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SUMS OF SQUARES

AND VARIETIES OF MINIMAL DEGREE

GRIGORIY BLEKHERMAN, GREGORY G. SMITH, AND MAURICIO VELASCO

1. Introduction

The study of nonnegativity and its relation with sums of squares is a basic
challenge in real algebraic geometry. The classification of varieties of minimal degree
is one of the milestones of classical complex algebraic geometry. The goal of this
paper is to establish the deep connection between these apparently separate topics.

To achieve this, let X ⊆ P
n be an embedded real projective variety with homoge-

neous coordinate ring R. The variety X has minimal degree if it is nondegenerate
(not contained in a hyperplane) and deg(X) = 1 + codim(X). A homogeneous
element f ∈ R of even degree is nonnegative if its evaluation at each real point of
X is at least zero. Our main theorem is a broad generalization of Hilbert’s 1888
classification of nonnegative forms and provides a tight connection between real
and complex algebraic geometry.

Theorem 1.1. Let X ⊆ Pn be a real irreducible nondegenerate projective subvariety
such that the set X(R) of real points is Zariski dense. Every nonnegative real
quadratic form on X is a sum of squares of linear forms in R if and only if X is a
variety of minimal degree.

Using the Veronese embedding, this theorem extends to forms of any even degree;
see Remark 4.6.

Together with the well-known catalogue for varieties of minimal degree (see The-
orem 1 in [EH]), our main theorem produces a complete list of varieties for which
nonnegative quadratic forms are sums of squares. There are exactly three families:

• totally real irreducible quadratic hypersurfaces (Example 4.3),
• cones over the Veronese surface (Example 4.4), and
• rational normal scrolls (Example 4.5).

By replacing elements of R with global sections of a line bundle, we also de-
velop an intrinsic version of the main theorem; see Theorem 5.1. Applying this to
line bundles on projective space, we recover Hilbert’s classification of nonnegative
forms in a standard graded polynomial ring—for binary forms, quadratic forms,
and ternary quartics, nonnegativity is equivalent to being a sum of squares and,
in all other situations, there exist nonnegative forms that are not sums of squares;
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see Example 5.5. In particular, the exceptional Veronese surface corresponds to
the exceptional case of ternary quartics. We obtain the classification of multiforms
appearing in [CLR] from line bundles on a product of projective spaces; see Exam-
ple 5.6. More generally, by working with a projective toric variety or a multigraded
polynomial ring, we enumerate the cases in which every nonnegative multihomoge-
neous polynomial may be expressed as a sum of squares. Specifically, we discover
that the ternary quartics belong to an infinite family consisting of cones over the
Veronese surface and all other cases come from rational normal scrolls; see Exam-
ple 5.7, Example 5.8, and Remark 5.9.

Enhancing the intrinsic approach for line bundles on a toric variety yields an
analogue of our main theorem for sparse Laurent polynomials. To be more precise,
let M be an affine lattice of rank m and let Q be an m-dimensional lattice polytope
in M ⊗Z R. The h∗-polynomial of Q is defined by

h∗0(Q) + h∗1(Q) t+ · · ·+ h∗m(Q) tm = (1− t)m+1
∑

k�0
|(kQ) ∩M | tk .

We establish that every nonnegative Laurent polynomial with Newton polytope in
2Q is a sum of squares if and only if h∗2(Q) = 0 and the image of the real points
under the associate morphism is dense in the strong topology; see Theorem 6.4. We
also describe all of the lattice polytopes Q for which h∗2(Q) = 0; see Proposition 6.6.
This generalizes the main theorem in [BN] classifying degree-one lattice polytopes;
see Remark 6.10.

For the proof of Theorem 1.1, convexity provides the bridge between real and
complex algebraic geometry. The collections of nonnegative elements and sums of
squares both form closed convex cones; see Lemma 2.1. More significantly, the dual
of the sums-of-squares cone is a spectrahedron, so its extreme rays have an algebraic
characterization; see Observation 2.2. This characterization drives the transition
between real and complex algebraic geometry.

Contents of the paper. Section 2 defines the fundamental cones: PX consists of
the nonnegative elements, and ΣX consists of the sums of squares. The description
in Lemma 2.3 of the extreme rays of Σ∗

X is the key. In Section 3, we introduce
the quadratic deficiency ε(X) of the embedded variety X ⊆ P

n. This numerical
invariant is an algebraic incarnation of h∗2(Q) and forms the pivotal link between
quadratic forms and varieties of minimal degree; see Lemma 3.1. As Proposi-
tion 3.2 establishes, having ε(X) > 0 is a sufficient condition for the existence of
nonnegative real quadratic forms on X that cannot be expressed as sums of squares.
Procedure 3.3 constructs nonnegative quadratic forms that are not sums of squares.
Proposition 3.5 analyzes the varieties with ε(X) = 1. We prove the main theorem in
Section 4. Proposition 4.1 shows that ε(X) = 0 is sufficient. Remark 4.7 connects
the main theorem to the truncated moment problem in real analysis. Section 5
translates the main theorem and principal examples into the intrinsic setting of
basepoint-free linear series, and Section 6 develops the polyhedral theory.

2. Convexity and spectrahedral properties

In this section, we develop the necessary tools from convex algebraic geometry.
We carefully define the fundamental cones and highlight their properties.

Let X ⊆ P
n be a nondegenerate m-dimensional totally real projective subvariety.

In particular, X is a geometrically integral projective scheme over Spec(R) such
that X is not contained in a hyperplane and the set X(R) of real points is Zariski
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SUMS OF SQUARES AND MINIMAL DEGREE 3

dense. Set e := n−m = codim(X). If I is the unique saturated homogeneous ideal
vanishing on X, then the Z-graded coordinate ring of X is R := R[x0, x1, . . . , xn]/I.
For j ∈ Z, the graded component Rj of degree j is a finite dimensional real vector
space. Since X is nondegenerate, we have R[x0, x1, . . . , xn]1 = R1. Given f ∈ R2j

and p ∈ X(R), the sign of f at p is

sgnp(f) := sgn
(
f̃(p̃)

)
∈ {−1, 0, 1},

where the polynomial f̃ ∈ R[x0, x1, . . . , xn]2j maps to f and the nonzero real point
p̃ ∈ A

n+1(R) maps to p under the canonical quotient homomorphisms; compare

with Section 2.4 in [S1]. Since p ∈ X(R), the real number f̃(p̃) is independent of

the choice f̃ . Similarly, the choice of the affine representative p̃ is determined up
to a nonzero real number, so the value of f̃(p̃) is determined up to the square of a
nonzero real number because the degree of f is even. We simply write f(p) � 0 for
sgnp(f) � 0.

The central objects of study are the following subsets in R2:

PX := {f ∈ R2 : f(p) � 0 for all p ∈ X(R)} , and

ΣX :=

{
f ∈ R2 :

there exists g1, g2, . . . , gk ∈ R1

such that f = g21 + g22 + · · ·+ g2k

}
.

We clearly have ΣX ⊆ PX . To describe the properties of these special subsets,
consider the R-linear map σ : Sym2(R1) → R2 induced by multiplication in R

and let σ∗ : R∗
2 → Sym2(R∗

1) =
(
Sym2(R1)

)∗
be the dual. More explicitly, for

a linear functional � ∈ R∗
2, σ∗(�) is the symmetric linear map R1 ⊗R R1 → R

defined by g1⊗ g2 �→ �(g1g2). For p ∈ X(R), evaluation at any affine representative
p̃ ∈ An+1(R) determines p̃∗ ∈ R∗

1. Because p ∈ X(R), the map Sym2(R1) → R

induced by p̃∗ ∈ R∗
1 annihilates I2 and defines the element (p̃∗)2 ∈ R∗

2. Since
evaluations at distinct representatives differ by the square of a nonzero constant,
the ray cone

(
(p̃∗)2

)
:= {λ · (p̃∗)2 : λ � 0} ⊆ R∗

2 is independent of the choice of the
affine representative.

The following fundamental lemma is a minor variant of well-known results; com-
pare with Theorem 3.35 in [L2] or Exercise 4.2 in [BPT].

Lemma 2.1. Both PX and ΣX are pointed full-dimensional closed convex cones
in the real vector space R2. We also have

P∗
X = cone

(
(p̃∗)2 : p ∈ X(R)

)
= {λ1(p̃

∗
1)

2 + λ2(p̃
∗
2)

2 + · · ·+ λk(p̃
∗
k)

2 : p̃i ∈ X(R) and λi � 0} ,
and Σ∗

X = {� ∈ R∗
2 : σ∗(�) is positive-semidefinite}.

Proof. We first consider the nonnegative elements. Set

P := cone
(
(p̃∗)2 : p ∈ X(R)

)
.

