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THE ORBIFOLD CHOW RING
OF TORIC DELIGNE-MUMFORD STACKS

LEV A. BORISOV, LINDA CHEN, AND GREGORY G. SMITH

1. Introduction

The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich,
Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in-
troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical
invariants, such as the orbifold Euler characteristic and the orbifold Hodge num-
bers, of the underlying variety. The product structure is induced by the degree zero
part of the quantum product; in particular, it involves Gromov-Witten invariants.
Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects
that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a
resolution of singularities. Fantechi and Göttsche [14] and Uribe [25] verify this
conjecture when the orbifold is Symn(S) where S is a smooth projective surface
with KS = 0 and the resolution is Hilbn(S). The initial motivation for this project
was to compare the orbifold Chow ring of a simplicial toric variety with the Chow
ring of a crepant resolution.

To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks.
Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds
to a combinatorial object called a stacky fan. As a first approximation, this object
is a simplicial fan with a distinguished lattice point on each ray in the fan. More
precisely, a stacky fan Σ is a triple consisting of a finitely generated abelian group
N , a simplicial fan Σ in Q ⊗Z N with n rays, and a map β : Zn → N where the
image of the standard basis in Zn generates the rays in Σ. A rational simplicial
fan Σ produces a canonical stacky fan Σ := (N, Σ, β) where N is the distinguished
lattice and β is the map defined by the minimal lattice points on the rays. Hence,
there is a natural toric Deligne-Mumford stack associated to every simplicial toric
variety. A stacky fan Σ encodes a group action on a quasi-affine variety and the
toric Deligne-Mumford stack X (Σ) is the quotient. If Σ corresponds to a smooth
toric variety X(Σ) and Σ is the canonical stacky fan associated to Σ, then we
simply have X (Σ) = X(Σ). We show that many of the basic concepts, such as
open and closed toric substacks, line bundles, and maps between toric Deligne-
Mumford stacks, correspond to combinatorial notions. We expect that many more
results about toric varieties lift to the realm of stacks and hope that toric Deligne-
Mumford stacks will serve as a useful testing ground for general theories.
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Our description of the orbifold Chow ring of a toric Deligne-Mumford stack X (Σ)
parallels the “Stanley-Reisner” presentation for the Chow ring of a simplicial toric
variety. Specifically, the stacky fan Σ gives rise to the deformed group ring Q[N ]Σ.
As a Q-vector space, Q[N ]Σ is the group algebra of N . Since N is abelian, we write
Q[N ]Σ =

⊕
c∈N Q yc where y is a formal variable. For c ∈ N , c̄ denotes the image

of c in Q ⊗Z N . Multiplication in Q[N ]Σ is defined by the equation

yc1 · yc2 :=

{
yc1+c2 if there is σ ∈ Σ such that c̄1 ∈ σ and c̄2 ∈ σ,
0 otherwise.

Let bi be the image under the map β : Zn → N of the i-th standard basis vector.
The map β endows Q[N ]Σ with a Q-grading; if c̄ =

∑
b̄i∈σ mib̄i where σ is the

minimal cone in Σ containing c̄ and mi is a nonnegative rational number, then the
Q-grading is given by deg(yc) :=

∑
b̄i∈σ mi. Writing A∗

orb

(
X (Σ)

)
for the orbifold

Chow ring of X (Σ) with rational coefficient, our principal result is

Theorem 1.1. If X (Σ) is a toric Deligne-Mumford stack with a projective coarse
moduli space, then there is an isomorphism of Q-graded rings

A∗
orb

(
X (Σ)

) ∼=
Q[N ]Σ〈∑n

i=1 θ(bi)ybi : θ ∈ Hom(N, Z)
〉 .

Using differential geometry, Jiang [16] establishes this result for the weighted pro-
jective space P(1, 2, 2, 3, 3, 3).

Our proof of this theorem involves two steps. By definition, the orbifold Chow
ring A∗

orb

(
X (Σ)

)
is isomorphic as an abelian group to the Chow ring of the inertia

stack I
(
X (Σ)

)
. We first express I

(
X (Σ)

)
as a disjoint union of toric Deligne-

Mumford stacks. This leads to a proof of Theorem 1.1 at the level of Q-graded
vector spaces. To compare the ring structures, we also express the moduli space
K0,3

(
X (Σ), 0

)
of 3-pointed twisted stable maps as a disjoint union of toric Deligne-

Mumford stacks. This combinatorial description allows us to compute the virtual
fundamental class of K0,3

(
X (Σ), 0

)
. We are then able to verify that multiplication

in the deformed group ring coincides with the product in the orbifold Chow ring.
The paper is organized as follows. In Section 2, we extend Gale duality to maps

of finitely generated abelian groups. This duality forms an essential link between
stacky fans and toric Deligne-Mumford stacks. Nevertheless, this theory is entirely
self-contained and may be of interest in other situations. The rudimentary theory
of toric Deligne-Mumford stacks is developed in Sections 3 and 4. Specifically, we
detail the correspondence between stacky fans and toric Deligne-Mumford stacks,
we describe the open and closed toric substacks and we express the inertia stacks as
disjoint unions of toric Deligne-Mumford stacks. The proof of Theorem 1.1 is given
in Sections ?? and ??. Finally in Section 7, we use our main result to compare the
orbifold Chow rings of a simplicial toric variety and its crepant resolutions.

