the incidence correspondence ‰r � P ..IX /2/ �X r

consisting of all pairs .f; .p1; p2; : : : ; pr // where the quadratic polynomial f 2 IX is
singular at all of the closed points p1; p2; : : : ; pr 2 X . Part (i) implies that the value of

.p1; p2; : : : ; pr / 7! �¹p1;p2;:::;pr º.X/ (3.3.1)
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is equal to one more than the dimension of the fibre of the projection pr2W‰r ! X r . The
claim follows from the semi-continuity of fibre dimensions; see [23, Théorème 13.1.3].

(iv) We consider two distinct cases. First, suppose that the image pr2.‰r / is a proper
closed subset of the product X r . If � is a general set of r points on X , then the ideal
I�� .X/ contains no quadratic polynomials and the function (3.3.1) attains its minimum 0

on the complement of the image which is a Zariski open set. Otherwise, pr2.‰r / D X
r .

In this case, the minimum of the function (3.3.1) is some i 2 N. This minimum is attained
on the complement of the sets � � X r of closed points with image greater than or equal
to i C 1, which is closed by part (iii).

(v) Let � 0 � ��.X/ be a set of closed points such that j� 0j D qp.��.X// and the
homogeneous ideal I��0 .�� .X// contains no quadrics. Using part (iv), we may assume that
the subset � 0 lies in the image of the rational map �� . For each closed point in � 0, choose
a closed point in its fibre contained inX so that the resulting finite set � 00 � ��1� .� 0/ \X

has the same cardinality as � 0 and ��.� 00/D� 0. It follows that ��[�00.X/D��0.��.X//,
so there are no quadratic polynomials in I��[�00 .X/. Therefore, we conclude that

qp.X/ 6 j� [ � 00j D j�j C j� 0j D j�j C qp.��.X//:

(vi) Choose an affine representative Qp 2 AnC1 of the point p 2 Pn and let

rj QpW .IX /2 ! T �Pn;p

be the map defined by sending the quadratic polynomial f to its gradient rf . Qp/. Part (i)
implies that the kernel of this map is .I�¹pº.X//2, so

dimC.IX /2 � dimC.I�� .X//2 D rank.rj Qp/:

(vii) Since every point in TX;p is annihilated by the gradient rf . Qp/, the image of rj Qp
is contained in .TPn;p=TX;p/

� and dimC.IX /2 � �¹pº.X/ 6 codimX .

As an application, we characterize the projective subvarieties having quadratic per-
sistence one.

Corollary 3.4. The quadratic persistence of a complex subvariety X � Pn equals one
if and only if the vector space .IX /2 is nonempty and the hypersurfaces corresponding to
a basis for .IX /2 intersect transversely at a generic point in X .

Proof. For notational brevity, set I WD IX . By definition, the equality qp.X/ D 0 is equi-
valent to the vector space I2 being empty. Hence, the equality qp.X/ D 1 ensures that,
for a generic point p 2 X , we have �¹pº.X/ D 0. Let Qp 2 AnC1 be an affine represent-
ative of the point p 2 Pn. If m WD dimC.I2/ and the polynomials f1; f2; : : : ; fm form
a basis for I2, then part (vi) of Lemma 3.3 establishes that the gradients rfi . Qp/, for all
1 6 i 6 m, are linearly independent.

We assemble the number of quadrics kept under successive inner projections into
a sequence. For a non-degenerate irreducible complex subvariety X � Pn, set

�j .X/ WD ��j
.X/;
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where �j is any general set of closed points on X having cardinality j and let

�.X/ WD .�0.X/; �1.X/; �2.X/; : : : / 2 NN :

Part (iv) of Lemma 3.3 proves that the sequence �.X/ is independent of the choice of the
general sets. We verify that �.X/ is a strictly convex integer partition with distinct parts.

Proposition 3.5. For a non-degenerate irreducible complex subvariety X � Pn, the se-
quence �.X/ of nonnegative integers is decreasing with qp.X/ nonzero entries that, for
all 0 < j 6 qp.X/, satisfies

2�j .X/ < �j�1.X/C �jC1.X/:

Proof. Again for brevity, let k WD qp.X/ and let �j WD �j .X/ for all j 2 N. Choose
a general set �k WD ¹p1; p2; : : : ; pkº �X of closed points and set �j WD ¹p1; p2; : : : ; pj º.
Part (ii) of Lemma 3.3 demonstrates that �j > �jC1 and the definition of quadratic per-
sistence implies that �j D 0 if and only if j > qp.X/. If �j D �j�1 for some 0 < j 6 k,
then part (vi) of Lemma 3.3 produces a nonzero quadratic polynomial f 2 IX which is
singular at the closed point pj . Since the singular locus of f is a linear subspace of Pn,
we conclude that ��j�1

.X/ is degenerate, which contradicts the hypothesis that X is
non-degenerate or the genericity of �k . It follows that �j�1 > �j for all 0 < j 6 k.

To prove convexity, it suffices to show that the difference��j WD �j � �j�1 is strictly
increasing for all 0 < j 6 k. Let Wj denote the linear subspace of quadrics in .IX /2 that
are singular at the point pj . Hence, part (i) of Lemma 3.3 gives

��j D dimC.W1 \W2 \ � � � \Wj / � dimC.W1 \W2 \ � � � \Wj�1/:

Write V WD
Tj�1

lD1
Wl � .IX /2 and setW ?i WD ¹ 2 V

� j  .f /D 0 for all f 2Wi \ V º,
where i D j or i D j C 1. It follows that ��jC1 > ��j is equivalent to

dimC.W
?
j / > dimC.W

?
jC1 CW

?
j /=W

?
j :

The latter relation holds if and only if W ?j \W
?
jC1 ¤ 0 which, by duality, is the same as

saying that .V \Wj /C .V \WjC1/ ¤ V . We establish this last inequality by contradic-
tion. Assuming that .V \Wj /C .V \WjC1/ D V , every quadratic polynomial f 2 V
can be written as f D fj C fjC1, where fi 2 V \Wi . Since f is homogeneous, we
see that it vanishes on the entire line passing through the closed points pj and pjC1. In
other words, each quadratic polynomial in V vanishes on the secant variety of ��j�1

.X/.
However, [32, Lemma 2.2] confirms that this contradicts the hypothesis that X is non-
degenerate.

Remark 3.6. The sequence �.X/ is closely related to the gap vector introduced in [3].
To be more explicit, we must assume that X � Pn is a non-degenerate totally real variety
having codimension c. If g.X/ WD .g1.X/; g2.X/; : : : ; gc.X// is the gap vector from
[3, Definition 1.1], then [3, Theorem 1.6] implies that

gj .X/ � �j .X/ D

�
c C 1

2

�
� dimC.IX /2 �

�
c � j C 1

2

�
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for all 1 6 j 6 c, and [3, Theorem 1.7] proves that �.X/ is an integer partition with dis-
tinct parts. However, the convexity of �.X/ reveals that the gap vector is also convex. For
instance, the existence of an index i such that gi�1.X/ D gi .X/ implies that gj .X/ D 0
for all 1 6 j 6 i .

Using the properties of the sequence �.X/, we see that the quadratic persistence
bounds the dimension of the linear subspace of quadrics in the defining ideal of a variety.

Corollary 3.7. For a non-degenerate irreducible complex subvariety X � Pn, we have�
qp.X/C 1

2

�
6 dimC.IX /2 6 qp.X/ codim.X/ �

�
qp.X/
2

�
:

Proof. Let c WD codim.X/, let k WD qp.X/, and let �j WD �j .X/ for all j 2 N. We first
bound the difference ��j for all 0 < j 6 k. Choose a general set

�k WD ¹p1; p2; : : : ; pkº � X

of closed points. Setting �j WD ¹p1; p2; : : : ; pj º for all 0 < j 6 k, we see that

codim��j�1
.X/ D c � .j � 1/

and part (vii) in Lemma 3.3 gives

��j D �j � �j�1 D .dimC.I��j�1
.X//2 � �j�1/ � .dimC I��j�1

.X/ � �j /

D �.dimC.I��j�1
.X//2 � �j / > � codim��j�1

.X/ D .j � 1/ � c:

Combined with Proposition 3.5, we deduce that �1 > ��j > .j � 1/ � c. By definition,
dimC.IX /2 D �0 D .�0 � �1/C .�1 � �2/C � � � C .�k�1 � �k/ D

Pk
jD1.���j /, so�

k C 1

2

�
D

kX
jD1

j 6 dimC.IX /2 6
kX

jD1

c � .j � 1/ D kc �

�
k

2

�
:

Varieties with large quadratic persistence

The bounds in Corollary 3.7 allow us to classify the subvarieties with maximal quadratic
persistence. This classification simultaneously shows that the upper and lower bounds can
coincide.