An element f ∈ R2 belongs to PX if and only if f(p) � 0, so P ∗ = PX . It follows
that PX is a closed convex cone and (P ∗)∗ = P∗

X . To show that P is closed, fix
an inner product on R∗

2 and let � �→ ‖�‖ denote the associated norm. For each
p ∈ X(R), the linear functional (p̃∗)2/‖(p̃∗)2‖ ∈ R∗

2 is independent of the choice of
the affine representative. Since X(R) ⊆ P

n(R) is compact in the induced metric
topology, the spherical section K :=

{
(p̃∗)2/‖(p̃∗)2‖ : p ∈ X(R)

}
of P is compact.

Because X is totally real, the convex hull of K does not contain 0. Since P is the
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4 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

conical hull of K, the cone P is closed and P = P∗
X . By hypothesis, the set X(R)

of real points is Zariski dense, so PX cannot contain a nonzero linear subspace.
We next examine the sums of squares. For � ∈ Σ∗

X , we have �(f2) � 0 for all
f ∈ R1, so the bilinear symmetric form σ∗(�) is positive semidefinite. Conversely,
if σ∗(�) is positive semidefinite, then �(g2) � 0 for all g ∈ R1. Hence, we have

�(g21 + g22 + · · ·+ g2k) = �(g21) + �(g22) + · · ·+ �(g2k) � 0

for g1, g2, . . . , gk ∈ R1, and � ∈ Σ∗
X . Thus, � ∈ Σ∗

X if and only σ∗(�) is a positive-
semidefinite symmetric bilinear form. By duality, the cone ΣX is a linear projection
of the convex cone S+ of positive-semidefinite symmetric bilinear forms. Since S+

is full-dimensional and σ : Sym2(R1) → R2 is surjective, it follows that ΣX is also
full-dimensional. To complete the proof, fix an inner product on R1 and let g �→ ‖g‖
denote the associated norm. The spherical section

K ′ := {g2 ∈ R2 : g ∈ R1 satisfies ‖g‖ = 1}
is compact, because it is the continuous image of a compact set. As above, its
convex hull does not contain the origin. Therefore, the cone ΣX is closed. �

The subsequent observation is the key insight from convex geometry needed to
prove our main result. Lemma 2.3 is the simple, but crucial, algebraic consequence
of this observation.

Observation 2.2. Lemma 2.1 shows that Σ∗
X is a spectrahedron, that is, a section

of the convex cone S+ of positive-semidefinite symmetric bilinear forms. Hence,
Theorem 1 in [RG] implies that every face of Σ∗

X is exposed. The unique face
containing � ∈ Σ∗

X in its relative interior is given by H� ∩ Σ∗
X where

H� := {�′ ∈ R∗
2 : Ker

(
σ∗(�)

)
⊆ Ker

(
σ∗(�′)

)
} .

Moreover, Corollary 3 in [RG] characterizes the extreme rays as follows: a point
in a spectrahedron is extreme if and only if the kernel of its associated positive
semidefinite form is maximal with respect to the inclusion. Hence, if � ∈ Σ∗

X is
an extreme point and A ∈ Im(σ∗) such that Ker

(
σ∗(�)

)
⊆ Ker(A), then we have

σ∗(�) = λA for some λ ∈ R.

Lemma 2.3. If � ∈ R∗
2 generates an extreme ray of Σ∗

X , then either � is given
by evaluation at some p ∈ X(R) or the subspace Ker

(
σ∗(�)

)
⊆ R1 contains a

homogeneous system of parameters on R.

Proof. First, suppose that the linear forms in Ker
(
σ∗(�)

)
have a common real zero

p ∈ X(R). Choose an affine representative p̃ ∈ An+1(R). If σ∗((p̃∗)2) ∈ Sym2(R∗
1)

is the associated symmetric form, then we have Ker
(
σ∗(�)

)
⊆ Ker

(
σ∗((p̃∗)2)). Since

� ∈ Σ∗
X generates an extreme ray, Observation 2.2 implies that σ∗(�) = λ(p̃∗)2 for

some λ ∈ R. As both σ∗(�) and (p̃∗)2 are positive semidefinite, it follows that λ > 0.

Hence, by changing the affine representative for p ∈ X(R) to
√
λp̃ ∈ An+1(R), we

obtain � = (p̃∗)2.
Now, assume that the only common zeroes for the linear forms in Ker

(
σ∗(�)

)
have

a nonzero complex part. Choose an affine representative ζ̃ ∈ An+1(C) for one of

these complex zeroes. Define �′ ∈ R∗
2 by �′(f) := Re

(
f(ζ̃)

)
to be the real part of the

evaluation of f at ζ̃; this is well-defined because ζ ∈ X. By construction, we have
Ker

(
σ∗(�)

)
⊆ Ker

(
σ∗(�′)

)
. Since � ∈ Σ∗

X generates an extreme ray, Observation 2.2
implies that σ∗(�) = λσ∗(�′) for some λ ∈ R. However, there exist g1, g2 ∈ R1 such
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SUMS OF SQUARES AND MINIMAL DEGREE 5

that g1(ζ̃) = 1 and g2(ζ̃) =
√
−1, so �′(g21) = 1 and �′(g22) = −1. Hence, σ∗(�) is not

positive semidefinite, which by Lemma 2.1 contradicts the hypothesis that � ∈ Σ∗
X .

In other words, our assumption guarantees that the linear forms in Ker
(
σ∗(�)

)
have

no common zeroes in X. Therefore, we conclude that Ker
(
σ∗(�)

)
⊆ R1 contains a

homogeneous system of parameters via the Nullstellensatz. �

3. Separating the fundamental cones

This section investigates differences between the sums-of-squares cone ΣX and
the nonnegative cone PX . It relates the positivity of an algebraic invariant associ-
ated to an embedded variety X ⊆ Pn with the proper inclusion of ΣX in PX . We
construct witnesses that separate ΣX and PX . Moreover, we give a general proce-
dure for constructing nonnegative real quadratic forms on X that are not sums of
squares.

Emulating Section 5 in [Z], we define the quadratic deficiency of the subva-
riety X ⊆ P

n to be ε(X) :=
(
e+1
2

)
− dim(I2) where e := codim(X) and I is the

unique saturated homogeneous ideal vanishing on X. The first lemma provides a
couple of elementary reinterpretations for this numerical invariant and recounts the
important connection between ε(X) and varieties of minimal degree.

Lemma 3.1. The quadratic deficiency ε(X) equals the coefficient of the quadratic
term in the numerator of the Hilbert series for X and

ε(X) = dim(R2)− (m+ 1)(n+ 1) +

(
m+ 1

2

)
.

Moreover, ε(X) is nonnegative and ε(X) = 0 if and only if deg(X) = 1+codim(X).

Proof. Since X is nondegenerate, it follows that dim(R0) = 1 and dim(R1) = n+1.
Hence, there exists a polynomial 1+ e t+h∗2(X) t2+ · · ·+h∗n(X) tn ∈ Z[t] such that

∑
j�0

dim(Rj) t
j =

1 + e t+ h∗2(X) t2 + · · ·+ h∗n(X) tn

(1− t)m+1
.

Using the binomial theorem to compare the coefficients, we obtain

dim(R2) =
(
m+2
2

)
+ e

(
m+1
1

)
+ h∗2(X)

(
m+0
0

)
=

(
m+1
2

)
+
(
m+1
1

)
+ (n−m)(m+ 1) + h∗2(X)

=
(
m+1
2

)
−m(m+ 1) + (n+ 1)(m+ 1) + h∗

2

= −
(
m+1
2

)
+ (n+ 1)(m+ 1) + h∗2(X) .

Rearranging this equation and using the presentation for R yields

h∗2(X) = dim(R2)− (m+ 1)(n+ 1) +
(
m+1
2

)
=

(
n+2
2

)
− dim(I2)− (m+ 1)(n+ 1) + (m+1)m

2

= (n−m+1)(n−m)
2 − dim(I2) =

(
e+1
2

)
− dim(I2) = ε(X) ,

which establishes the results in the first sentence of the lemma. Both parts of the
second sentence are well-known. As Theorem 1.2 in [L3] indicates, they can be
deduced from Castelnuovo’s Lemma, which states that if n(n− 1)/2 linearly inde-
pendent quadrics pass through at least 2n+3 points in linearly general position in
Pn, then these points lie on a rational normal curve. Corollary 5.4 and Corollary 5.8
in [Z] give alternative proofs using properties of secant varieties. �

Licensed to Queen's Univ. Prepared on Wed Mar 23 08:54:40 EDT 2016 for download from IP 130.15.241.167.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

The subsequent proposition, which extends both Theorem 1.1 and Theorem 1.2
in [B2], provides one of the implications needed for the proof of Theorem 1.1.

Proposition 3.2. If ε(X) > 0, then ΣX is a proper subset of PX .