Conventions. Throughout this paper, we work over the field C of complex numbers,
we consider Chow rings and orbifold Chow rings with rational coefficients and we
write (−)� for the functor HomZ(−, Z).

2. Gale duality with torsion

In this section, we generalize Gale duality. To orient the reader, we recall the
basic form of Gale duality and its application to toric geometry. Given n vectors
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b1, . . . , bn which span Qd, there is a dual configuration [a1 · · · an] ∈ Q(n−d)×n such
that

(2.1) 0 −→ Qd [b1···bn]T−−−−−−→ Qn [a1···an]−−−−−→ Qn−d −→ 0

is a short exact sequence; see Theorem 6.14 in [29]. The set of vectors {a1, . . . , an}
is uniquely determined up to a linear coordinate transformation in Qn−d. This
duality plays a role in the study of smooth toric varieties. Specifically, let Σ be a
fan with n rays such that the corresponding toric variety X(Σ) is smooth. If N ∼= Zd

is the lattice in Σ, then the minimal lattice points b1, . . . , bn generating the rays
determine a map β : Zn → N . By tensoring with Q, we obtain a dual configuration
{a1, . . . , an}. Since X(Σ) is smooth, we have ai ∈ Zn−d and the set {a1, . . . , an}
is unique up to unimodular (determinant ±1) coordinate transformations of Zn−d.
Abbreviating HomZ(−, Z) by (−)�, it follows that the list {a1, . . . , an} defines a
map β∨ : (Zn)� → Zn−d ∼= Pic(X) and the short exact sequence (2.1) becomes

0 → N� β�

−−−→ (Zn)� β∨

−−−→ Pic(X) → 0; see Section 3.4 in [15]. Our goal is to
extend this theory to a larger class of maps.

Let N be a finitely generated abelian group and consider a group homomorphism
β : Zn → N . The map β is determined by a finite list {b1, . . . , bn} of elements in
N . The dual map β∨ : (Zn)� → DG(β) is defined as follows. Choose projective
resolutions E and F of the Z-modules Zn and N , respectively. Theorem 2.2.6 in
[27] shows that β : Zn → N lifts to a morphism E → F and Subsection 1.5.8 in
[27] shows that the mapping cone Cone(β) fits into an exact sequence of cochain
complexes 0 → F → Cone(β) → E[1] → 0. Since E is projective, we have the
exact sequence of cochain complexes

(2.2) 0 −→ E[1]� −→ Cone(β)� −→ F � −→ 0

and the associated long exact sequence in cohomology contains the exact sequence

(2.3) N� β�

−−−→ (Zn)� −→ H1
(
Cone(β)�

)
−→ Ext1Z(N, Z) −→ 0 .

Set DG(β) := H1
(
Cone(β)�

)
and define the dual map β∨ : (Zn)� → DG(β) to be

the second map in (2.3). Since Zn is projective, β∨ is in fact the only nontrivial
connecting homomorphism in the long exact sequence associated to (2.2). This
abstract definition guarantees the naturality of this construction. Indeed, mapping
cones are natural in the following sense: for every commutative diagram of cochain
complexes

E
β−−−−→ F	ν

	υ

E′ β′

−−−−→ F ′ ,

the map Cone(β) → Cone(β′) given by (b, c) �→
(
ν(b), υ(c)

)
is a morphism. More-

over, this map is an isomorphism if both ν and υ are isomorphisms. It follows that
both DG(β) and β∨ are well defined up to natural isomorphism.

On the other hand, there is an explicit description of the dual map β∨ and
the dual group DG(β). If N has rank d, then the structure theorem of finitely
generated abelian groups implies that there exists an integer matrix Q such that
0 → Zr Q−→ Zd+r → 0 is a projective resolution of N . The map β : Zn → N lifts
to a map Zn → Zd+r given by a matrix B. Since Zn is projective, the cochain
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complex with E0 = Zn and Ei = 0 for all i �= 0 is a projective resolution of Zn.