Theorem 3.8. For a non-degenerate irreducible complex subvariety X � Pn, we have
the equality qp.X/ D codim.X/ if and only if X has minimal degree, that is

deg.X/ D 1C codim.X/:

Proof. Set c WD codim.X/ and k WD qp.X/. The hypothesis k D c implies that

kc �

�
k

2

�
D

�
k C 1

2

�
;
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so the bounds in Corollary 3.7 are equal. It is well known, going back to G. Castel-
nuovo, that the equality dimC.IX /2 D

�
cC1
2

�
is equivalent toX being a variety of minimal

degree; see [40, Corollary 5.8]. Conversely, assuming thatX has minimal degree, we have
dimC.IX /2 D

�
cC1
2

�
and the bounds in Corollary 3.7 become

0 6
�
c C 1

2

�
�

�
k C 1

2

�
6 kc � k2 or 0 6 .c � k/.c C k C 1/ 6 .c � k/k:

Since part (i) in Lemma 3.2 establishes that c � k > 0, the strict inequality c � k > 0
would imply that c C k C 1 6 k, which is absurd. We conclude that c D k when X has
minimal degree.

To expand on this classification, we look at another prominent numerical invariant of
a variety. Following [7, Section 3], the quadratic deficiency of the projective subvariety
X � Pn is

".X/ WD

�
codim.X/C 1

2

�
� dimC.IX /2:

From this perspective, Theorem 3.8 proves ".X/ D 0 if and only if qp.X/ D codim.X/.
For the subvarieties having small positive quadratic deficiency, we have the following
one-way implication.

Proposition 3.9. For a non-degenerate irreducible complex subvarietyX � Pn such that
either ".X/ D 1 or ".X/ D 2, we have qp.X/ D codim.X/ � 1.

Proof. Let c WD codim.X/ and let k WD qp.X/. The inequalities in Corollary 3.7 are
equivalent to �

c � k C 1

2

�
6 ".X/ 6

�
c C 1

2

�
�

�
k C 1

2

�
:

From this lower bound on ".X/ and our hypothesis on ".X/, we deduce that

.c � k C 1/.c � k/ 6 2".X/ 6 4:

Together, part (i) in Lemma 3.2 and Theorem 3.8 establish that c � k > 1. As c � k 2 Z,
we infer that c � k C 1 D 2 and c � k D 1, so k D c � 1.

Remark 3.10. Proposition 5.10 in [40] proves that a projective subvariety X � Pn with
".X/ D 1 is a hypersurface of degree at least 3 or a linearly normal variety such that
deg.X/ D 2C codim.X/. Corollary 1.4 in [34] proves that, for a subvariety X � Pn

satisfying codim.X/ > 3 and ".X/ D 2, the pair .deg.X/; depth.X// is either

.2C codim.X/; dim.X// or .3C codim.X/; 1C dim.X//:

When ".X/ D 1, Proposition 3.9 shows that the upper bound in Corollary 3.7 is
achieved. It also shows that the lower bound is attained when ".X/ D 2, codim.X/ D 2,
which means that X is a complete intersection of two quadrics. Extending both cases, the
subsequent family of varieties have almost maximal quadratic persistence and a minimal
number of quadratic generators.
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Example 3.11 (Extremal varieties with almost maximal quadratic persistence). Suppose
that X � Pn is the intersection of a general hypersurface of degree at least two with
a variety X 0 � Pn of minimal degree. If the hypersurface has degree greater than two,
then it follows that .IX /2 D .IX 0/2 and

".X/ D

�
codim.X/C 1

2

�
�

�
codim.X/

2

�
D codim.X/:

When the hypersurface has degree two, we have dimC.IX /2 D 1C dimC.IX 0/2 and

".X/ D

�
codim.X 0/C 2

2

�
�

�
codim.X 0/C 1

2

�
� 1 D codim.X/ � 1:

In both cases, parts (i) and (ii) in Lemma 3.2 show that

codim.X 0/C 1 D codim.X/ > qp.X/ > qp.X 0/:

Using Theorem 3.8 twice, we also see that codim.X/ > qp.X/ and qp.X 0/ D codim.X 0/.
Thus, we surmise that qp.X/ D codim.X 0/ D codim.X/ � 1. ˘

Under the additional assumption that X � Pn is arithmetically Cohen–Macaulay, the
two extremal possibilities become the only options. To explain this, we start with an
analogue of the Strong Castelnuovo Lemma; see [22, Theorem 3.c.6].

Lemma 3.12. Let n > 2 and let X � Pn be a set of closed points in linearly general
position. We have qp.X/ > n � 1 if and only if X lies on a rational normal curve.

Proof. When X lies on a rational normal curve C � Pn, part (ii) of Lemma 3.2 shows
that qp.X/ > qp.C / and Theorem 3.8 establishes that qp.C / D codim.C / D n � 1.

For the other implication, suppose that qp.X/ > n � 1. We proceed by induction on n.
For n D 2, we have qp.X/ > 1 if and only if X lies on a quadratic curve, which is
a rational normal curve in P2. We now assume that n > 2. Every set of nC 3 closed
points in linearly general position in Pn lies on a unique rational normal curve; see [26,
Theorem 1.18]. Hence, we may also assume that jX j > nC 3. Let

� WD ¹p1; p2; : : : ; pnC3º � X

be a set of closed points and let C be the unique rational normal curve containing � . For
any point pi 2 � , the set X 0 WD �¹pi º

.X n ¹piº/ is in linearly general position. Part (v) of
Lemma 3.3 shows that qp.X 0/ > qp.X/ � 1 > n � 2 and the induction hypothesis shows
that the set X 0 is contained in a rational normal curve C 0 � Pn�1. As C 0 and �¹pi º

.C /

are rational normal curves passing through the nC 2 points in �¹pi º
.� n ¹piº/, we see

that C 0 D �¹pº.C /. It follows that, for all pi 2 � , the ideal IX contains the ideal of the
cone over �¹pi º

.C / with vertex pi .
We next describe the ideals of �¹pi º

.C / more explicitly; compare with [26, Exer-
cise 1.25]. Fix two distinct points p1; p2 2 � and an isomorphism �WP1 ! C . Choose
coordinates on P1 such that �.Œ0 W 1�/ D p1 and �.Œ1 W 0�/ D p2 and choose coordinates
on Pn such that the morphism � is given by Œt0 W t1� 7! Œtn0 W t

n�1
0 t1 W � � � W t

n
1 �. In these
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coordinates, the ideals IC , I�¹p1º
.C/, and I�¹p2º

.C/ are given by the maximal minors of
the matrices�

x0 x1 � � � xn�1
x1 x2 � � � xn

�
;

�
x1 x2 � � � xn�1
x2 x3 � � � xn

�
; and

�
x0 x1 � � � xn�2
x1 x2 � � � xn�1

�
respectively. Setting

J WD I�¹p1º
.C/ C I�¹p2º

.C/;

the previous paragraph proves that J � IX . For all 1 6 j 6 n � 1, we have

xjx0xn D xj�1x1xn D xjxn�1x1 .mod J /;

so xj .x0xn � x1xn�1/ 2 J and IC D J W hx1; x2; : : : ; xn�1i. Hence, the reduced scheme
defined by J is the union of the rational normal curve C and the line through the closed
points p1 and p2. Since no three points of X are collinear and X � V.J /, we deduce
that X � C .

Remark 3.13. One cannot extend the argument in Lemma 3.12 to higher-dimensional
varieties by constructing the determinantal representations of rational normal scrolls as in
[26, Example 9.15]. For instance, consider the irreducible curve X lying on the Veronese
surface �2.P2/ � P5 obtained by intersecting �2.P2/ with a general cubic hypersur-
face. For all closed points p 2 X , the projection �¹pº.X/ is contained in a 2-dimensional
rational normal scroll. However, the curve X is not contained in a 2-dimensional rational
normal scroll because the quadrics in IX define �2.P2/.

We now turn to the higher-dimensional situation.

Theorem 3.14. For a non-degenerate irreducible complex subvariety X � Pn that is
arithmetically Cohen–Macaulay, we have qp.X/ D codim.X/ � 1 if and only if either
".X/ D 1 or X is a codimension-one subvariety in a variety of minimal degree.