Proof. Since ε(X) > 0, Lemma 3.1 gives deg(X) > 1 + codim(X). We begin by
showing that there exist h1, h2, . . . , hm ∈ R1 such that Z := X ∩V(h1, h2, . . . , hm)
is a reduced set of points in linearly general position containing at least e+ 1 dis-
tinct real points. To achieve this, observe that Bézout’s Theorem implies that the
intersection of a positive-dimensional irreducible nondegenerate variety with a gen-
eral hyperplane is nondegenerate; see Proposition 18.10 in [H1]. Next, Bertini’s
Theorem (see Théorème 6.3 in [J]) establishes that a general hyperplane section
of a geometrically integral variety of dimension at least 2 is geometrically inte-
gral and that a general hyperplane section of a geometrically reduced variety is
geometrically reduced. Third, we see that a geometrically integral real variety is
totally real if and only if it contains a nonsingular real point; see Section 1 in
[B1]. Finally, we note that the locus of hyperplanes that intersect the nonsingu-
lar locus of X transversely contains a nonempty Zariski open set. By combining
these four observations, we deduce that the intersection of X with m − 1 general
hyperplanes yields a nondegenerate geometrically integral totally real curve C in
V(h1) ∩ V(h2) ∩ · · · ∩ V(hm−1) ∼= Pe+1. The degree of C, which equals deg(X), is
at least e + 1; see Corollary 18.12 in [H1]. Any set of e + 1 distinct real points on
C lie in a real hyperplane. Since C is nondegenerate and totally real, the locus of
hyperplanes intersecting C in at least e + 1 distinct real points has dimension at
least e+ 1. Hence, there exists a hyperplane V(hm) such that intersection with C
is a set of points in linearly general position containing at least e + 1 distinct real
points.

To complete the proof, we use points in Z to exhibit a linear functional in
Σ∗

X \P∗
X . We divide the analysis into two cases. In the first case, we assume that

the intersection Z contains at least e + 2 distinct real points. Choose an affine
representative p̃j where 1 � j � e + 2 for each of these points. The points lie in
V(h1) ∩ V(h2) ∩ · · · ∩ V(hm) ∼= Pe, so the evaluations p̃∗j satisfy a linear equation
in R∗

1. The coefficients in this linear equation are nonzero and determine a unique
point in P

e+1 because p1, p2, . . . , pe+2 are in linearly general position. Specifically,
there are unique nonzero λ1, λ2, . . . , λe+1 ∈ R such that

0 = λ1p̃
∗
1 + λ2p̃

∗
2 + · · ·+ λe+1p̃

∗
e+1 + p̃∗e+2 .(1)

Fix κj > 0 for 1 � j � e+ 1, set κe+2 :=
(

λ2
1

κ1
+

λ2
2

κ2
+ · · ·+ λ2

e+1

κe+1

)−1

, and consider

� := κ1(p̃
∗
1)

2 + κ2(p̃
∗
2)

2 + · · ·+ κe+1(p̃
∗
e+1)

2 − κe+2(p̃
∗
e+2)

2 ∈ R∗
2 .

Since κj > 0 for all 1 � j � e+ 1, Equation (1) yields

� =

e+1∑
j=1

(√
κj p̃

∗
j

)2 − (p̃∗e+2)
2
(e+1∑
j=1

( λj√
κj

)2)−1

=
(e+1∑
j=1

( λj√
κj

)2)−1

⎡
⎣(e+1∑

j=1

( λj√
κj

)2)(e+1∑
j=1

(√
κj p̃

∗
j

)2)−
(e+1∑
j=1

λj p̃
∗
j

)2⎤⎦ .

Hence, the Cauchy-Schwartz inequality shows that � is nonnegative on squares,
whence � ∈ Σ∗

X by Lemma 2.1; compare with Theorem 6.1 in [B2]. Nevertheless,
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there exists g ∈ R1 such that p̃∗j (g) = g(p̃j) = λjκ
−1
j for all 1 � j � e + 1, which

implies that �(g2) = 0. In addition, choose the κj for 1 � j � e+ 1 so that g does
not vanish at any point in Z. Since g2 + h2

1 + h2
2 + · · ·+ h2

m is strictly positive on
X and �(g2 + h2

1 + · · · + h2
m) = 0, the linear functional � cannot be a nonnegative

combination of point evaluations at X(R). Therefore, we have � ∈ Σ∗
X \P∗

X .
In the second case, we assume that Z has at most e + 1 distinct real points.

Since deg(Z) = deg(X) > e + 1, the reduced set Z contains at least one pair

of complex conjugate points. Let ã ± b̃
√
−1 ∈ An+1(C), where ã, b̃ ∈ An+1(R),

be affine representatives for such a pair and choose an affine representative p̃j for
1 � j � e for some real points in Z. As in the other case, the chosen e+2 points lie
in V(h1)∩V(h2)∩ · · · ∩V(hm) ∼= P

e, so the evaluations satisfy a linear equation in
R∗

1. Again, the coefficients are nonzero and determine a unique point Pe+1 because
the points in Z are in linearly general position. Adding this linear equation to its
conjugate (or simply rescaling by

√
−1), we obtain a linear equation that is invariant

under conjugation. Hence, by choosing different affine representatives for ã and b̃
if necessary, we may assume that the coefficients of (ã+ b̃

√
−1)∗ and (ã− b̃

√
−1)∗

are equal. Specifically, there are unique nonzero λ1, λ2, . . . , λe ∈ R such that

0 = λ1p̃
∗
1 + λ2p̃

∗
2 + · · ·+ λep̃

∗
e +

1
2 (ã+ b̃

√
−1)∗ + 1

2 (ã− b̃
√
−1)∗

= λ1p̃
∗
1 + λ2p̃

∗
2 + · · ·+ λep̃

∗
e + ã∗.

(2)

Taking the real and imaginary parts of
(
(ã ± b̃

√
−1)∗

)2 ∈ R∗
2 yields the linear

independent real functionals (ã∗)2 − (b̃∗)2 ∈ R∗
2 and 2ã∗b̃∗ ∈ R∗

2. Fix κj > 0 for
1 � j � e, choose κe+1 and κe+2 satisfying

(κ2
e+1 + κ2

e+2)κ
−1
e+1 :=

(
λ2
1

κ1
+

λ2
2

κ2
+ · · ·+ λ2

e

κe

)−1

,

and consider

� := κ1(p̃
∗
1)

2 + κ2(p̃
∗
2)

2 + · · ·+ κe(p̃
∗
e)

2 − κe+1

(
(ã∗)2 − (b̃∗)2

)
+ κe+2(2ã

∗b̃∗)

lying in R∗
2. Completing the square and using Equation (2) yields

� =

e∑
j=1

(√
κj p̃

∗
j

)2 − κ2
e+1+κ2

e+2

κe+1
(ã∗)2 + κe+1

(
b̃∗ + κe+2

κe+1
ã∗
)2

=
( e∑
j=1

( λj√
κj

)2)−1

⎡
⎣( e∑

j=1

( λj√
κj

)2)( e∑
j=1

(√
κj p̃

∗
j

)2)−
( e∑
j=1

λj p̃
∗
j

)2⎤⎦

+κe+1

(
b̃∗ + κe+2

κe+1
ã∗
)2
.

Since κe+1 > 0, the Cauchy-Schwartz inequality once more shows that � is nonneg-
ative on squares; compare with Theorem 7.1 in [B2]. By repeating the argument
above, we conclude that � ∈ Σ∗

X \P∗
X . �

By enhancing the techniques used in the proof of Proposition 3.2, we obtain
a way to construct nonnegative polynomials that are not sums of squares. We
describe this process below. To make it computationally effective, one needs an
explicit bound for the coefficient δ.
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8 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

Procedure 3.3. Given an m-dimensional nondegenerate totally real subvariety
X ⊆ Pn such that ε(X) > 0 and e = codim(X), the following steps yield a polyno-
mial lying in PX \ΣX .

Step 1: Choose general linear forms h1, h2, . . . , hm ∈ R1 which intersect in deg(X)
distinct points in linearly general position where at least e+ 1 are real and
smooth. Fix e smooth real points in the intersection and choose an addi-
tional linear form h0 ∈ R1 that vanishes only at the selected intersection
points. Let L be the ideal in R generated by h0, h1, . . . , hm.

Step 2: Choose a quadratic form f ∈ R \ L2 that vanishes to order at least two at
each of the selected intersection points.

Step 3: For every sufficiently small δ > 0, the polynomial

δf + h2
0 + h2

1 + · · ·+ h2
m

is nonnegative on X but not a sum of squares.