With these choices, Cone(β) is the complex 0 → Zn+r [B Q]−−−→ Zd+r → 0 and we
obtain the sequence (2.3) by applying the Snake Lemma (Lemma 1.3.2 in [27]) to
the diagram

0 −−−−→ (Zd+r)� −−−−→ (Zd+r)� −−−−→ 0	 	[B Q]�
	Q�

0 −−−−→ (Zn)� −−−−→ (Zn+r)� −−−−→ (Zr)� −−−−→ 0.

Hence, DG(β) = (Zn+r)�/ Im([B Q]�) and the map β∨ is the composition of the
inclusion map (Zn)� → (Zn+r)� and the quotient map (Zn+r)� → DG(β).

Example 2.1. The list {(2, 1), (−3, 0)} ∈ Z⊕Z/2Z yields a map β : Z2 → Z⊕Z/2Z.
In this case, Q = [ 0

2 ] and B =
[

2 −3
1 0

]
. Since the vector [6 4 − 3]� spans the integer

kernel of matrix
[

2 −3 0
1 0 2

]
, DG(β) ∼= Z3/ Im

([
2 −3 0
1 0 2

]�) ∼= Z and β∨ : Z2 → Z is
given by [6 4].

We are especially interested in the map β : Zn → N when it has a finite cokernel.

Proposition 2.2. Let β : Zn → N be a homomorphism of finitely generated abelian
groups. The map β is naturally isomorphic to β∨∨ if and only if the cokernel of β
is finite. Moreover, if the cokernel of β is finite, then the kernel of β∨ is N�.

Proof. Suppose that Coker(β) is not finite. The sequence (2.3) implies that the
Coker(β∨∨) is Ext1Z(DG(β), Z). Since Ext1Z(DG(β), Z) is finite, we see that β cannot
be isomorphic to β∨∨.

Conversely, assume that the cokernel of β is finite. To compute β∨∨, we first
construct a projective resolution of DG(β) = (Zn+r)�/ Im([B Q]�). Applying the
Snake Lemma to the diagram

0 −−−−→ Zr −−−−→ Zn+r −−−−→ Zn −−−−→ 0∥∥∥ 	[B Q]

	β

0 −−−−→ Zr Q−−−−→ Zd+r −−−−→ N −−−−→ 0
shows that Coker([B Q]) = Coker(β) and Ker([B Q]) = Ker(β). Hence, the complex

0 → Ker(β) → Zn+r [B Q]−−−→ Zd+r → 0 is a projective resolution of Coker(β). Since
ExtiZ(Coker(β), Z) can be computed from this resolution and Coker(β)� = 0, we

see that [B Q]� is injective and 0 → (Zd+r)� [B Q]�−−−−→ (Zn+r)� → 0 is a projective
resolution of DG(β).

Since the dual map β∨ is the composition of the inclusion map (Zn)� → (Zn+r)�

and the quotient map (Zn+r)� → DG(β), it follows that the dual group DG(β∨)

is (Zn+d+r)��/ Im
([

In B�

0 Q�

]�)
and the map β∨∨ is the composition of inclusion

(Zn)�� → (Zn+d+r)�� and the quotient map (Zn+d+r)�� → DG(β∨). Because Zm

is naturally isomorphic to (Zm)��, it follows that DG(β∨) is naturally isomorphic
to (Zd+r/ Im(Q)) = N and β∨∨ is naturally isomorphic to β. Lastly, our resolution
of DG(β) also implies that H0

(
Cone(β)�

)
= 0 and thus the long exact sequence

which gives (2.3) proves the second part of the proposition. �

The operator (−)∨ is also well behaved in short exact sequences.
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Lemma 2.3. Given a commutative diagram

(2.4)

0 −−−−→ Zn1 −−−−→ Zn2 −−−−→ Zn3 −−−−→ 0	β1

	β2

	β3

0 −−−−→ N1 −−−−→ N2 −−−−→ N3 −−−−→ 0
in which the rows are exact and the columns have finite cokernels, there is a com-
mutative diagram with exact rows:

(2.5)

0 −−−−→ (Zn3 )� −−−−→ (Zn2)� −−−−→ (Zn1)� −−−−→ 0	β∨
3

	β∨
2

	β∨
1

0 −−−−→ DG(β3) −−−−→ DG(β2) −−−−→ DG(β1) −−−−→ 0.

Proof. For 1 ≤ i ≤ 3, choose Ei := (Zni)[0] as a projective resolution of Zni .
Using Lemma 2.2.8 in [27], the bottom row of (2.4) lifts to an exact sequence of
projective resolutions 0 → F1 → F2 → F3 → 0. Hence, the diagram (2.4) produces
a commutative diagram of cochain complexes with exact rows:

0 −−−−→ E1 −−−−→ E2 −−−−→ E3 −−−−→ 0	 	 	
0 −−−−→ F1 −−−−→ F2 −−−−→ F3 −−−−→ 0.