Proof. Proposition 3.9 and Example 3.11 prove one direction. For the other direction,
assume that qp.X/ D codim.X/ � 1. We proceed by induction on d WD dim.X/. The
Bertini Theorem [26, Theorem 17.16] implies that the intersection of X with d general
hyperplanes yields a setZ of closed points in linearly general position. Since Lemma 3.12
demonstrates that the homogeneous ideal IZ contains the ideal of a rational normal curve
in C , [1, Corollary 1.26] proves that the linear strand in the minimal free resolution of
the ideal IZ has at least codim.C / D codim.Z/ � 1 nonzero terms. Because the d gen-
eral hyperplanes form a regular sequence, [1, Lemma 2.19] implies that the minimal free
resolution of IX also has at least codim.Z/ � 1 D dim.X/ � 1 nonzero terms. Applying
Green’sKp;1-Theorem [22, Theorem 3.c.1] shows that either deg.X/ 6 2C codim.X/ or
the variety X lies in a variety of minimal degree having dimension equal to 1C dim.X/.
Theorem 3.8 precludes the possibility that deg.X/ D 1C codim.X/, so the classification
of varieties with quadratic deficiency 1 given in Remark 3.10 proves that ".X/ D 1.
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Remark 3.15. Having almost maximal quadratic persistence dictates how many quadrics
are kept under successive projections. When

qp.X/ D codim.X/ � 1;

the sequence � WD �.X/ is given by

��j D �j � �j�1 D

´
codim.X/ � j C 1 if j 6 codim.X/ � ".X/;
codim.X/ � j if j > codim.X/ � ".X/:

Remark 3.16. Our results and examples of subvarieties with large quadratic persistence
suggest a dichotomy. Either the ideal intrinsically has many quadratic polynomials or the
variety has small codimension in another variety with large quadratic persistence. Per-
haps the strongest statement of this form, consistent with our work, is the following: for
any d 2 N, the quadratic persistence of a non-degenerate irreducible complex subvariety
X � Pn is at least codim.X/ � d if and only if ".X/ <

�
dC2
2

�
or X is a hypersurface

in a variety Y with quadratic persistence codim.Y / � d C 1. It would be interesting to
determine whether a statement of this form is true.

Lower bounds on Pythagoras numbers

To link the quadratic persistence of a subvariety to its Pythagoras number, we focus on an
irreducible totally real subvariety X � Pn. When working over the real numbers, we typ-
ically focus on the real points in a variety. The next proposition shows that, for irreducible
totally real varieties, the quadratic persistence is insensitive to the distinction between real
and complex points.

Lemma 3.17. For an irreducible totally real subvariety X � Pn, the quadratic persist-
ence of X is equal to the smallest cardinality of a finite set � of real points in X such that
the homogeneous ideal I�� .X/ contains no quadratic polynomials.

Proof. The complexification of the real variety X is the complex variety

XC WD X �Spec.R/ Spec.C/

and part (iv) in Lemma 3.3 establishes that qp.XC/ is the cardinality of the smallest
general set � of closed points in XC such that the ideal I�� .XC/ contains no quadratic
polynomials. Since the variety X is totally real if and only if the set X.R/ of real points is
Zariski dense, we may assume that the set � of closed points that determines the quadratic
persistence contains only real points.

The strategy for creating lower bounds on the Pythagoras number involves restrict-
ing to faces in the cone †X . The crucial observation, for which variants already appear
in [4, Proposition 1.1], [3, Theorem 1.6], and [36, Proposition 3.3], is the following
lemma. For any subset � of closed points in X , the projection �� WPn Ü Pn�k induces
a monomorphism �

]
� WRŒy0; y1; : : : ; yn�k �=I�� .X/ ! RŒx0; x1; : : : ; xn�=IX between the

homogeneous coordinate rings.
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Lemma 3.18. Let X � Pn be a real subvariety. For any subset � of real points in X ,
the monomorphism �

]
� identifies the sums-of-squares cone †�� .X/ with the face in †X

consisting of all quadratic polynomials vanishing at the points in � .

Proof. Let F �†X be the face of the sums-of-squares cone inR WDRŒx0; x1; : : : ; xn�=IX
consisting of all quadratic polynomials vanishing at the points in � . As �]� is homomorph-
ism of N-graded rings, we see that �]�.†�� .X// � F . Consider

f D g21 C g
2
2 C � � � C g

2
r 2 F

and fix p 2 � . Since f vanishes at the real point p, we see that, for all 1 6 i 6 r , the
element gi also vanishes at p. Hence, the elements f; g1; g2; : : : ; gr all lie in the image
of the map �]� , so we have F � �]�.†�� .X//.

Theorem 1.3 rephrases this observation in terms of the quadratic persistence and
provided our original motivation for Definition 3.1.

Proof of Theorem 1.3. Set k WD qp.X/. Lemma 3.17 ensures that there exists a set

� WD ¹p1; p2; : : : ; pkº

of real points inX such that the ideal I�� .X/ contains no quadratic polynomials. The non-
degeneracy ofX implies the non-degeneracy of ��.X/, so the cone†�� .X/ is equal to the
sums-of-squares cone in Pn�k . Since py.Pn�k/ D n � k C 1, Lemma 3.18 establishes
that py.X/ > nC 1 � k. Lastly, part (i) of Lemma 3.2 proves that k 6 codim.X/, so
py.X/ > 1C n � codim.X/ D 1C dim.X/.

As an immediate consequence, we can strengthen [5, Theorem 1.1].

Corollary 3.19. For any non-degenerate irreducible totally real subvariety X � Pn, we
see that X is a variety of minimal degree if and only if py.X/ D 1C dim.X/.

Proof. Suppose that X is a variety of minimal degree. Theorem 3.8 shows that

qp.X/ D codim.X/:

Combining Corollary 2.3 and Theorem 1.3 gives 1C dim.X/ > py.X/ > 1C dim.X/.
Conversely, suppose that py.X/ D 1C dim.X/. Combining part (i) of Lemma 3.2 and
Theorem 1.3 gives codim.X/ > qp.X/ > codim.X/ and Theorem 3.8 shows that X is
a variety of minimal degree.

Proof of Theorem 1.4. Theorem 3.8 proves that conditions (a) and (c) are equivalent, and
Corollary 3.19 proves between conditions (a) and (b) are equivalent.

We end this section by describing the arithmetically Cohen–Macaulay varieties with
almost minimal Pythagoras numbers.

Corollary 3.20. Let X � Pn be a non-degenerate irreducible totally real subvariety.
Assuming that py.X/ D 2C dim.X/, we have qp.X/ D codim.X/ � 1. If X is arithmet-
ically Cohen–Macaulay and qp.X/ D codim.X/ � 1, then also py.X/ D 2C dim.X/.
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Proof. Assume py.X/ D 2C dim.X/. Theorem 1.3 yields

2C dim.X/ D py.X/ > nC 1 � qp.X/;

so we obtain the lower bound qp.X/ > codim.X/ � 1. Part (i) of Lemma 3.2 provides
the upper bound codim.X/ > qp.X/. Since Theorem 3.8 and Corollary 3.19 show that
qp.X/ D codim.X/ if and only if py.X/ D 1C dim.X/, we conclude that

qp.X/ D codim.X/ � 1:

Suppose that X is arithmetically Cohen–Macaulay and qp.X/ D codim.X/ � 1. The-
orem 1.3 yields the lower bound py.X/> 2C dim.X/. To give the matching upper bound,
Theorem 3.14, together with Remark 3.10, divides the analysis into two cases: if X is
a subvariety having codimension 1 in a variety of minimal degree, then Theorem 2.6
proves that py.X/ 6 2C dim.X/, and if deg.X/ D 2C codim.X/, then Corollary 2.4
proves that py.X/ 6 2C dim.X/.

Proof of Theorem 1.5. Theorem 3.14 proves that conditions (a) and (c) are equivalent,
and Corollary 3.20 proves between conditions (a) and (b) are equivalent.

4. Quadratic persistence and minimal free resolutions

This section connects the quadratic persistence of a complex subvariety X � Pn with
a homological invariant of its homogeneous coordinate ring R WD CŒx0; x1; : : : ; xn�=IX
viewed as a module over the polynomial ring S WD CŒx0; x1; : : : ; xn�. To be more precise,
set

`.X/ WD max¹j 2 N j TorSj .R;C/1Cj ¤ 0º: (4.0.2)

In other words, the Betti table for the S -module R has `.X/ nonzero entries in its first
row or the linear strand in the minimal free resolution of the ideal IX has `.X/ nonzero
terms. In contrast, [18, Section 8D] emphasizes the invariant b.X/ WD `.X/C 1 when X
is a curve of high degree.