Correctness. The existence of the h0, h1, . . . , hm in Step 1 follows from the first
paragraph in the proof of Proposition 3.2. The quadratic forms in L2 have dimen-
sion at most

(
m+2
2

)
. Since second-order vanishing at e distinct points imposes at

most (m+1)e linear conditions, Lemma 3.1 implies that the vector space of suitable
f has dimension at least

dim(R2)− (m+ 1)e−
(
m+2
2

)
= dim(R2)− (m+ 1)

(
(n+ 1)− (m+ 1)

)
−
(
m+2
2

)
= dim(R2)− (m+ 1)(n+ 1) +

(
m+1
2

)
= ε(X) ,

which justifies Step 2. For Step 3, suppose that

δf + h2
0 + h2

1 + · · ·+ h2
m = g21 + g22 + · · ·+ g2k

for some gj ∈ R1. It follows that each gj vanishes at the selected intersection points.
The ideal L contains all linear forms that vanish at the selected intersection points,
so (gj)

2 ∈ L2. However, this gives a contradiction because f �∈ L2.
It remains to show that for a sufficiently small δ, the polynomial

δf + h2
0 + h2

1 + · · ·+ h2
m

is nonnegative on X. Let X̃ ⊆ An+1(R) denote the affine cone of X, and let

p̃1, p̃2, . . . , p̃e ∈ Sn∩X̃ be the affine representatives with unit length for the selected
intersection points. Since the selected points are nonsingular on X, the compact set
Sn∩X̃ is a real m-dimensional smooth manifold near each p̃j and the differentiable
function h2

0 + h2
1 + · · ·+ h2

m has a positive definite Hessian at the points p̃j . Since
the p̃j are zeroes and critical points for the quadratic form f , it follows that there

exists a δ0 > 0 and a neighborhood Uj of p̃j in Sn ∩ X̃ for 1 � j � e such that
δ0f + h2

0 + h2
1 + · · ·+ h2

m is nonnegative on Uj . On the compact set

K ′′ := (Sn ∩ X̃) \
⋃

j
Uj ,

the function h2
0 + h2

1 + · · ·+ h2
m is strictly positive, so

δ1 := (inf
K′′

h2
0 + h2

1 + · · ·+ h2
m)/(sup

K′′
|f |)

is a strictly positive real number. Hence, if 0 < δ < min(δ0, δ1), then the polynomial

δf + h2
0 + h2

1 + · · ·+ h2
m is nonnegative on Sn ∩ X̃ and X. �
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SUMS OF SQUARES AND MINIMAL DEGREE 9

Remark 3.4. In our context, Procedure 3.3 is a generalization of an idea going
back to Hilbert. To be more precise, let νd : P

n → Pr with r =
(
n+d
n

)
−1 denote the

dth Veronese embedding of Pn. For the subvarieties ν3(P
2) ⊂ P10 and ν2(P

3) ⊂ P10,
Hilbert [H3] uses a similar procedure to prove the existence of nonnegative poly-
nomials that are not sums of squares. By working with concrete forms, Robinson
uses this procedure to construct his celebrated form; see Section 4b in [R]. Again
for ν3(P

2) ⊂ P10 and ν2(P
3) ⊂ P10, [BIK] shows that the form f in Procedure 3.3 is

unique up to a constant multiple (that is, the dimension estimates are sharp) and
expresses it in terms of the intersection points of the hj .

When ε(X) = 1, we can clarify the difference between ΣX and PX . Proposi-
tion 5.10 in [Z] shows that ε(X) = 1 if and only if X is either a hypersurface of
degree d � 3 or a linearly normal variety such that deg(X) = 2 + codim(X) (also
known as a variety of almost minimal degree). Given � ∈ R∗

2, σ
∗(�) denotes the

corresponding symmetric linear map; see Section 2. Let I(�) be the Gorenstein
ideal in R generated by all homogeneous g ∈ R such that either �(fg) = 0 for all
f ∈ R2−deg(g) or deg(g) > 2.

Proposition 3.5. Assume that X is arithmetically Cohen-Macaulay and ε(X) = 1.
If � ∈ Σ∗

X is an extreme ray not contained in P∗
X , then σ∗(�) is positive semidefinite

with dimKer
(
σ∗(�)

)
= m + 1. Dually, if f lies in the boundary of ΣX and not in

the boundary of PX , then the element f can be expressed as a sum of m+1 squares,
but not as a sum of fewer squares.

Proof. Lemma 2.3 asserts that the subspace Ker
(
σ∗(�)

)
⊆ R1 contains a homoge-

neous system of parameters h0, h1, . . . , hm on R. Since R is Cohen-Macaulay, this
system of parameters is a regular sequence. On the other hand, Remark 4.5 in
[BS] establishes that a projective variety of almost minimal degree is arithmetically
Cohen-Macaulay if and only if it is arithmetically Gorenstein. Hence, the quotient
ring R′ := R/(h0, h2, . . . , hm) is Gorenstein. Lemma 3.1 implies that the Hilbert
function of R′ is (1, e, 1). The ideal generated by the image of I(�) in R′ under the
canonical map either is trivial or contains the socle. By definition, the elements in
I(�)2 are annihilated by �, so the second possibility cannot occur. Hence, we have
I(�) = (h0, h2, . . . , hm) and dimKer

(
σ∗(�)

)
= m+ 1.

If f = g21 + g22 + · · · + g2k lies in the boundary of ΣX , then there exists an
extreme ray � ∈ Σ∗

X such that �(f) = 0, so g1, g2, . . . , gk lie in Ker
(
σ∗(�)

)
. Since

f is not in the boundary of PX , the element f is strictly positive on X(R) and
� is not defined by evaluation at a point. The previous paragraph proves that
dimKer

(
σ∗(�)

)
= m+1 and this ensures that f is a sum of at mostm+1 squares. To

finish the proof, suppose that f = g21+g22+· · ·+g2k where k � m and g1, g2, . . . , gk are
linearly independent. If k < m, then choose general linear forms gk+1, gk+2, . . . , gm
in Ker

(
σ∗(�)

)
. Since f is strictly positive on X(R), the ideal J generated by

g1, g2, . . . , gm defines a subscheme of X that has no real zeroes. By perturbing J
if necessary, we obtain a subvariety Z of X that consists of deg(X) reduced points
none of which are real. Every element of R2 vanishing at all the points in Z lies
in Ker

(
σ∗(�)

)
, so it follows that � can be expressed as a linear combination of the

evaluations at points in Z. As in the proof of Corollary 4.3 in [B2], we deduce that
the set Z contains at most one pair of complex zeroes. Because deg(X) � 3, we
conclude the set Z must contain at least one real zero that produces the required
contradiction. �
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10 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

4. Equality of the fundamental cones

This section focuses on sufficient conditions for the equality of the sums-of-
squares cone ΣX and the nonnegative cone PX . We complete the proof of our
main theorem by showing that ΣX equals PX whenever the quadratic deficiency
vanishes. Combining our main theorem with the celebrated classification for vari-
eties of minimal degree (see Theorem 1 in [EH]), we describe in detail the varieties
for which equality holds. Using the Veronese map, we also generalize the main
theorem to nonnegative forms of higher degree.

Our first proposition provides the second implication needed for the proof of
Theorem 1.1.

Proposition 4.1. If ε(X) = 0, then we have ΣX = PX .

Proof. It suffices to prove that P∗
X = Σ∗

X . Given the descriptions for P∗
X and Σ∗

X

in Lemma 2.1, this reduces to showing that every extreme ray of Σ∗
X is generated

by evaluation at some point p ∈ X(R). Suppose otherwise and consider an � ∈ Σ∗
X

that generates an extreme ray but is not determined by evaluation at a point p ∈
X(R). Lemma 2.3 establishes that there exists a homogeneous system of parameters
g0, g1, . . . , gm ∈ Ker

(
σ∗(�)

)
. Since ε(X) = 0, Lemma 3.1 establishes that X is a

variety of minimal degree; varieties of minimal degree are arithmetically Cohen-
Macaulay (see Section 4 in [EG]), so g0, g1, . . . , gm are also a regular sequence.
Let J denote the homogeneous ideal in R generated g0, g1, . . . , gm. Since we have
�(fgj) = 0 for all f ∈ R1 and all 0 � j � m, the linear functional � ∈ R∗

2 annihilates
the subspace J2. By taking the degree-two graded components of the associated
Koszul complex and using Lemma 3.1, we obtain

dim
(
R
J

)
2
= dim(R2)− (m+ 1) dim(R1) +

(
m+1
2

)
dim(R0) = ε(X) = 0 ,

where R2 = J2. However, this yields a contradiction because the linear functional
� ∈ R∗

2 is nonzero and does not annihilate all of R2. Therefore, every extreme ray
of Σ∗

X is generated by evaluation at some point p ∈ X(R) as required. �

Remark 4.2. In the proof of Proposition 4.1, the hypothesis that X is totally
real is not required to establish that P∗

X = Σ∗
X . As an illustration, consider the

quadratic hypersurfaceX ′ ⊂ P2 defined by x2
0+x2

1 ∈ R[x0, x1, x2]. The unique point
[0 : 0 : 1] in X ′(R) is singular, so X ′ is not totally real. Hence, PX′ is the closed
half-space in R2 for which the coefficient of x2

2 is nonnegative. If the coefficient
of x2

2 in f ∈ R[x0, x1, x2]2 is positive, then the quadratic form f + λ(x2
0 + x2

1) is
positive semidefinite for all sufficiently large λ ∈ R, so ΣX′ contains the interior of
PX′ and P∗

X′ = Σ∗
X′ . Amusingly, the quadratic form λ(x2

0 + x2
1) − x0x2 for λ ∈ R

is never positive semidefinite, so ΣX′ �= PX′ .