The naturality of the mapping cone and the functor (−)� yield a commutative
diagram with exact rows and columns:

(2.6)

0 0 0	 	 	
0 −−−−→ E3[1]� −−−−→ E2[1]� −−−−→ E1[1]� −−−−→ 0	 	 	
0 −−−−→ Cone(β3)� −−−−→ Cone(β2)� −−−−→ Cone(β1)� −−−−→ 0	 	 	
0 −−−−→ F �

3 −−−−→ F �
2 −−−−→ F �

1 −−−−→ 0.	 	 	
0 0 0

Since Coker(βi) is finite and Ei = (Zni)[0], we have Hj
(
Cone(βi)�

)
= 0 and

Hj(Ei[1]�) = 0 for all j �= 1 and 1 ≤ i ≤ 3. Hence, taking the cohomology of
(2.6) yields (2.5). �

3. Toric Deligne-Mumford stacks

The purpose of this section is to associate a smooth Deligne-Mumford stack to
certain combinatorial data. This construction is inspired by the quotient construc-
tion for toric varieties; for example see [6].

Let N be a finitely generated abelian group of rank d. We write N for the lattice
generated by N in the d-dimensional Q-vector space NQ := N ⊗Z Q. The natural
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map N → N is denoted by b �→ b̄. Let Σ be a rational simplicial fan in NQ; every
cone σ ∈ Σ is generated by linearly independent vectors. Let ρ1, . . . , ρn be the
rays (one-dimensional cones) in Σ. We assume that ρ1, . . . , ρn span NQ and we
fix an element bi ∈ N such that b̄i generates the cone ρi for 1 ≤ i ≤ n. The list
{b1, . . . , bn} defines a homomorphism β : Zn → N with finite cokernel. The triple
Σ :=

(
N, Σ, β

)
is called a stacky fan.

The stacky fan Σ encodes a group action on a quasi-affine variety Z. To describe
this action, let C[z1, . . . , zn] be the coordinate ring of An. The quasi-affine variety Z
is the open subset defined by the reduced monomial ideal JΣ :=

〈∏
ρi�σ zi : σ ∈ Σ

〉
;

in other words, Z := An − V(JΣ). The C-valued points of Z are the z ∈ Cn such
that the cone generated by the set {ρi : zi = 0} belongs to Σ. We equip Z with an
action of the group G := HomZ(DG(β), C∗) as follows. By applying HomZ(−, C∗)
to the dual map β∨ : (Zn)� → DG(β) (see Section 2), we obtain a homomorphism
α : G → (C∗)n. The natural action of (C∗)n on An induces an action of G on An.
Since V(JΣ) is a union of coordinate subspaces, Z is G-invariant.

The quotient stack X (Σ) := [Z/G] is the Artin stack associated to the groupoid
s, t : Z × G ⇒ Z where s is the projection onto the first factor and t is given by
the G-action on Z. If S is a scheme, then the objects in [Z/G](S) are principal
G-bundles E → S with a G-equivariant map E → Z and the morphisms are
isomorphisms which preserve the map to Z. Since Z is smooth and separated,
X (Σ) is a smooth separated algebraic stack; see Remark 10.13.2 in [19]. The next
proposition shows that X (Σ) is in fact a Deligne-Mumford stack. We call X (Σ)
the toric Deligne-Mumford stack associated to the stacky fan Σ.

Lemma 3.1. The map Z ×G → Z×Z with (z, g) �→ (z, z ·g) is a finite morphism.

Proof. The morphism of schemes α : G → (C∗)n corresponds to the map of rings
C[(Zn)�] ∼= C[t±1

1 , . . . , t±1
n ] → C[DG(β)]. Since the cokernel of β∨ is finite, the

ring C[DG(β)] is integral over C[t±1
1 , . . . , t±1

n ] and G → Im(α) is a finite morphism.
Hence, it suffices to prove that ξ : Im(α) × Z → Z × Z is also a finite morphism.
Because Ker(β∨) ∼= N�, Im(α) = Spec

(
C[t±1

1 , . . . , t±1
n ]/〈

∏n
i=1 t

θ(bi)
i − 1 : θ ∈ N�〉

)
.