Remark 4.1. The numerical invariants of a minimal free resolution can be compactly
displayed in an array. Following [18, Section 1B], the Betti table of an S -moduleM is the
array whose .i; j /-entry is the number dimC TorSj .M;C/iCj . For a complex subvariety
X � Pn, the first three rows in the Betti table of the S -module R D S=IX have the form

in
j 0 1 2 � � � a.X/ a.X/C 1 � � � `.X/ `.X/C 1 � � �

0 1 0 0 � � � 0 0 � � � 0 0 � � �

1 0 � � � � � � � � � � � 0 � � �

2 0 0 0 � � � 0 � � � � � � � � �
:::

:::
:::

:::
:::

:::
:::

:::

where “*” denotes a positive integer. If a.X/ and `.X/ are finite, then we have

0 6 a.X/ 6 `.X/ 6 n:
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Theorem 1.2 asserts that, for any non-degenerate irreducible subvariety X � Pn, the
quadratic persistence qp.X/ is bounded below by the homological invariant `.X/. The
basic plan for proving Theorem 1.2 involves relating the linear syzygies of the variety X
with those of a general inner projection. Roughly speaking, we do this by first evalu-
ating the matrices of linear forms, which represent the linear part of the minimal free
resolution of the homogeneous ideal IX , at general closed points of X . By analysing the
vectors lying in the kernel of a product of these complex matrices, we obtain quadratic
polynomials lying in the homogeneous ideal of the general inner projection. The fact that
these complex matrices anti-commute is vital to the analysis. To convert this outline into
a rigorous argument requires a fair-sized piece of homological machinery.

For convenience, we use the Bernstein–Gelfand–Gelfand correspondence to describe
the linear part of a minimal free resolution. Following [18, Section 7B], the exterior
algebraE Š

V
.S1/

� is the Koszul dual of the polynomial ring S . If e0; e1; : : : ; en are the
generators of E dual to the variables x0; x1; : : : ; xn in S , then e2j D 0 for all 1 6 j 6 n

and ej ek D �ekej for all 1 6 j < k 6 n. We equip E with the Z-grading induced by
setting deg ej D �1 for all 1 6 j 6 n. Although we work with left E-modules, any
Z-graded left E-module U can also be viewed as a Z-graded right E-module. Spe-
cifically, if e 2 E�j and u 2 Uk , then we have eu D .�1/jkue. For a finitely gener-
ated left E-module U D

L
i2Z Ui , the C-vector space dual U � WD

L
i2Z.Ui /

�, where
.Ui /

� WD HomC.Ui ;C/, is naturally a right E-module: for all � 2 .Ui /�, all e 2 E�j ,
and all u 2 UiCj , we have .�e/.u/ D �.eu/. However, as a Z-graded left E-module
where the summand .U �/�i D .Ui /� has degree �i , we have

.e�/.u/ D .�1/ij .�e/.u/ D .�1/ij�.eu/:

The Bernstein–Gelfand–Gelfand correspondence supplies an equivalence of categor-
ies between linear complexes of free S -modules and Z-graded E-modules. Given a Z-
graded E-module U , we make the tensor product S ˝C U into the complex of Z-graded
free S -modules

L.U / WD � � �  � S ˝C Ui�1
@i
 � S ˝C Ui  � � � � ;

where @i .1˝ u/ WD
Pn
jD0 xj ˝ eju and the term S ˝C Ui Š S.�i/

dimC Ui sits in homo-
logical degree i and is generated in degree i ; see [18, Section 7B]. By choosing bases
¹u.i/r º and ¹u.i�1/s º for the C-vector spaces Ui and Ui�1 so that eju

.i/
r D

P
s cj;r;su

.i�1/
s

for all 0 6 j 6 n and some cj;r;s 2 C, the map @i is represented by a matrix of linear
forms whose .r; s/-entry is

Pn
jD0 cj;r;sxj . Proposition 7.5 in [18] proves that L defines

a covariant functor and induces an equivalence from the category of Z-gradedE-modules
to the category of linear complexes of free S -modules. Given a Z-gradedE-moduleU , we
identify an element v 2 E�1 D .S1/� with the linear map vWS1 ˝C U ! U defined by
v.x ˝ u/ D v.x/u. Furthermore, for all i 2 Z, scalar multiplicationE�1 ˝C Ui ! Ui�1
is defined by v ˝ u 7! v.@i .u// D

Pn
jD0 v.xj /eju.

Building on this equivalence, [18, Corollary 7.11] identifies the left E-module cor-
responding to the linear part in the minimal free resolution of an S -module. Focusing on
a non-degenerate irreducible complex subvariety X � Pn defined by the saturated homo-
geneous S -ideal IX , the strand in the minimal free resolution of the S -moduleR WD S=IX
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corresponding to the first row of the Betti table is L.U �X /, where UX is theE-module with
free presentation

0 UX  E.1/˝C ..IX /2/
� ˛
 E.2/˝C ..IX /3/

�

and the map ˛ is defined on the generators 1˝ ..IX /3/� D ..IX /3/� as the dual of the
multiplication map S1 ˝C .IX /2 ! .IX /3. It follows that there is a canonical isomorph-
ism .U �X /1 Š .IX /2 of C-vector spaces and dimC.UX /�j D dimC TorSj .R;C/1Cj for all
j 2 Z. To help internalize this construction, we illustrate it for an accessible projective
subvariety.

Example 4.2. For the rational normal curve C WD �3.P1/ � P3, the saturated homo-
geneous ideal IC is minimally generated by f0 WD x22 � x1x3, f1 WD x1x2 � x0x3, and
f2 WD x

2
1 � x0x2 in S WDCŒx0; x1; x2; x3�. Because the syzygies among these three quad-

ratic binomials are freely generated by the two relations x0f0 � x1f1 C x2f2 D 0 and
x1f0 � x2f1 C x3f2 D 0, the Betti table of the S -module S=IC is

in
j 0 1 2

0 1 0 0

1 0 3 2 :

Choosing the ten cubic binomials

g0 WD x
2
2x3 � x1x

2
3 ; g1 WD x1x2x3 � x0x

2
3 ; g2 WD x

2
1x3 � x0x2x3;

g3 WD x
3
2 � x0x

2
3 ; g4 WD x1x

2
2 � x0x2x3; g5 WD x0x

2
2 � x0x1x3;

g6 WD x
2
1x2 � x0x1x3; g7 WD x0x1x2 � x

2
0x3; g8 WD x

3
1 � x

2
0x3;

g9 WD x0x
2
1 � x

2
0x2

as a basis for .IC /3, it follows that the left E-module homomorphism

˛W

9M
iD0

E.2/!

2M
iD0

E.1/

corresponds to the matrix24e3 �e2 �e1 e2 e1 e0 0 0 0 0
0 e3 0 0 e2 0 e1 e0 0 0
0 0 e3 0 0 �e2 e2 �e1 e1 e0

35 :
The entries in the first row of this matrix come from the four equations x3f0 D g0,
x2f0 D �g1 C g3, x1f0 D �g2 C g4, and x0f0 D g5. The first row of the Betti table
corresponds to the left E-module UC WD Coker.˛/. From the given free presentation,
we may verify directly that dimC.UC /�1 D 3, dimC.UC /�2 D 2, and dimC.UC /�j D 0

for all other j . In particular, the three standard basis vectors for the free E-moduleL2
iD0E.1/ surject onto a C-vector space basis for .UC /�1, and the two vectors

Œe0 0 0�
T; Œe1 0 0�

T
2

2M
iD0

E.1/

surject onto a C-vector space basis for .UC /�2. ˘
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The choice of a closed point p 2 X spawns two related linear free complexes. The
first operation extracts the linear part of the minimal free resolution of the homogeneous
coordinate ring regarded as a module over a smaller polynomial ring. To understand this,
choose an affine representative Qp 2 AnC1 for p 2 Pn and let W 0 be the kernel of the
C-linear map S1 ! C defined by the evaluation f 7! f . Qp/. Setting S 0 WD Sym.W 0/,
the rational map �¹pºWPn Ü Pn�1 WD Proj.S 0/ corresponds to the inclusion W 0 ,! S1
of linear subspaces. Since S1 D .E�1/�, the annihilator of W 0 is generated by

v WD Qp0e0 C Qp1e1 C � � � C Qpnen

and the exterior algebra E 0 WD E=hvi Š
V

HomC.W
0;C/ is Koszul dual to the polyno-

mial ring S 0. By [18, Corollary 7.12], the linear part of the minimal free resolution of the
S 0-module IX .1/ is L..U �X /

0/, where .U �X /
0 is the E 0-module ¹u 2 U �X j vu D 0º. We see

that dimC.U
�
X /
0
j D dimC TorS

0

j .R;C/1Cj for all j 2 Z.
The second operation produces the subcomplex of L.U �X / generated by all of the

quadratic polynomials in IX that are singular at the closed point p 2 X . For the affine
representative Qp 2 AnC1 of p 2 Pn, a polynomial f 2 .IX /2 is singular at p 2 X if and
only if the evaluation of its gradient at this affine representative vanishes: rf . Qp/ D 0.
If J denotes the S -ideal generated by the kernel of the linear map rj QpW .IX /2 ! T �

P2;p
,

then this subcomplex is L..U sg
X /
�/, where U sg

X is the E-module with free presentation

0 �� U
sg
X  �� E.1/˝C .J2/

� ˛sg

 �� E.2/˝C .J3/
�

and ˛sg is defined on the generators .J3/� as the dual of the multiplication map

S1 ˝C J2 ! J3:

There is a canonical isomorphism ..U
sg
X /
�/1 Š J2 of C-vector spaces and .U sg

X /
� is

a Z-graded submodule of U �X .
We demonstrate these two operations with the twisted cubic curve.