Proof of Theorem 1.1. If X is not a variety of minimal degree, then we have the
inequality ε(X) > 0 and Proposition 3.2 establishes that ΣX is a proper subset of
PX . Conversely, if X is a variety of minimal degree, then Lemma 3.1 establishes
that ε(X) = 0 and Proposition 4.1 states that ΣX = PX . �

Beyond the conceptual explanation for the equality PX = ΣX , Theorem 1.1
allows us to explicitly exhibit all the varieties that satisfy this condition. The clas-
sical characterization for varieties of minimal degree (see Theorem 1 in [EH]) states
that a variety of minimal degree is a cone over a smooth variety of minimal degree,
and a smooth variety of minimal degree is a quadratic hypersurface, the Veronese
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SUMS OF SQUARES AND MINIMAL DEGREE 11

surface ν2(P
2) ⊂ P5, or a rational normal scroll. Together with Theorem 1.1, this

yields precisely the following three families in which nonnegativity is equivalent to
being a sum of squares.

Example 4.3. Let X ⊂ Pn be a cone over a totally real irreducible quadric hyper-
surface. In other words, R = R[x0, x1, . . . , xn]/I where I is the principal ideal gen-
erated by an indefinite quadratic form. It follows that deg(X) = 2 = 1+codim(X),
so Theorem 1.1 implies that every nonnegative element of R2 is a sum of squares.

Example 4.4. For n � 5, let X ⊂ Pn be the cone over the Veronese surface
ν2(P

2) ⊂ P5. Given suitable coordinates x0, x1, . . . , xn on Pn, the homogeneous
ideal I for X is defined by the (2× 2)-minors of the generic symmetric matrix,⎡

⎣x0 x1 x2

x1 x3 x4

x2 x4 x5

⎤
⎦ .

In this case, we have deg(X) = 4 = 1 + codim(X), so Theorem 1.1 implies that
every nonnegative element of R2 = (R[x0, x1, . . . , xn]/I)2 is a sum of squares.

Example 4.5. For k � 0 and dk � dk−1 � · · · � d0 � 0 with dk > 0, con-
sider the integer n := k + d0 + d1 + · · · + dk and let X ⊂ Pn be the associ-
ated rational normal scroll; X is the image of the projectivized vector bundle
OP1(d0) ⊕ OP1(d1) ⊕ · · · ⊕ OP1(dk) under the complete linear series of the tau-
tological line bundle. In particular, X is the rational normal curve of degree n
in Pn when k = 0, and X is Pn when dk−1 = 0 and dk = 1. For suitable co-
ordinates x0,0, x0,1, . . . , x0,d0

, x1,0, x1,1, . . . , x1,d1
, . . . , xk,0, xk,1, . . . , xk,dk

on Pn, the
homogeneous ideal I for X is defined by the (2 × 2)-minors of the block Hankel
matrix,[

x0,0 · · · x0,d0−1 x1,0 · · · x1,d1−1 · · · xk,0 · · · xk,dk−1

x0,1 · · · x0,d0
x1,1 · · · x1,d1

· · · xk,1 · · · xk,dk

]
.

Since deg(X) = d0+d1+ · · ·+dk = n−k = 1+codim(X), Theorem 1.1 implies that
every nonnegative element of R2 = (R[x0,0, x0,1, . . . , xk,dk

]/I)2 is a sum of squares.

The following remark explains why it is sufficient to consider quadratic forms.

Remark 4.6. The union of Theorem 1.1 with the classification for varieties of
minimal degree also allows us to identify when every nonnegative form on X of
degree 2d for d > 1 is a sum of squares. Geometrically, this is equivalent to
recognizing when the dth Veronese embedding of X ⊆ P

n is a variety of minimal
degree. The degree of every curve on the image νd(X) is a multiple of d, so νd(X)
does not contain any lines. Assume that νd(X) is a variety of minimal degree. It
cannot be a cone over a smooth variety of minimal degree or a rational normal
scroll with k > 0 because these varieties contain lines. It follows that νd(X) is
either a rational normal curve or the Veronese surface ν2(P

2) ⊂ P5. Therefore,
every nonnegative form on X of degree 2d for d > 1 is a sum of squares if and only
if νd(X) is a nondegenerate curve of degree n in Pn, or X = P2 and d = 2.

As an example, the rational quartic curve in C ⊂ P
3 defined by

[y0 : y1] �→ [y40 : y30y1 : y0y
3
1 : y41 ]

is not a variety of minimal degree. However, its image under the second Veronese
map ν2(C) ⊂ P8 is the rational normal curve of degree eight which is a variety of
minimal degree. Hence, every nonnegative quartic form on C is a sum of squares.
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12 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

We conclude this section by viewing our main theorem through the lens of mea-
sure theory.

Remark 4.7. Fix a positive integer d and let X be a real projective variety with
homogeneous coordinate ring R. Let W := Sn ∩ X̃ be the intersection of the
affine cone X̃ ⊆ An+1(R) of X with the unit sphere Sn. A measure on X(R)
corresponds to a measure on W that is invariant under the antipodal map. Any
such measure μ defines a linear functional � ∈ R∗

2d by sending f ∈ R2d to
∫
W

f dμ.
The truncated moment problem asks for a characterization of the � ∈ R∗

2d that
come from integration with respect to a measure on X; see Definition 3.1 in [L1].
Such functionals are nonnegative and belong to P∗

νd(X). Moreover, every element

of P∗
νd(X) has this form. As a result, the truncated moment problem on X can

be reinterpreted as asking for a characterization of the cone P∗
νd(X). If B� is the

moment matrix of � (that is, the matrix associated to the quadratic form of �
with respect to a monomial basis for Rd), then it is necessary that B� be positive
semidefinite or equivalently that � ∈ Σ∗

νd(X). From this viewpoint, Theorem 1.1
classifies the varieties X for which the truncated moment problem in degree two
is equivalent to deciding positive semidefiniteness of the moment matrix. As in
Remark 4.6, this equivalence holds for the truncated moment problem in degree 2d
where d > 1 if and only if νd(X) is either a rational normal curve or the Veronese
surface ν2(P

2) ⊂ P5.

5. The intrinsic perspective

In this section, we shift our perspective from an embedded variety to linear series
on an abstract variety. This approach gives us greater flexibility which will be used
in applications. For example, by working with positively multigraded polynomial
rings, we list the cases in which every nonnegative multihomogeneous polynomial
is a sum of squares.

Let Y be an m-dimensional totally real projective variety; it is a geometrically
integral projective scheme over Spec(R) such that the set Y (R) of real points is
Zariski dense. Consider a Cartier divisor D on Y that is locally defined by ratio-
nal functions with real coefficients, and fix a nondegenerate basepoint-free linear
series V ⊆ H0

(
Y,OY (D)

)
. Since D is defined over R, we may regard V as a real

vector space. Let σ : Sym2
(
H0

(
Y,OY (D)

))
→ H0

(
Y,OY (2D)

)
denote the canon-

ical multiplication map and let 2V := σ
(
Sym2(V )

)
⊆ H0

(
Y,OY (2D)

)
. Given a

real point p ∈ Y (R) and a section s ∈ H0
(
Y,OY (2D)

)
, the sign of s at p is

sgnp(s) := sgn(λ) ∈ {−1, 0, 1} where U ⊆ Y is a neighborhood of the point p ∈ Y

over which the line bundle OY (D) is trivial, ς ∈ H0
(
U,OY (D)

)
is a generator of

OY (D)|U , and the section λ ∈ H0(U,OY ) is defined by s|U = λς2. The sign of s at
p is independent of the choice of U and ς; see Section 2.4 in [S1]. The section s is
nonnegative if s(p) = sgnp(s) � 0 for all p ∈ Y (R).

The central objects of study, in this intrinsic setting, become

PY,V := {s ∈ 2V : s(p) � 0 for all p ∈ Y (R)} , and

ΣY,V :=

{
s ∈ 2V :

there exist t1, t2, . . . , tk ∈ V such
that s = σ(t21) + σ(t22) + · · ·+ σ(t2k)

}
.
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SUMS OF SQUARES AND MINIMAL DEGREE 13

We again have ΣY,V ⊆ PY,V . To describe the properties of these subsets, let
n be the projective dimension of |V |, let ϕ : Y → Pn be the associated mor-
phism, and let X := ϕ(Y ). The linear series |V | is nondegenerate if and only
if X ⊆ Pn is nondegenerate. The kernel of the composition of the canonical homo-
morphisms of graded rings R[x0, x1, . . . , xn] ∼= Sym(V ) → Sym

(
H0(Y,OY (D)

)
and

Sym
(
H0(Y,OY (D)

)
→

⊕
j∈N

H0
(
Y,OY (jD)

)
is the unique saturated ideal I van-

ishing on X. It follows that the homogeneous coordinate ring of X is the quotient
R = Sym(V )/I, and the induced inclusion of graded rings is the homomorphism
ϕ� : R →

⊕
j∈N

H0
(
Y,OY (jD)

)
.