We next show that ξ : Im(α)×Z → Z×Z is an affine morphism. For each σ ∈ Σ,
set zσ̂ :=

∏
ρi�σ zi and let Uσ := Cn−V(zσ̂). The coordinate ring of the open affine

subset Uσ is C[z1, . . . , zn, z−1
σ̂ ] and the collection {Uσ : σ ∈ Σ} covers Z. Therefore,

{Uσ ×Uσ′ : σ, σ′ ∈ Σ} is an open affine cover of Z ×Z and Uσ ×Uσ′ = Spec(Bσ,σ′)
where Bσ,σ′ = C[z1, . . . , zn, z−1

σ̂ , z′1 , . . . , z′n , (z′σ̂′)−1]. Since coordinate subspaces
are G-invariant, ξ−1(Uσ × Uσ′) is the affine set

Im(α) × (Uσ ∩ Uσ′) = Spec Aσ,σ′ = Spec
(

C[t±1
1 ,...,t±1

n ,z1,...,zn,z−1
σ̂ ,z−1

σ̂′ ]〈∏n
i=1 t

θ(bi)
i −1 : θ∈N�

〉 )
.

The restriction of ξ to this affine set corresponds to the map ζ : Bσ,σ′ → Aσ,σ′ given
by zi �→ zi and z′i �→ tizi for 1 ≤ i ≤ n.

To prove that ξ is finite, we show that Aσ,σ′ is a finitely generated Bσ,σ′-module.
Clearly, the zi ∈ Aσ,σ′ and (zσ̂)−1 are integral over Bσ,σ′ . Since we have

ti = ζ
(
(zσ̂)−1z′i

∏
ρj �σ′

j �=i

zj

)
and t−1

i = ζ
(
(z′σ̂′)−1zi

∏
ρj �σ′

j �=i

z′j

)
,
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both ti for b̄i �∈ σ and t−1
i for b̄i �∈ σ′ are integral over Bσ,σ′ . Thus, t±1

i is integral
when b̄i �∈ σ ∪ σ′. The Separation Lemma (see Section 1.2 in [15]) implies there
is a θ ∈ N� such that θ(bi) > 0 if b̄i ∈ σ and b̄i �∈ σ′; θ(bi) < 0 if b̄i �∈ σ and
b̄i ∈ σ′; and θ(bi) = 0 if b̄i ∈ σ ∩ σ′. Hence, the relation

∏
i t

θ(bi)
i = 1 can be

rewritten as t
θ(bi)
i =

∏
j �=i t

−θ(bj)
j and our assumptions on θ imply that the right-

hand side is integral over Bσ,σ′ . It follows that t±1
i is integral over Bσ,σ′ when

b̄i �∈ σ ∩ σ′. Because σ ∩ σ′ is simplicial, b̄i ∈ σ ∩ σ′ implies that the relations
{
∏

i t
θ(bi)
i = 1 : θ ∈ N�} allow one to express a power of t±1

i as a product of t±1
j

for b̄j �∈ σ ∩ σ′. This shows that t±1
i for 1 ≤ i ≤ n is integral over Bσ,σ′ . Lastly, we

have (zσ̂′)−1 = ζ((z′σ̂′ )−1)
∏

ρi�σ′ ti which implies Aσ,σ′ is integral over Bσ,σ′ and
completes the proof. �

Proposition 3.2. The quotient X (Σ) is a separated Deligne-Mumford stack.

Proof. By Corollary 2.2 in [10] (or Example 7.17 in [26]), it is enough to show that
the stabilizers of the geometric points of Z are finite and reduced. Lemma 3.1 shows
that the map Z × G → Z × Z defined by (z, g) �→ (z, z · g) is a finite morphism.
It follows that each stabilizer is a finite group scheme. Since we are working in
characteristic zero, all finite group schemes are reduced. �

Remark 3.3. In [18], a “toric stack” is defined to be the quotient of a toric variety
by its torus. Since such a quotient is never a Deligne-Mumford stack, X (Σ) is not
a “toric stack”.

Remark 3.4. The definition of X (Σ) does not depend on the fan Σ being simplicial.
However, X (Σ) is a Deligne-Mumford stack if and only if the fan Σ is simplicial.

As the next example indicates, our construction produces some classic Deligne-
Mumford stacks.

Example 3.5. Let Σ be the complete fan in Q and consider the list {(2, 1), (−3, 0)}
of elements from N := Z ⊕ Z/2Z. This data defines a stacky fan Σ. From Exam-
ple 2.1, we know β∨ : Z2 → DG(β) ∼= Z is given by the matrix [6 4]. Furthermore,
Z := A2 − {(0, 0)} and λ ∈ G ∼= C∗ acts by (z1, z2) �→ (λ6z1, λ

4z2). In this case,
X (Σ) is precisely the moduli stack of elliptic curves M1,1; see [9].