Example 4.3. As in Example 4.2, let C denote the rational normal curve in P3. From the
given generators of its homogeneous ideal IC , we see that the closed point

p WD Œ1 W 0 W 0 W 0� 2 P3 (4.3.3)

lies on the curve C . With this choice, the homogeneous coordinate ring for the codomain
of the linear projection away from p is just S 0 WD CŒx1; x2; x3�. When viewed by restric-
tion of scalars as an S 0-module, the linear part of the minimal free resolution of IX .1/
still has the three generators f0; f1; f2, but only one syzygy x1f0 � x2f1 C x3f2 D 0.
On the other hand, left multiplication by v WD e0 2 E�1 on UC is equivalent, modulo the
defining relations for UC , to acting on the free E-module

L2
iD0E.1/ via the matrix24e0 0 0

0 0 0

0 0 0

35 :
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Hence, the cokernel of left multiplication by v on UC has C-vector space basis corres-
ponding to the three vectors Œ1 0 0�T; Œ0 1 0�T; Œ0 0 1�T; Œe1 0 0�T 2

L2
iD0E.1/, so we

deduce that dimC.U
�
C /
0
1 D 3, dimC.U

�
C /
0
2 D 1, and dimC.U

�
C /
0
j D 0 for all other j .

The only quadratic polynomial in IC that is singular at the closed point (4.3.3) is the
generator f0 D x22 � x1x3. It follows that J D hf0i and the Betti table of the S -module
S=J is

in
j 0 1

0 1 0

1 0 1 :

Choosing the four cubic binomials h0 WD x3f0, h1 WD x2f0, h2 WD x1f0, and h3 WD x0f0
as a basis for J3, the leftE-module homomorphism ˛sgW

L3
iD0E.2/! E.1/ corresponds

to the matrix Œe3 e2 e1 e0�. Thus, the first row of the Betti table corresponds to the left
E-module U sg

C
WD Coker.˛sg/. From the given free presentation, we may verify directly

that dimC.U
sg
C /�1 D 1 and dimC.U

sg
C /�j D 0 for all other j . In particular, the standard

basis vector in the free E-module E.1/ surjects onto a C-vector space basis for .U sg
C /�1.

Foreshadowing the next lemma, we also observe that the coimage of multiplication by v
on UC is spanned by the vector Œ1 0 0�T 2

L2
iD0E.1/ and corresponds to U sg

C . ˘

Having gathered this background and notation, we record a couple of observations.
This lemma formalizes our heuristic that evaluating matrices of linear forms at a point on
the variety relates the linear syzygies of a variety to those of its inner projection.

Lemma 4.4. Let p be a closed point in Pn, let Qp WD . Qp0; Qp1; : : : ; Qpn/ 2 AnC1 be an
affine representative of p, and let v WD Qp0e0 C Qp1e1 C � � � C Qpnen be the corresponding
element in E.

(i) For a general closed point p 2 X , the condition .U �X /iC1 ¤ 0 for some i > 1 implies
that we have 0 ¤ v.U �X /iC1 � .U

�
X /i .

(ii) For any closed point p 2 X , the product vU �X lies in the E-module .U sg
X /
�.

Proof. From the definition, we see that .U �X /i D 0 for all i 6 0.
(i) Choosing bases ¹u.iC1/r º and ¹u.i/s º for the C-vector spaces .U �X /iC1 and .UX�/i

satisfying eju.iC1/r D
P
s cj;r;su

.i/
s for all 0 6 j 6 n and some cj;r;s 2 C, the E-module

homomorphism from .U �X /iC1 to .U �X /i defined by multiplication with v is represented
by the matrix whose .r; s/-entry is the number

Pn
jD0 cj;r;s Qpj . Since X is non-degenerate

and p 2 X is general, this matrix is nonzero, so the image v.U �X /iC1 � .U
�
X /i is nonzero.

(ii) By definition, the E-module U sg
X is generated by .U sg

X /�1 Š J
�
2 , so the E-module

.U
sg
X /
� is cogenerated by ..U sg

X /
�/1 Š J2. Hence, it suffices to show that, for all i > 2, all

v0 2 E2�i , and all u 2 .U �X /i , we have v0vu 2 ..U sg
X /
�/1 Š J2. This reduces to proving

that vu 2 ..U sg
X /
�/1 Š J2 for all u 2 .U �X /2. By choosing bases ¹u.2/r º and ¹u.1/s º for the

C-vector spaces .U �X /2 and .U �X /1 satisfying eju.2/r D
P
s cj;r;su

.1/
s for all 0 6 j 6 n

and some cj;r;s 2 C, it follows that

vu.2/r D
X
s

nX
jD0

cj;r;s Qpju
.1/
s :
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If the set ¹fsº of quadratic polynomials in S is the basis of .IX /2 corresponding the ¹u.1/s º,
then we have

rj Qp.vu
.2/
r / D

X
s

nX
jD0

cj;r;s Qpjrfs. Qp/:

However, the map @2WS ˝C U2 ! S ˝ U1 generates the linear syzygies among the poly-
nomials ¹fsº, so we also have

P
s

Pn
jD0 cj;r;sxjfs D 0. Since p 2 X and fs 2 IX , we

see that fs. Qp/ D 0. Thus, the product rule implies that

0 D rj Qp

 X
s

nX
jD0

cj;r;sxjrfs

!
D

X
s

nX
jD0

cj;r;s Qpjrfs. Qp/;

from which we deduce that vu.2/r 2 ..U
sg
X /
�/1 Š J2 as required.

With these preparations, we present a counterpart to [18, Corollary 7.13] showing
that length of the linear part of a minimal free resolution can drop by at most one under
a general inner projection. Identifying the left E-module corresponding to the linear part
in the minimal free resolution of the image is the critical insight. Proposition 3.16 in [1]
presents another approach using Koszul cohomology.

Proposition 4.5. Let X � Pn be a non-degenerate complex subvariety. For any subset �
of k general closed points in X , we have `.X/ 6 k C `.��.X//.

Proof. By construction, `.X/ D max¹j 2 N j .U �X /j ¤ 0º. It suffices to consider the
case k D 1. Let p 2 X be a general closed point, let Qp D . Qp0; Qp1; : : : ; Qpn/ 2 AnC1 be
an affine representative, and let v WD Qp0e0 C Qp1e1 C � � � C Qpnen 2 E. Set W 0 to be the
kernel of the C-linear map S1 ! C defined by the evaluation at Qp and S 0 WD Sym.W 0/.
As in the proof of part (vi) of Lemma 3.3, the quadratic polynomials in IX that lie in W 0

are precisely the quadrics that are singular at the closed point p 2 X . It follows that
.I�¹pº.X//2 D J2 and all of their higher syzygies lie in S 0. By design, S 0 is annihilated
by v, so we see that v.U sg

X /
� D 0 and `.�¹pº.X// D max¹j 2 N j ..U sg

X /
�/j ¤ 0º. Since

deg.v/ D �1, Lemma 4.4 certifies that `.X/ 6 1C `.�¹pº.X//.

Proof of Theorem 1.2. Let k WD qp.X/. We first claim that k D 1 implies that `.X/ D 1.
To see this, suppose that the polynomials f1; f2; : : : ; fm form a basis for the C-vector
space .IX /2. For a general closed point p 2 X with affine representative Qp 2 AnC1,
Corollary 3.4 shows that the gradients rfj . Qp/, for all 1 6 j 6 m, are linearly independ-
ent. If the polynomials f1; f2; : : : ; fm have a linear syzygy, then there are linear forms
g1; g2; : : : ; gm such that

Pm
jD1 gjfj D 0. Taking the gradient and evaluating at Qp givesPm

jD1 gj . Qp/rfj . Qp/ D 0, so gj . Qp/ D 0 for all 1 6 j 6 m. Since X is non-degenerate,
we deduce that all of the linear forms gj are identically zero. Thus, there are no linear
syzygies and `.X/ D 1.