The next proposition shows that these collections of PY,V and ΣY,V are closely
related to the cones PX and ΣX , and it provides an alternative version of Theo-
rem 1.1.

Theorem 5.1. We have ϕ�(ΣX) = ΣY,V . If ϕ
(
Y (R)

)
is dense in the strong

topology on X(R), then we also have ϕ�(PX) = PY,V , and PY,V = ΣY,V if and only
if X is a variety of minimal degree.

Proof. By construction, we have ϕ�(R1) = V and ϕ�(R2) = 2V , which establishes
the first assertion. Since ϕ sends a real point to a real point, we have the inclusion
PY,V ⊆ ϕ�(PX). Conversely, each real point in X lies in the closure of the image of
a real point in Y by assumption, so we have ϕ�(PX) ⊆ PY,V . Combining the first
two parts with Theorem 1.1 yields the third part. �

Remark 5.2. When the map ϕ has finite fibers of odd lengths, the condition on ϕ
in Theorem 5.1 is automatically satisfied. In particular, the hypothesis holds when
ϕ is an embedding. Indeed, complex conjugation fixes the fiber over a real point.
Since the fibers have odd lengths, conjugation must fix at least one point in each
fiber over a real point, so ϕ maps Y (R) surjectively onto X(R).

Without placing some restrictions on the map ϕ, the theorem is false.

Example 5.3. Consider the linear series

V = 〈x2
0, x

2
1, . . . , x

2
n〉 ⊆ H0

(
P
n,OPn(2)

)
.

The corresponding morphism ϕ : Pn → Pn is not surjective on real points. In this
case, (ϕ�)−1(PY,V ) consists of all quadratic forms that are nonnegative on the closed
nonnegative orthant in Rn+1 (that is, the copositive forms), and this collection is
strictly larger than the cone of all nonnegative quadratic forms; see Section 3.6.1
in [BPT].

The following explains our restriction on the linear series.

Observation 5.4. If 2V �= H0
(
Y,OY (2D)

)
, then we claim that there is a non-

negative section in H0
(
Y,OY (2D)

)
that is not a sum of squares. Since the linear

series V is basepoint-free, there exists t0, t1, . . . , tn ∈ V with no common zeroes,
so σ(t20) + σ(t21) + · · · + σ(t2n) ∈ H0

(
Y,OY (2D)

)
is strictly positive on Y (R). Our

assumption on 2V implies that there is a section s ∈ H0
(
Y,OY (2D)

)
\ 2V . It

follows that the section

σ(t20) + σ(t21) + · · ·+ σ(t2n)− δs ∈ H0
(
Y,OY (2D)

)
cannot be a sum of squares for all δ ∈ R. On the other hand, this section is
nonnegative for all sufficiently small δ > 0, because Y (R) is a compact set and, for
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14 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

any section s, we have

{p ∈ X(R) : sgnp(s) < 0} ⊆ {p ∈ X(R) : sgnp(s) � 0} .

To illustrate the power of Theorem 5.1, we capture all of the previously known
situations in which nonnegativity is equivalent to being a sum of squares.

Example 5.5. For n � 0 and d � 1, consider Y = Pn and the linear series
V = H0

(
Pn,OPn(d)

)
. The corresponding map ϕ is the Veronese embedding, so

Theorem 5.1 implies that every nonnegative homogeneous polynomial of degree 2d
is a sum of squares (that is, PY,V = ΣY,V ) if and only if X = ϕ(Pn) is a variety of

minimal degree. Moreover, we have deg(X) = dn =
(
n+d
n

)
− n = 1 + codim(X) in

only three cases:

• n = 1: all nonnegative binary forms are sums of squares, and X is a rational
normal curve;

• d = 1: all nonnegative quadratic forms are sums of squares, and X = Pn;
• d = 2 and n = 2: all nonnegative ternary quartics are sums of squares, and
X is the Veronese surface.

In particular, we recover Hilbert’s famous characterization of when every nonneg-
ative homogeneous polynomial is a sum of squares; see [H3] or Section 3.1.2 in
[BPT]. Even better, we provide a new geometric interpretation for the exceptional
case of ternary quartics.

Example 5.6. For k � 2, ni � 1, and di � 1 where 1 � i � k, consider the
product Y = Pn1 × Pn2 × · · · × Pnk and the linear series

V = H0
(
Y,OPn1 (d1) � OPn2 (d2) � · · · � OP

nk (dk)
)
.

The corresponding map ϕ is the Segre-Veronese embedding, so Theorem 5.1 implies
that every nonnegative multihomogeneous polynomial of degree (2d1, 2d2, . . . , 2dk)
is a sum of squares (that is, PY,V = ΣY,V ) if and only if X = ϕ(Y ) is a variety of
minimal degree. Moreover, we have

deg(X) = dn1
1 dn2

2 · · · dnk

k

(
n1+n2+···+nk

n1,n2,...,nk

)
= dn1

1 dn2
2 · · · dnk

k
(n1+n2+···+nk)!

n1!n2!···nk!

=
(
n1+d1

n1

)(
n2+d2

n2

)
· · ·

(
nk+dk

nk

)
− n1 − n2 − · · · − nk

= 1 + codim(X)

in precisely two cases:

• k = 2, n1 = 1, and d2 = 1,
• k = 2, n2 = 1, and d1 = 1.

By symmetry, both cases assert that all nonnegative biforms that are quadratic in
one set of variables and binary in the other set of variables are sums of squares, and
X is a rational normal scroll associated to a vector bundle of the form

⊕
j OP1(1).

In particular, we recover and provide a new interpretation for Theorem 8.4 in [CLR].

Since two of the three families of varieties of minimal degree are toric varieties,
the intrinsic descriptions can be expressed in terms of a polynomial ring with an
appropriate grading.

Example 5.7. For n � 5, consider the cone Y ⊂ P
n over the Veronese surface

P2 ↪→ P5 and the complete linear series V = H0
(
Y,OY (H)

)
where H is a hy-

perplane divisor (compare with Example 4.4). Hence, Y is a simplicial normal
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toric variety with class group Z1, and the Cox homogeneous coordinate ring is
S := R[y0, y1, . . . , yn−3] where deg(yi) = 1 for 0 � i � 2 and deg(yj) = 2 for
3 � j � n − 3. Since Pic(X) has index two within the class group, it follows
that V = H0

(
Y,OY (H)

) ∼= S2. The image of Y is a variety of minimal degree,
so Theorem 5.1 implies that every nonnegative element in S4 is a sum of squares.
An element of S4 is a linear combination of the 15 monomials y40 , y

3
0y1, . . . , y

4
2 , the

6n−30 monomials y20yj , y0y1yj , . . . , y
2
2yj where 3 � j � n−3, and the

(
n−4
2

)
mono-

mials y23 , y
2
3y4, . . . , y

2
n−3; the vector space S4 has dimension 1

2n
2+ 3

2n−5. Contrary
to the sentence preceding Theorem 8.4 in [CLR], this inserts the exceptional case
of ternary quartics from Example 5.5 into an infinite family.

Example 5.8. For integers k > 0 and dk � dk−1 � · · · � d0 > 0, consider the
projectivized vector bundle Y = P

(
OP1(d0) ⊕ OP1(d1) ⊕ · · · ⊕ OP1(dk)

)
and the

complete linear series V = H0
(
Y,OY (1)

)
; compare with Example 4.5. Hence,

Y is a (k + 1)-dimensional smooth toric variety with class group Z2 = Pic(X);
see pages 6–7 in [EH]. By choosing a suitable basis for the class group, the Cox
homogeneous coordinate ring is S := R[y0, y1, . . . , yk+2] where the degree of yj in
Z
2 is given by the jth column of the matrix

[
1 1 0 d0 − d1 d0 − d2 · · · d0 − dk
0 0 1 1 1 · · · 1

]
.

It follows that V = H0
(
Y,OY (1)

) ∼= S(1,1). Since the image of Y is a variety of
minimal degree, Theorem 5.1 implies that every nonnegative element in S(2,2) is a
sum of squares. An element of S(2,2) is a linear combination of monomials that are
quadratic in the variables y2, y3, . . . , yk+2; the vector space S(2,2) has dimension

(3− 2d0)

(
k + 2

2

)
+ (k + 2)(d0 + d1 + · · ·+ dk) .

The special case d0 = d1 = · · · = dk = 1 retrieves Example 5.6.