To illustrate that a toric Deligne-Mumford stack depends on the set {bi}, we
include the following:

Example 3.6. Let Σ be the complete fan in Q, which implies Z := A2 − {(0, 0)},
and let N := Z ⊕ Z/3Z. If β1 : Z2 → N corresponds to the list {(1, 0), (−1, 1)}
and Σ1 =

(
N, Σ, β1

)
, then β∨

1 : Z2 → DG(β) ∼= Z is given by the matrix [3 3] and
λ ∈ G1

∼= C∗ acts by (z1, z2) �→ (λ3z1, λ
3z2). On the other hand, if β2 : Z2 → N

corresponds to the list {(1, 0), (−1, 0)}, then β∨
2 : Z2 → DG(β) ∼= Z⊕Z/3Z is given

by [ 1 1
0 0 ] and (λ1, λ2) ∈ G2

∼= C∗ × µ3 acts by (z1, z2) �→ (λ1z1, λ1z2). Therefore,
for the stacky fan Σ2 = (N, Σ, β2), X (Σ2) is the quotient of P1 by a trivial action
of Z/3Z and X (Σ1) �∼= X (Σ2).

The last result in this section makes the relationship between toric Deligne-
Mumford stacks and toric varieties more explicit. Recall that a coarse moduli space
of a Deligne-Mumford stack X is an algebraic space X with a morphism π : X → X
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such that
• for all algebraically closed fields k, the map π(k) : X (k) → X(k) is a bijec-

tion;
• given any algebraic space X ′ and any morphism π′ : X → X ′, there is a

unique morphism χ : X → X ′ such that π′ = χ ◦ π.

Proposition 3.7. The toric variety X(Σ) is the coarse moduli space of X (Σ).

Proof. By Proposition 4.2 in [10], it is enough to show that the toric variety X(Σ)
is the universal geometric quotient of Z by G. Under the additional assumptions
that N = N and that the bi = b̄i are the unique minimal lattice points generating
the rays in Σ, this is Theorem 2.1 in [6]. The reader can verify that the proof
presented in [6] extends to our situation without any significant changes. �

Proposition 3.7 implies that X (Σ) has a projective coarse moduli space if and
only if Σ is the normal fan of a polytope.

4. Closed and open substacks

This section explains how the stacky fan Σ encodes certain closed and open
substacks of X (Σ). We also express the inertia stack I

(
X (Σ)

)
as a disjoint union

of certain closed substacks.
To describe the connection between the combinatorics of the stacky fan Σ and

the substacks of X (Σ), we use the theory of groupoids; see [20] for an introduction.
Recall that a homomorphism of groupoids Θ: (R′ ⇒ U ′) −→ (R ⇒ U) is called a
Morita equivalence if

(1) the square

R′ (s,t)−−−−→ U ′ × U ′

Θ

	 	Θ×Θ

R
(s,t)−−−−→ U × U

is Cartesian, and
(2) the morphism t◦pr1 : R×s,U,Θ U ′ → U is locally surjective. In other words,

U has an open covering {Ui → U} in the étale topology such that each
Ui → U factors through R ×s,U,Θ U ′.

The key observation is that two groupoids are Morita equivalent if and only if the
associated stacks are isomorphic.

Fix a cone σ in the fan Σ. Let Nσ be the subgroup of N generated by the set
{bi : ρi ⊆ σ} and let N(σ) be the quotient group N/Nσ. By extending scalars, the
quotient map N → N(σ) becomes the surjection NQ → N(σ)Q. The quotient fan
Σ/σ in N(σ)Q is the set {τ̃ = τ +(Nσ)Q : σ ⊆ τ and τ ∈ Σ} and the link of σ is the
set link(σ) := {τ : τ + σ ∈ Σ, τ ∩ σ = 0}. For each ray ρi in link(σ), we write ρ̃i for
the ray in Σ/σ and b̃i for the image of bi in N(σ). To ensure that the quotient fan
satisfies our hypothesis for constructing toric Deligne-Mumford stacks, we require
the following:

Condition 4.1. The rays ρ̃i span N(σ)Q.

Note that if Σ is a complete fan, then every cone σ satisfies Condition 4.1.
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Let � be the number of rays in link(σ) and let β(σ) : Z� → N(σ) be the map
determined by the list {b̃i : ρi ∈ link(σ)}. The quotient stacky fan Σ/σ is the triple(
N(σ), Σ/σ, β(σ)

)
.

Proposition 4.2. If σ is a cone in the stacky fan Σ which satisfies Condition 4.1,
then X (Σ/σ) defines a closed substack of X (Σ).