Now, assume that k > 1. Choose a general set ¹p1; p2; : : : ; pkº of closed points in X
and, for all 1 6 j 6 k, set �j WD �¹p1;p2;:::;pj º

. Combining Definition 3.1 and Lemma 3.3
affirms that .I�k.X//2 D 0 and .I�k�1.X//2 ¤ 0, so the previous paragraph implies that
`.�k�1.X// D 1. Since Proposition 4.5 establishes that `.X/ 6 .k � 1/C `.�k�1.X//,
we conclude that k > `.X/.
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We first show that the inequality in Theorem 1.2 may fail for a reducible variety.

Example 4.6 (Bounds for a reducible variety). The variety X � P2 determined by the
monomial ideal hx0x1; x0x2i D hx0i \ hx1; x2i is just the union of the x0-axis and the
point Œ1 W 0 W 0�. Since the Betti table of its homogeneous coordinate ring is

in
j 0 1 2

0 1 0 0

1 0 2 1 ;

we deduce that `.X/ D 2. On the other hand, the rational map given by projecting away
from the point Œ1 W 0 W 0� 2 X surjects onto P1. Hence, the ideal of the image contains no
quadratic polynomials, so we have qp.X/ D 1 < 2 D `.X/. ˘

The next two examples demonstrate that the inequality in Theorem 1.2 can be strict.
They also answer [25, Question 5.8] negatively.

Example 4.7 (Bounds for general canonical curves). Suppose thatX � Pg�1 is a general
canonical curve of genus g and set k WD qp.X/. As in Example 2.10, the Riemann–
Roch Theorem implies that dimC.IX /2 D

�
gC1
2

�
� 3g C 3. Since Corollary 3.7 gives

.g C 1/g � 6g C 6 6 2k.g � 2/ � k.k � 1/, we obtain the lower bound

k >
�
g �

3

2
�
1

2

p
8g � 15

�
:

Furthermore, Green’s Conjecture, which is explained in [18, Section 9B] and proven
in [39], establishes that

a.X/ D

�
1

2
.g � 2/

�
� 1 and `.X/ D g � 3 � a.X/ D

�
1

2
.g � 2/

�
:

Thus, we have qp.X/ > `.X/ for all g > 10. ˘

Remark 4.8. Repurposing Example 4.7, we see that there exists a curve X � Pn and
a general point p 2 X such that `.X/ D `.�¹pº.X//. Indeed, some inner projection of
a general canonical curve of genus at least ten must yield a curve with the desired proper-
ties.

Example 4.9 (Bounds for curves of high degree). Suppose that d � g andX is a smooth
irreducible complex curve of genus g and gonality ı embedded by a complete linear series
of degree d in Pn. Corollary 8.4 in [18] shows that n D d � g and

dimC.IX /2 D

�
d � g C 2

2

�
� .2d � g C 1/:

Setting k WD qp.X/, Corollary 3.7 gives

.d � g C 2/.d � g C 1/ � 2.2d � g C 1/ 6 2k.d � g � 1/ � k.k � 1/;

so we obtain

k >
�
d � g �

1

2
�
1

2

p
8g C 1

�
:
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Moreover, the Gonality Conjecture, which is discussed in [18, Section 8C] and proven in
[17], asserts that `.X/ D d � g � ı. Therefore, the hypothesis that 2ı > 1C

p
8g C 1

implies that k > `.X/. As already observed in Example 2.10, the gonality of a gen-
eral curve is

˙
1
2
.g C 2/

�
, so we have the strict inequality qp.X/ > `.X/ whenever X

is a general curve of genus at least 7. ˘

We close this section with a curious relationship between three of our favourite numer-
ical invariants of an irreducible complex subvariety.

Proposition 4.10. Let X � Pn be a non-degenerated irreducible complex subvariety.
If there exists a varietyX 0�Pn of minimal degree such thatX �X 0 and qp.X/D qp.X 0/,
then we have `.X/ D `.X 0/. Under the additional hypothesis that X is totally real, we
also have py.X/ D py.X 0/.

Proof. Since X 0 is a variety of minimal degree, Corollary 3.19 proves that

1C dim.X 0/ D py.X 0/

and Theorem 3.8 shows that qp.X 0/ D codim.X 0/. Hence, Lemma 2.5 and Theorem 1.3
give

1C dim.X 0/ D py.X 0/ > py.X/
> nC 1 � qp.X/ D nC 1 � qp.X 0/
D nC 1 � codim.X 0/ D 1C dim.X 0/

which shows that py.X/ D py.X 0/. As X 0 is a variety of minimal degree, [18, Corol-
laries A2.62–A2.64] also imply that `.X 0/ D codim.X 0/ D qp.X 0/. Given the inclusion
X � X 0, [1, Corollary 1.28] asserts that `.X/ > `.X 0/. Theorem 1.2 yields

`.X 0/ D qp.X 0/ D qp.X/ > `.X/ > `.X 0/;

which demonstrates that `.X 0/ D `.X/.

5. Toric applications

In this closing section, we refine our estimates on quadratic persistence for projective toric
subvarieties. Notably, we compute the quadratic persistence for any Veronese embed-
ding of the projective plane and for the embedded toric variety corresponding to any
sufficiently tall lattice prism.

For a nested pair X � X 0 of irreducible complex varieties, part (i) of Lemma 3.2
establishes the inequality qp.X/ > qp.X 0/. Our initial goal is to show that the oppos-
ite inequality holds in a special situation. To elucidate this partial converse, we devise
a new kind of transversality. Given a finite set � 0 of closed points in X 0 � Pn span-
ning a .k � 1/-plane, we write ��0 WPn Ü Pn�k for the linear projection away from
Span.� 0/; see Section 3.
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Definition 5.1. LetX 0 � Pn be an irreducible complex subvariety. A subvarietyX � X 0

is transverse to general inner projections if, for all 0 6 k 6 dim.X 0/ and all subsets � 0

of k general closed points in X 0, there exists a subset � of k general closed points in X
such that the image ��.X 0/ is projectively equivalent to the image ��0.X 0/.

This definition captures those nested pairs of subvarieties for which the points in the
smaller variety are sufficient to compute the quadratic persistence of the larger variety.

Lemma 5.2. Let X 0 � Pn be an irreducible complex subvariety. If X � X 0 is transverse
to general inner projections, then the quadratic persistence of X 0 is equal to the smallest
cardinality of a finite set � of general closed points in X such that the ideal I�� .X

0/

contains no quadratic polynomials.

Proof. By part (iv) of Lemma 3.3, the quadratic persistence qp.X 0/ is the smallest k 2 N
for which there exists a finite set � 0 of general closed points in X 0 such that k D j� 0j
and the ideal I��0 .X

0/ contains no quadratic polynomials. SinceX is transverse to general
inner projections, there exists a subset � of general closed points inX such that the image
��.X

0/ is projectively equivalent to the image ��0.X 0/. Thus, the ideal I�� .X
0/ contains

no quadratic polynomials, which completes the proof.

To relate the number of quadratic polynomials in the homogeneous ideals ofX andX 0,
it is convenient to have the following notation.

Definition 5.3. For the nested sequenceX �X 0 � Pn of complex subvarieties, the quad-
ratic residual of X in X 0 is defined to be the integer

qr.X;X 0/ WD dimC.IX /2 � dimC.IX 0/2:

Like in [26, Example 3.1], a variety X 0 � Pn is a cone if there exists a proper sub-
variety X and a closed point q 2 X 0 not lying on X such that X 0 is the union of the lines
Span.¹q; pº/ spanned by the point q 2 X 0 and the points p 2 X . Every such point q is
a vertex of the cone X 0. Having collected the requisite definitions, we now bound the
quadratic persistence from above.

Theorem 5.4. LetX � Pn be a non-degenerate irreducible complex subvariety. Suppose
that X 0 � Pn is a cone containing X such that dim.X 0/ D 1C dim.X/ and, for a ver-
tex q 2 X 0, we have �¹qº.X 0/ D �¹qº.X/. Assuming that X � X 0 is also transverse to
general inner projections, we obtain the inequality qp.X/ 6 max¹qp.X 0/; qr.X;X 0/º.

Proof. Set k0 WD qp.X 0/. Part (iv) of Lemma 3.3 implies that, for a general subset � 0 of k0

closed points in X 0, the ideal I��0 .X
0/ contains no quadratic polynomials. Since X � X 0

is transverse to general inner projections, there exists a subset � of k0 closed points
in X such that the ideal I�� .X

0/ also contains no quadratic polynomials. If necessary,
enlarge the subset � , by appending additional general closed points in X , to ensure that
j�j > qr.X;X 0/. We now claim that the homogeneous ideal I�� .X/ contains no quadratic
polynomials.
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To prove this claim, fix an affine representative Qp 2 AnC1, for each closed point
p 2 X , and consider the map delX W .IX /2 !