Remark 5.9. Example 5.8 excludes two types of scrolls: a cone over a rational
normal curve (that is, k = 0 or dk−1 = 0), which has class group isomorphic to Z1,
and a cone over a smooth rational normal scroll (that is, dk−1 �= 0 and d0 = 0),
which has class group isomorphic to Z2. The minor modifications to Example 5.8
required for both types are left to the interested reader.

Remark 5.10. The multihomogeneous forms in Example 5.8 also have a useful
interpretation in terms of matrix polynomials. By viewing f ∈ S(2,2) as a qua-
dratic form in the variables y2, y3, . . . , yk+2, we obtain a symmetric matrix F with
homogeneous entries in R[y0, y1]. Lemma 3.78 in [BPT] basically shows that F is
pointwise positive semidefinite if and only if f is nonnegative and

F = GT
1G1 +GT

2G2 + · · ·+GT
kGk

for some matrices G1, G2, . . . , Gk with entries in R[y0, y1] if and only if f is a sum
of squares. Hence, the fact that every nonnegative element in S(2,2) is a sum of
squares becomes a slight strengthening of Theorem 3.80 in [BPT] in which each
entry is homogeneous (although not necessarily of the same degree).
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6. Nonnegative sparse polynomials

This section examines certain sparse Laurent polynomials—those Laurent poly-
nomials in which the exponent vector of each monomial appearing with a nonzero
coefficient lies in a fixed lattice polytope. We characterize the Newton polytopes Q
such that every nonnegative polynomial with support contained in 2Q is a sum of
squares.

Let M be an m-dimensional affine lattice, let MR := M ⊗Z R be the associated
real vector space, and let T := Spec(R[M ]) be the corresponding split real torus.
By choosing an isomorphism M ∼= Zm, we identify the group ring R[M ] with the
Laurent polynomial ring R[z±1

1 , z±1
2 , . . . , z±1

m ]. Given f =
∑

u∈M cu zu ∈ R[M ],
its Newton polytope is New(f) := conv{u ∈ M : cu �= 0} ⊂ MR. The Laurent
polynomial f is nonnegative, denoted by f � 0, if the evaluation of f at every
point in T (R) is nonnegative. Equivalently, for all w ∈ Nm with sufficiently large
entries, the polynomial z2wf ∈ R[z1, z2, . . . , zm] is nonnegative on Rm. Fix an
m-dimensional lattice polytope Q in MR. For k ∈ N, we write kQ is the k-fold
Minkowski sum of Q. The lattice polytope Q is k-normal if, for each u ∈ (kQ)∩M ,
there exist v1,v2, . . . ,vk ∈ Q∩M such that u = v1 + v2 + · · ·+ vk; compare with
Definition 2.2.9 in [CLS]. Following Section 3 in [S2], the h∗-polynomial of Q
defined by the equation

h∗0(Q) + h∗1(Q) t+ · · ·+ h∗m(Q) tm := (1− t)m+1
∑
k�0

∣∣(kQ) ∩M
∣∣ tk .

The central objects of study, in this polyhedral setting, are

PQ := {f ∈ R[M ] : New(f) ⊆ 2Q and f � 0} and

ΣQ :=

⎧⎨
⎩f ∈ R[M ] :

there exists g1, g2, . . . , gk ∈ R[M ] such
that New(gj) ⊆ Q for all 1 � j � k
and f = g21 + g22 + · · ·+ g2k

⎫⎬
⎭ .

Once again, we have ΣQ ⊆ PQ. To describe the properties of these subsets, let
X ⊆ Pn be the embedded projective toric variety determined by the lattice polytope
Q. More explicitly, the number of lattice points in Q is n + 1 = |Q ∩ M |, the
polyhedral affine monoid associated toQ is C(Q) := N·{(q, 1) : q ∈ Q∩M} ⊂ M⊕Z,
and the toric variety is X = Proj

(
R[C(Q)]

)
⊆ Pn; compare with Section 2.3 in

[CLS]. The lattice points in Q also yield the canonical inclusion map η : T → X.
We elucidate this framework with a couple of examples.

Example 6.1. The arithmetic–geometric inequality establishes that the celebrated
Motzkin polynomial f := z41z

2
2 + z21z

4
2 + 1 − 3z21z

2
2 is nonnegative on R2. Since

New(f) = conv{(4, 2), (2, 4), (0, 0)}, it follows that f ∈ PQ where

Q := conv{(2, 1), (1, 2), (0, 0)} .

The polytope Q is 2-normal because every lattice point in New(f) is a sum of lattice
points in Q; for instance, (2, 2) = (1, 1) + (1, 1). Moreover, the h∗-polynomial is

1 + t+ t2 = (1− t)3
∑
k�0

∣∣(kQ) ∩M
∣∣ tk = (1− t)3

∑
k�0

(
3
2k

2 + 3
2k + 1

)
tk ,

so h∗2(Q) = 1.
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Example 6.2. If Q is an (m− 2)-fold pyramid over the simplex

conv{(0, 0), (2, 0), (0, 2)} ⊂ R
2 ,

then the embedded projective toric variety X is the cone over the Veronese surface
defined in Example 4.4. Likewise, if Q is the Cayley polytope of the line segments
[0, d0], [0, d1], . . . , [0, dk] (see Definition 2.1 in [BN]), then the embedded projective
toric variety X is the rational normal scroll defined in Example 4.5.

To establish that 2-normality is a necessary condition for PQ = ΣQ, we have a
better version of Observation 5.4, that provides an explicit bound on the coefficient δ.

Lemma 6.3. If Q ⊂ MR is a lattice polytope that is not 2-normal, then ΣQ is a
proper subset of PQ.

Proof. Since Q is not 2-normal, there is a lattice point u ∈ 2Q∩M that cannot be
written as a sum of lattice points in Q∩M . If v1,v2, . . . ,vk denote the vertices of
Q, then u is a convex rational linear combination of 2v1, 2v2, . . . , 2vk, which are
the vertices of 2Q. By clearing the denominators, we obtain

(r1 + r2 + · · ·+ rk)u = 2r1v1 + 2r2v2 + · · ·+ 2rkvk,

where r1, r2, . . . , rk ∈ N and r1+r2+ · · ·+rk > 0. Consider the Laurent polynomial

f := r1z
2v1 + r2z

2v2 + · · ·+ rkz
2vk − (r1 + r2 + · · ·+ rk)z

u .

Clearly, New(f) ⊆ 2Q, and our choice of u guarantees that f is not a sum of
squares. On the other hand, the inequality of weighted arithmetic and geometric
means shows that f is nonnegative. Therefore, we have f ∈ PQ \ΣQ. �

The following result is a strengthening of Theorem 5.1 for projective toric vari-
eties, because the condition on real points is now both necessary and sufficient.

Theorem 6.4. We have PQ = ΣQ if and only if h∗2(Q) = 0 and η
(
T (R)

)
is dense

in the strong topology on X(R).

Proof. We first verify that Q is 2-normal. If PQ = ΣQ, then Lemma 6.3 shows
that Q is 2-normal. Assuming that h∗2(Q) = 0, we confirm that Q is 2-normal by
induction on the dimension m. Since every lattice polytope of dimension at most
2 is normal (that is, k-normal for all k), the base case for the induction holds;
see Corollary 2.2.13 in [CLS]. If m � 3, then our assumption combined together
with inequality (4) in [S3] proves that h∗m(Q) = 0. Similarly, inequality (6) in [S3]
(with i = 1) shows that h∗m−1(Q) = 0. Hence, Ehrhart-Macdonald reciprocity (see
Theorem 4.4 in [BR]) establishes that neither Q nor 2Q have any interior lattice
points. It follows that every lattice point u ∈ (2Q) ∩ M is contained in a face of
2Q. Since every facet of 2Q equals 2F for some face F of Q and the monotonicity
of h∗-polynomials (see Theorem 3.3 in [S2]) ensures that h∗2(F ) � h∗2(Q) = 0, the
induction hypothesis shows that F is 2-normal. In particular, we have u = v1 +v2

for some v1,v2 ∈ F ∩M ⊂ Q ∩M , and we conclude that Q is also 2-normal.
The 2-normality of Q ensures that R2 = R[C(Q)]2 ∼= R · {(2Q) ∩ M} and, by

definition, we have h∗1(Q) = n + 1 = |Q ∩ M | = dimR[C(Q)]1, which together
imply that PQ = PX and ΣQ = ΣX . Since we have h∗0(Q) = 1 = dimR[C(Q)]0,
Lemma 3.1 establishes that h∗2(Q) = ε(X) and we have h∗2(Q) = 0 if and only if
X is a variety of minimal degree. If η

(
T (R)

)
is dense in the strong topology on

X(R), then Theorem 1.1 proves that PQ = ΣQ if and only if h∗2(Q) = ε(X) = 0.
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18 G. BLEKHERMAN, G. G. SMITH, AND M. VELASCO

Thus, it remains to show that PQ = ΣQ implies that η
(
T (R)

)
is dense in the strong

topology on X(R).
Assume that PQ = ΣQ and suppose that η

(
T (R)

)
is not dense in the strong

topology on X(R). By translating Q in MR if necessary, we may assume that Q
contains the origin and this lattice point corresponds to the 0th coordinate of the
map η : T → X ⊆ Pn. Let U0

∼= An denote the distinguished open subset of Pn

determined by the vanishing of the 0th coordinate and set W := X ∩ U0 ⊂ A
n.