Proof. By definition, X (Σ) is [Z/G]. Let W (σ) be the closed subvariety of Z
defined by the ideal J(σ) := 〈zi : ρi ⊆ σ〉 in C[z1, . . . , zn]. The C-valued points
of W (σ) are the z ∈ Cn such that the cone spanned by {ρi : zi = 0} contains σ
and belongs to Σ. Hence, ρi �⊆ σ ∪ link(σ) implies that zi �= 0. Since J(σ) defines
a coordinate subspace, W (σ) is G-invariant and the groupoid W (σ) × G ⇒ W (σ)
defines a closed substack of X (Σ). It remains to show that X (Σ/σ) is the stack
associated to W (σ) × G ⇒ W (σ).

To begin, we construction a homomorphism from W (σ)×G ⇒ W (σ) to the defin-
ing groupoid of X (Σ/σ). By renumbering the ρi, we may assume that ρ̃1, . . . , ρ̃�

are the rays in link(σ). If C[z̃1, . . . , z̃�] is the coordinate ring of A�, then

JΣ/σ :=
〈∏

ρi�τ z̃i : σ ⊆ τ and τ ∈ Σ
〉
.

By definition, X (Σ/σ) := [Z(σ)/G(σ)] where Z(σ) := A� − V(JΣ/σ) and G(σ)
is the group HomZ(DG(β(σ)), C∗). Let m := dimσ. The description of the
C-valued points of W (σ) shows the projection An → A� induces a surjection
ϕ0 : W (σ) → Z(σ) with Ker(ϕ0) = (C∗)n−�−m. Applying Lemma 2.3 to the com-
mutative diagram

0 −−−−→ Zn−� −−−−→ Zn −−−−→ Z� −−−−→ 0	β̃

	β

	β(σ)

0 −−−−→ Nσ −−−−→ N −−−−→ N(σ) −−−−→ 0

produces the commutative diagram with exact rows

(4.1)

0 −−−−→ (Z�)� −−−−→ (Zn)� −−−−→ (Zn−�)� −−−−→ 0	β(σ)∨
	β∨

	β̃∨

0 −−−−→ DG(β(σ)) −−−−→ DG(β) −−−−→ DG(β̃) −−−−→ 0.

Since the cone σ is simplicial, Nσ
∼= Zm and DG(β̃) ∼= Zn−�−m. Applying the

functor HomZ(−, C∗) to (4.1) gives the diagram with split exact rows

0 −−−−→ (C∗)n−�−m −−−−→ G
ϕ1−−−−→ G(σ) −−−−→ 0	 	α

	α(σ)

0 −−−−→ (C∗)n−� −−−−→ (C∗)n −−−−→ (C∗)� −−−−→ 0.

Hence, Φ := (ϕ0×ϕ1, ϕ0) is a homomorphism of groupoids from W (σ)×G ⇒ W (σ)
to Z(σ) × G(σ) ⇒ Z(σ).
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To prove that X (Σ/σ) is the stack associated to W (σ) × G ⇒ W (σ), it suffices
to show that Φ is a Morita equivalence. First, the commutative diagram

Z(σ) × G(σ) × (C∗)2(n−�−m)
∼=←−−−− W (σ) × G

ϕ0×ϕ1−−−−→ Z(σ) × G(σ)	(s,t,id)

	(s,t)

	(s,t)

Z(σ) × Z(σ) × (C∗)2(n−�−m)
∼=←−−−− W (σ) × W (σ)

ϕ0×ϕ0−−−−→ Z(σ) × Z(σ)

shows that W (σ)×G =
(
Z(σ)×G(σ)

)
×ϕ0×ϕ0,Z(σ)×Z(σ),(s,t)

(
W (σ)×W (σ)

)
. Sec-

ond, we have
(
Z(σ)×G(σ)

)
×s,Z(σ),ϕ0 W (σ) ∼= Z(σ)×G(σ)×Cn−�−m which implies

that the map t ◦ pr1 :
(
Z(σ) × G(σ)

)
×s,Z(σ),ϕ0 W (σ) → Z(σ) splits. Therefore, Φ

is a Morita equivalence and X (Σ/σ) defines a closed substack of X (Σ). �

Viewing σ ∈ Σ as the fan consisting of the cone σ and all its faces, we can
identify σ with an open substack of X (Σ). This substack has a particularly nice
description when σ is of maximal dimension; dim σ = d = rankN . In this case, let
βσ : Zd → N be the map determined by the list {bi : ρi ⊆ σ}. The induced stacky
fan σ is the triple

(
N, σ, βσ

)
.

Proposition 4.3. If σ is a d-dimensional cone in the stacky fan Σ, then X (σ)
defines an open substack of X (Σ). Moreover, X (σ) is isomorphic to the quotient
of Cd by the finite abelian group N(σ).