Q
p2X .TX 0;p=TX;p/

� defined by

delX .f / WD .rf . Qp/ j p 2 X/:

We first show that the kernel of this map is .IX 0/2. The variety X cannot be contained
in the singular locus of X 0, because the line corresponding to a nonsingular point in X
is nonsingular in X 0. Hence, at a general closed point p 2 X , the tangent space TX 0;p
is naturally isomorphic to TX;p ˚ Span.¹p; qº/. If f 2 Ker.delX /, then the gradient of f
evaluated at the point Qp is orthogonal to the line Span.¹p; qº/. SinceX is non-degenerate,
it follows that f vanishes to order at least 2 at the vertex q, so our assumption that
�¹qº.X/ D �¹qº.X

0/ guarantees that f 2 .IX 0/2. From our characterization of the ker-
nel, we see that the image of delX has dimension qr.X;X 0/. Therefore, we deduce that
.I�� .X//2 D 0 and k0 > qp.X/.

Remark 5.5. Under the additional hypothesis that qr.X;X 0/ 6 qp.X 0/, part (ii) of Lem-
ma 3.2 and Theorem 5.4 combine to prove that qp.X/ D qp.X 0/.

To apply Theorem 5.4, we need a better tool for recognizing subvarieties that are
transverse to general inner projections. The next lemma and proposition forge such a tool.

Lemma 5.6. LetX 0 � Pn be an irreducible complex subvariety that is a cone with vertex
q 2 X 0. For any positive integer k and closed points

p1; p2; : : : ; pk ; p
0
1; p
0
2; : : : ; p

0
k 2 X

0
n ¹qº

such that X 0 is not contained in the linear space Span.¹q; p1; p2; : : : ; pkº/ and

q 2 Span.¹pj ; p
0
j º/ for all 1 6 j 6 k;

the inner projections �¹p
1
;p

2
;:::;p

k
º.X
0/ and �¹p0

1
;p0

2
;:::;p0

k
º.X
0/ are projectively equival-

ent.

Proof. Since our hypothesis includes the conditions q 2 Span.¹pj ; p
0
j º/ and q … ¹pj ; p

0
j º,

we see that
Span.p1; p2; : : : ; pk ; q/ D Span.p01; p

0
2; : : : ; p

0
k ; q/:

For each q0 2 X 0 n Span.q; p1; p2; : : : ; pk/, consider the line Lq0 D Span.¹q; q0º/. The
union of all Lq0 covers a dense subset of X 0, because X 0 is a cone. By fixing a linear sub-
space Pn�k that is complementary to Span.p1; p2; : : : ; pk/ and Span.p01; p

0
2; : : : ; p

0
k
/,

we deduce that �¹p
1
;p

2
;:::;p

k
º.Lq0/ D �¹p0

1
;p0

2
;:::;p0

k
º.Lq0/.

Proposition 5.7. Let X � Pn be an irreducible complex subvariety and let X 0 � Pn be
a cone containing X . If �¹qºjX WX Ü �¹qº.X/ is birational map and �¹qº.X/ is project-
ively equivalent to �¹qº.X 0/, then the subvariety X � X 0 is transverse to general inner
projections.

Proof. Let � W�¹qº.X/ Ü X be the inverse of the birational map �¹qºjX WX Ü �¹qº.X/.
If p1; p2; : : : ; pk are general closed points in X 0, then their images

�¹qº.p1/; �¹qº.p2/; : : : ; �¹qº.pk/
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avoid the indeterminacy locus of � , so set p0j WD �.�¹qº.pj // for 1 6 j 6 k. By construc-
tion, we have q 2 Span.¹pj ; p

0
j º/ and q … ¹pj ; p

0
j º for all 1 6 j 6 k. Hence, Lemma 5.6

shows that �¹p
1
;p

2
;:::;p

k
º.X
0/ and �¹p0

1
;p0

2
;:::;p0

k
º.X
0/ are projectively equivalent, which

proves that X � X 0 is transverse to general inner projections.

We illustrate the power of Theorem 5.4 and Proposition 5.7 with a family of examples.

Example 5.8 (The quadratic persistence of the Veronese embeddings of P2). For all
j > 2, the map �j WP2! P .

jC2
2 /�1 is defined by Œx0 W x1 W x2� 7! Œx

j
0 W x

j�1
0 x1 W � � � W x

j
2 �.

We claim that

qp.�j .P2// D
�
j C 1

2

�
:

To prove this, we proceed by induction on j . In the base case, the Veronese surface
�2.P2/ � P5 is a variety of minimal degree, so Theorem 3.8 gives

qp.�2.P2// D codim.�2.P2// D 3 D
�
2C 1

2

�
:

For any j > 2, the embedded toric surface �j .P2/ � P j.jC3/=2 corresponds to the lattice
triangle Tj WD conv¹0; j e1; j e2º � R2, where e1; e2 denotes the standard basis for R2;
see [15, Example 2.3.15]. Consider the following sequence of inner projections: for i ,
decreasing by 1 from j to 1, project away from the torus-invariant point correspond-
ing to the lattice point .0; i/. The final embedded projective toric variety corresponds
to the lattice polytope P WD conv¹0; Tj�1 C e1º and part (v) of Lemma 3.3 shows that
qp.�j .P2// 6 j C qp.XP\Z2/.

We next verify that qp.XP\Z2/ D qp.�j�1.P2//. Let e0; e1; e2 denote the standard
basis for R3 and set P 0 WD conv¹e0; Tj�1 C e1º � R �R2 Š R3. The coordinate pro-
jection R �R2 ! R2 defines a bijection between the lattice points in P and P 0 and
establishes that the associated toric varieties are nested in the same ambient projective
space. Since the lattice polytope P 0 is a pyramid, its associated embedded projective toric
variety XP 0\Z3 is a cone whose vertex corresponds to the lattice point e0 2 P 0, so Pro-
position 5.7 shows that the subvariety XP\Z2 � XP 0\Z3 is transverse to general inner
projections. Applying part (ii) of Lemma 3.2 and Theorem 5.4, we obtain the inequal-
ities qp.XP 0\Z3/ 6 qp.XP\Z2/ 6 max¹qp.XP 0\Z3/; qr.XP\Z2 ; XP 0\Z2/º. We deduce
that the lattice polytopes P and P 0 are normal from [15, Corollary 2.2.13]. Hence, com-
bining [15, Theorem 5.4.8 and Theorem 9.2.3] with the theory of Ehrhart polynomials
(see [15, Section 9.4]) yields

qr.XP\Z2 ; XP 0\Z3/ D j2P 0 \ Z3j � j2P \ Z2j

D

��
2j

2

�
C

�
j C 1

2

�
C 1

�
�

��
2j

2

�
C j C 1

�
D

�
j

2

�
:

Because P 0 is a pyramid over the polygon Tj�1 C e1, we also have

qp.XP 0\Z3/ D qp.X.Tj�1Ce1/\Z2/:
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Thus, the induction hypothesis gives

qp.X.Tj�1Ce1/\Z2/ D qp.XTj�1\Z2/ D qp.�j�1.P2// D
�
j

2

�
;

so we conclude that qp.XP\Z2/ D
�
j
2

�
D qp.�j�1.P2//.

The inequality at the end of the first paragraph together with the equality in the second
paragraph prove that qp.�j .P2// 6

�
jC1
2

�
. For the complementary lower bound, observe

that

dimC.I�j .P2//2 D

��jC2
2

�
C 1

2

�
�

�
2j C 2

2

�

D

.jC2
2 /X

iD2jC2

i D

.jC2
2 /X

iDjC2

i �

2jC1X
iDjC2

i D

.jC2
2 /X

iDjC2

.i � 3/

and the right side is the sum of the codimension of the varieties obtained by success-
ively projecting �j .P2/ away from a point

�
jC1
2

�
times. Thus, part (i) of Lemma 3.2

shows that we need to project away from at least
�
jC1
2

�
points to eliminate all quadratic

polynomials, so qp.�j .P2// >
�
jC1
2

�
. ˘

Remark 5.9. The techniques developed in [36] yield a different proof that

qp.�j .P2// D
�
j C 1

2

�
:

This completely independent approach hinges on knowing the Hilbert function for the
square of the vanishing ideal for general closed points in P2; see [30, Proposition 4.8].

Remark 5.10. The tactic employed in Example 5.8 to realize a toric variety as a subvari-
ety transverse to general inner projections generalizes. For a lattice polytope P � Rd and
a vertex v 2 P \ Zd , set P 0 WD conv¹vC e0; .P \ Zd / n vº � R �Rd Š RdC1. Using
Proposition 5.7, one may verify that the toric inclusion XP\Zd � XP 0\ZdC1 is always
transverse to general inner projections.

Our formula for the quadratic persistence of the toric surface �j .P2/ � P j.jC3/=2 also
produces bounds on its Pythagoras number, re-proving [36, Theorem 3.6].