Since η
(
T (R)

)
⊆ W , our supposition implies that η

(
T (R)

)
is not dense in the

strong topology on W (R). As a consequence, there exists a point p ∈ W (R) and
a real number δ > 0 such that the open ball Bδ(p) of radius δ centered at p is

completely contained in W (R) \ η
(
T (R)

)
. Choose coordinates x0, x1, . . . , xn on Pn

with p = [1 : p1 : p2 : · · · : pn] ∈ Pn(R). Consider the polynomial in R[x0, x1, . . . , xn]

f̂ := (x1 − p1x0)
2 + (x2 − p2x0)

2 + · · ·+ (xn − pnx0)
2 − δx2

0

and the corresponding Laurent polynomial f = η�(f̂) ∈ R[M ] where the canonical
ring homomorphism associated to η is η� : R[x0, x1, . . . , xn] → R[M ]. By construc-
tion, we have New(f) ⊆ 2Q and f is nonnegative on T (R), so f ∈ PQ. The
assumption PQ = ΣQ guarantees that there exists g1, g2, . . . , gk ∈ R[M ] such that
f = g21 + g22 + · · ·+ g2k. It follows that New(gj) ⊆ 1

2 New(f) = Q, so there are linear

forms ĝj ∈ R[x0, x1, . . . , xn] satisfying gj = η�(ĝ) for 1 � j � k. Since η� is injective,

we obtain f̂ = ĝ21+ ĝ22+· · ·+ ĝ2k. However, this is impossible because f̂(p) = −δ < 0.
Therefore, we conclude that η

(
T (R)

)
is dense in the strong topology on X(R). �

Remark 6.5. Combining Example 6.1 and Theorem 6.4, we only establish that
there exists a nonnegative polynomial with the same Newton polytope as the
Motzkin polynomial, which is not a sum of squares. Nevertheless, one can eas-
ily prove that the Motzkin polynomial is not a sum of squares; see Exercise 3.97 in
[BPT].

The ensuing propositions, which practically classify the lattice polytopes Q with
h∗2(Q) = 0, increase the utility of Theorem 6.4. They also advance the general
program of classifying polytopes based on their h∗-polynomials.

Proposition 6.6. Let Q ⊂ MR be an m-dimensional lattice polytope. We have
h∗2(Q) = 0 if and only if Q is 2-normal and Q is the affine Z-linear image, surjective
on integral points, of a polytope Q′ where Q′ ⊂ M ′

R
is either the (m−2)-fold pyramid

over conv{(0, 0), (2, 0), (0, 2)} ⊂ R
2 or the Cayley polytope of m line segments.

Proof. The first paragraph in the proof of Theorem 6.4 shows that Q is 2-normal
whenever h∗2(Q) = 0, and the second paragraph shows that the 2-normality of Q
implies that 0 = h∗

2 = ε(X) and X is a variety of minimal degree. Since X is a
toric variety, the classification for varieties of minimal degree (see Theorem 1 in
[EH]) establishes that X is either a cone over the Veronese surface or a rational
normal scroll. It follows from Example 6.2 that X is projectively equivalent to the
embedded toric variety X ′ determined by a polytope Q′ where Q′ is either an (m−
2)-fold pyramid over conv{(0, 0), (2, 0), (0, 2)} ⊂ R2 or the Cayley polytope ofm line
segments. The R-algebras R[C(Q)] and R[C(Q′)] are isomorphic, so Theorem 2.1
in [G] implies that the affine monoids C(Q) and C(Q′) are also isomorphic. This
isomorphism extends to a Z-linear homomorphism β : M ′ ⊕ Z → M ⊕ Z, because
C(Q′) contains a lattice basis, and β is injective, because Q is full-dimensional.
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Restricting to the affine slice at height 1, we obtain the affine map α : M ′ → M
such that α(Q′) = Q. Since β, and hence α, sends the generators of C(Q′) to the
generators of C(Q), every lattice point in Q is the image of a lattice point in Q′. �

Corollary 6.7. Let Q′ ⊂ M ′
R
be either the (m− 2)-fold pyramid over

conv{(0, 0), (2, 0), (0, 2)} ⊂ R
2

or the Cayley polytope of m line segments, and let α : M ′ → M be an affine map.
If Q := α(Q′), every integer point in Q comes from an integer point in Q′, and the
determinant of the linear component of α is a nonzero odd integer, then we have
PQ = ΣQ.

Proof. Propositon 6.6 implies that h∗2(Q) = 0, so it is enough to prove, by Theo-
rem 6.4, that η

(
T (R)

)
is dense in the strong topology on X(R). The embedded

projective toric variety X ⊆ Pn determined Q is a compactification of the dense
algebraic torus T ′′ := X ∩{x0x1 · · ·xn �= 0}, so it suffices to show that the induced
map η′′ : T (R) → T ′′(R) obtained from η is surjective. If M ′′ denotes the sublat-
tice generated by the lattice points in Q, then induced map η′′ corresponds to an
injective ring homomorphism from R[M ′′] → R[M ]. Since R[M ′′] is the image of
map R[M ′] → R[M ] defined by the linear component of α, it follows that η′′ is a
finite morphism with degree equal to the determinant of the linear component. As
in Remark 5.2, η′′ is surjective when the degree is odd. �

To refine our classification, we need an auxiliary invariant. The degree of Q is
the smallest j ∈ N such that, for 1 � k � m− j, k-fold Minkowski sum kQ contains
no interior lattice point.

Remark 6.8. One can directly verify that a pyramid over

conv{(0, 0), (2, 0), (0, 2)} ⊂ R
2

or a Cayley polytope of line segments has degree one.

With a few small adjustments to the proof of Proposition 6.6, we obtain the
following.

Proposition 6.9. For an m-dimensional lattice polytope Q ⊂ MR, the following
are equivalent:

(a) Q is normal and h∗2(Q) = 0,
(b) Q is a polytope of degree one,
(c) we have h∗2(Q) = h∗3(Q) = · · · = h∗m(Q) = 0.

Proof. (a) =⇒ (b): Since h∗2(Q) = 0, the proof of Proposition 6.6 provides Z-linear
homomorphism β : M ′ ⊕Z → M ⊕Z. By changing bases on the source and target,
we can assume that β is represented by a diagonal matrix (for example, its Smith
normal form), which sends a lattice basis in C(Q′) to certain multiplies in C(Q).
Since Q is normal, the monoid C(Q) also contains a lattice basis. It follows that β
is a lattice isomorphism. By restricting to the affine slice at height 1, we conclude
that Q and Q′ are affinely isomorphic.

(b) =⇒ (c): As in the proof of Proposition 6.6, this follows immediately from
Ehrhart-Macdonald reciprocity (see Theorem 4.4 in [BR]).

(c) =⇒ (a): We need to show that Q is k-normal for all k > 1. Since every
m-dimensional polytope is k-normal for all k � m − 1 (see Theorem 2.2.12 in
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[CLS]), we may assume k < m − 1. When 2 � k � m − j, one can adapt the
arguments from the first paragraph in the proof of Proposition 6.6 to show Q is
k-normal. �

Remark 6.10. By combining Proposition 6.6 and the proof of Propositon 6.9,
we obtain a new interpretation and a new proof for the main theorem in [BN].
Specifically, Theorem 2.5 in [BN] characterizes the m-dimensional lattice polytopes
of degree one as either an (m− 2)-fold pyramid over conv{(0, 0), (2, 0), (0, 2)} ⊂ R2

or the Cayley polytope of m line segments.

We end with a family of nonnormal polytopes Q for which we have h∗2(Q) = 0.
By examining the proof of Proposition 6.6, we see that smallest such example must
have dimension at least 5.

Example 6.11. Let m � 5 be an odd integer and fix k ∈ N. If e1, e2, . . . , em
denotes the standard basis for Zm, then consider the simplex

Q := conv

{
0, e1, e2, . . . , em,
e1 + · · ·+ em−1

2
+ k em+1

2
+ · · ·+ k em−1 + (k + 1) em

}
.

The h∗-polynomial for Q is 1 + k t(m+1)/2, so h∗2(Q) = 0; see Section 1 in [H2].
When k is even, Corollary 6.7 implies that PQ = ΣQ. When k is odd, η

(
T (R)

)
is

not dense in the strong topology on X(R), so Theorem 6.4 implies that PQ �= ΣQ.
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Departamento de Matemáticas, Universidad de los Andes, Carrera 1 No. 18a 10,

Edificio H, Primer Piso, 111711 Bogotá, Colombia
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