Example 5.11 (Pythagoras numbers for the Veronese embeddings of P2). Combining
Example 5.8 and Theorem 1.3 gives py.�j .P2// >

�
jC2
2

�
�
�
jC1
2

�
D j C 1. Since Ex-

ample 2.17 shows that py.�j .P2// 6 j C 2, we confirm that py.�j .P2// is either j C 1
or j C 2. ˘

We next calculate the quadratic persistence for projective toric subvarieties arising
from a special class of polytopes. For all positive k 2 Z and any lattice polytope P � Rd ,
the prism P � Œ0; k� � RdC1 is also a lattice polytope. The ensuing proposition shows
that a rational normal scroll containing the toric variety X.P�Œ0;k�/\ZdC1 determines its
quadratic persistence for all large k.
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Proposition 5.12. For any lattice polytope P � Rd having dimension greater than one
and any positive integer k greater than or equal to 1

dim.P /�1 jP \ Zd j � 1, the quad-
ratic persistence of the projective toric subvariety associated to the prism P � Œ0; k�

equals kjP \ Zd j � 1. Moreover, we also have py.X.P�Œ0;k�/\ZdC1/ D 1C jP \ Zd j
and `.X.P�Œ0;k�/\ZdC1/ D kjP \ Zd j � 1.

Proof. We proceed by induction on jP \ Zd j. For the base case, it suffices to consider
a standard simplex. If e1; e2; : : : ; ed denotes the standard basis for Rd , then we have
P D conv¹0; e1; e2; : : : ; ed º. For any positive integer k, the corresponding toric subvari-
ety X.P�Œ0;k�/\ZdC1 is the Segre embedding of the product Pd � �k.P

1/ in PkdCdCk ,
where the factor �k.P1/ � Pk is the rational normal curve of degree k. This variety is
itself a rational normal scroll, so Theorem 3.8 establishes that

qp.X.P�Œ0;k�/\ZdC1/ D codim.X.P�Œ0;k�/\ZdC1/

D .kd C d C k/ � .d C 1/ D kjP \ Zd j � 1:

Now, suppose thatP � Rd is an arbitrary lattice polytope and assume that the positive
integer k satisfies k > 1

dim.P /�1 jP \ Zd j � 1. Corollary 2.15 shows that the embedded
projective toric variety X.P�Œ0;k�/\ZdC1 is contained in a rational normal scroll XP 0\Zm

whose dimension m WD jP \ Zd j is equal to the number of parallel lines needed to cover
all of the lattice points in the prism P � Œ0; k�. Hence, part (ii) of Lemma 3.2 and The-
orem 3.8 give the lower bound

qp.X.P�Œ0;k�/\Zd / > qp.XP 0\Zm/ D codim.XP 0\Zm/

D
�
.k C 1/jP \ Zd j � 1

�
� jP \ Zd j

D kjP \ Zd j � 1:

To prove the complementary upper bound, choose a vertex v 2 P . Set

Q WD conv¹.P \ Zd / n vº;

so dim.P / � 1 6 dim.Q/ 6 dim.P /. Since jQ \ Zd j < jP \ Zd j, the induction hypo-
thesis establishes that qp.X.Q�Œ0;k�/\ZdC1/ D kjQ \ Zd j � 1. We relate this quantity to
qp.X.P�Œ0;k�/\ZdC1/ via the following sequence of inner projections: for i , decreasing
by 1 from k to 1, project away from the torus-invariant point corresponding to the lattice
point .v; i/. We are moving down the edge of the prism P � Œ0; k� lying over the vertex
v. The final embedded projective toric variety corresponds to

Q0 WD conv
®
.Q � Œ0; k�/ [ ¹.v; 0/º

¯
:

We claim that qp.XQ0\ZdC1/ D qp.X.Q�Œ0;k�/\ZdC1/. This claim together with part (v)
of Lemma 3.3 would give

qp.X.P�Œ0;k�/\ZdC1/ 6 k C qp.XQ0\ZdC1/

D k C kjQ \ Zd j � 1 D kjP \ Zd j � 1

as required. Thus, it only remains to prove the claim.
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To accomplish this, choose a lattice point w 2 P \ Zd adjacent to the vertex v 2 P
such that the primitive vector v � w is parallel to an edge of the polytope P passing
through v. Consider the pyramid

Q00 WD conv
®
.Q � Œ0; k� � 0/ [ ¹.w; 0; 1/º

¯
� Rd �R �R

and the linear projection � WRd �R �R! Rd �R defined by

.u; y; z/ 7! .u; y/C z.v � w; 0/:

By design, the map � induces a bijection between the lattice points in Q00 and Q0, so the
associated toric varieties are nested in the same ambient projective space. Since the lattice
polytope Q00 is a pyramid, the embedded projective toric variety XQ00\ZdC2 is a cone
and Proposition 5.7 shows that the subvariety XQ0\ZdC1 � XQ00\ZdC2 is transverse to
general inner projections. Applying part (ii) of Lemma 3.2 and Theorem 5.4, we obtain

qp.XQ00\ZdC1/ 6 qp.XQ0\ZdC1/ 6 max¹qp.XQ00\ZdC2/; qr.XQ0\ZdC1 ; XQ00\ZdC2/º:

Regarding the homogeneous coordinate rings of these embedded projective toric varieties
as semigroup algebras (see [15, Theorem 1.1.7]), we have

qr.XQ0\ZdC1 ; XQ00\ZdC2/ D jQ00 \ ZdC2 CQ00 \ ZdC2j

� jQ0 \ ZdC1 CQ0 \ ZdC1j:

Partitioning via the last coordinate, we deduce that

jQ00 \ ZdC2 CQ00 \ ZdC2j D j.Q � Œ0; k�/ \ ZdC1 C .Q � Œ0; k�/ \ ZdC1j

C j.Q � Œ0; k�/ \ ZdC1j C 1:

Set
A WD ¹u 2 Q \ Zd j uC v … Qº:

For all u 2 Q \ Zd and all i 2 Z satisfying 0 6 i 6 k, the condition

.u; i/C .v; 0/ … Q0 \ ZdC1 CQ0 \ ZdC1

implies that uC v … Q, so a similar partition gives

jQ0 \ ZdC1 CQ0 \ ZdC1j D j.Q � Œ0; k�/ \ ZdC1 C .Q � Œ0; k�/ \ ZdC1j

C .k C 1/jAj C 1:

It follows that

qr.XQ0\ZdC1 ; XQ00\ZdC2/ D .k C 1/.jQ \ Zd j � jAj/:

Since Q00 is a pyramid over the prism Q � Œ0; k�, we also have

qp.XQ00\ZdC2/ D qp.X.Q�Œ0;k�/\ZdC1/ D kjQ \ Zd j � 1:
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As advertised in Remark 5.5, the additional inequality

qr.XQ0\ZdC1 ; XQ00\ZdC2/ 6 qp.XQ00\ZdC2/

would give the equality qp.XQ0\ZdC1/ D qp.XQ00\ZdC2/ and, thereby, prove the claim.
This additional inequality is equivalent to jP \ Zd j D jQ \ Zd j C 1 6 .k C 1/jAj. To
estimate the cardinality of A, consider a facet F � Q that is not a facet of P . For each
lattice point u 2 F \ Zd , we have uC v … Q, so jAj > jF \ Zd j. Because F is a lat-
tice polytope of dimension dim.Q/ � 1 > dim.P / � 1, we infer that jAj > dim.P / � 1.
Therefore, the hypothesis that k > 1

dim.P /�1 jP \ Zd j � 1 guarantees that additional in-
equality holds. Finally, using the rational normal scroll XP 0\Zm , Proposition 4.10 proves
that py.X.P�Œ0;k�/\ZdC1/D 1C jP \Zd j and `.X.P�Œ0;k�/\ZdC1/D kjP \Zd j � 1.

We draw attention to an application of Proposition 5.12 in which the hypothesis on k
is vacuous.

Example 5.13 (Special Segre–Veronese embeddings of Pd � P1 � P1). Fix three pos-
itive integer d; j; k 2 N with k > j , let e1; e2; : : : ; ed denote the standard basis for Rd ,
and consider the lattice polytope P WD conv¹0; e1; e2; : : : ; ed º � Œ0; j �. The corresponding
toric varietyXP�Œ0;k� is the Segre embedding of the triple product Pd � �j .P1/ � �k.P

1/

into P .dC1/.jC1/.kC1/�1, so Proposition 5.12 gives

qp.XP�Œ0;k�/ D k.d C 1/.j C 1/ � 1 D `.XP�Œ0;k�/;
py.XP�Œ0;k�/ D .d C 1/.j C 1/C 1: ˘
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