Proof. As in Lemma 3.1, let Uσ be the open subvariety of Z defined by the monomial
zσ̂ :=

∏
ρi�σ zi. The C-valued points of Uσ are the z ∈ Cn such that for each zi = 0

the ray ρi is contained in σ. Since V(zσ̂) is a union of coordinate subspaces, Uσ is
G-invariant and the groupoid Uσ × G ⇒ Uσ defines an open substack of X (Σ). It
remains to show that X (σ) is the stack associated to Uσ × G ⇒ Uσ.

We construct a homomorphism from the defining groupoid of X (σ) to the
groupoid Uσ × G ⇒ Uσ. Since σ is a d-dimensional simplicial cone, Jσ = 〈1〉 and
Zσ := Ad. By definition, X (σ) := [Zσ/Gσ] where Gσ := HomZ(DG(βσ), C∗). The
description of the C-valued points of Uσ yields a closed embedding ψ0 : Zσ → Uσ

where ψ0(Zσ) = Cd × 1 ⊂ Cd × (C∗)n−d ∼= Uσ. Applying Lemma 2.3 and the
functor HomZ(−, C∗) to

0 −−−−→ Zd −−−−→ Zn −−−−→ Zn−d −−−−→ 0	βσ

	β

	
0 −−−−→ N −−−−→

id
N −−−−→ 0

produces the commutative diagram

(4.2)

0 −−−−→ Gσ −−−−→ G
ψ1−−−−→ (C∗)n−d −−−−→ 0	ασ

	α

	id

0 −−−−→ (C∗)d −−−−→ (C∗)n −−−−→ (C∗)n−d −−−−→ 0.

Hence, Ψ := (ψ0 ×ψ1, ψ0) is a homomorphism of groupoids from Zσ ×Gσ ⇒ Zσ to
Uσ ×G ⇒ Uσ and an element g ∈ G belongs to Gσ if and only if (Zσ · g)∩Zσ �= ∅.

Next, we establish that Gσ
∼= N(σ). The definition of N(σ) gives the exact

sequence 0 −→ Zd+r [Bσ Q]−−−−−−→ Zd+r −→ N(σ) −→ 0 where Bσ is the submatrix
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of B whose columns correspond to the ρi ⊆ σ. Since N(σ)� = 0, we obtain the

exact sequence 0 −→ (Zd+r)� [Bσ Q]�−−−−−−→ (Zd+r)� −→ Ext1Z
(
N(σ), Z

)
−→ 0 which

implies that DG(β) = Ext1Z
(
N(σ), Z

)
= HomZ

(
N(σ), Q/Z

)
. Hence, the group Gσ

is HomZ
(
HomZ

(
N(σ), Q/Z

)
, C∗). We identify Q/Z with a subgroup of C∗ via the

map p �→ exp(2π
√
−1p) to obtain a natural homomorphism from N(σ) to Gσ. By

expressing N(σ) as a direct sum of cyclic groups, one verifies that this map is an
isomorphism.

Finally, to prove that X (σ) is the stack associated to Uσ × G ⇒ Uσ, it suffices
to show that Ψ is a Morita equivalence. First, because an element g ∈ G belongs
to Gσ if and only if (Zσ · g) ∩ Zσ �= ∅, the commutative diagram

Zσ × Gσ
ψ0×ψ1−−−−→ Uσ × G	(s,t)

	(s,t)

Zσ × Zσ
ψ0×ψ0−−−−→ Uσ × Uσ

establishes that Zσ×Gσ =
(
Zσ×Zσ

)
×ψ0×ψ0,Zσ×Zσ,(s,t)

(
Uσ×G

)
. Secondly, we have(

Uσ×G
)
×s,Uσ ,ψ0Zσ

∼= Zσ×G which implies that pr1 :
(
Uσ×G

)
×s,Uσ,ψ0Zσ → Uσ×G

corresponds to the closed immersion ψ0× id : Zσ×G → Uσ ×G. Lemma 3.1 implies
that t : Uσ × G → Uσ is finite. Since the action of Coker(ψ1) on ψ0(Zσ) surjects
onto Uσ, we deduce that t ◦ pr1 :

(
Uσ × G

)
×s,Uσ ,ψ0 Zσ → Uσ is a finite surjective

morphism of nonsingular varieties and hence is flat. Because the geometric fibers
of t ◦ pr1 correspond to Gσ, a finite set of reduced points, the map t ◦ pr1 is also
étale and therefore locally surjective. We conclude that Ψ is a Morita equivalence
and X (σ) defines an open substack of X (Σ). �
Remark 4.4. Assuming that every cone in Σ is contained in a d-dimensional cone,
Proposition 4.3 produces an étale atlas of X (Σ).

Remark 4.5. More generally, if Σ′ := (N ′, Σ′, β′) and Σ := (N, Σ, β) are two stacky
fans, then a morphism of stacky fans is a homomorphism φ : N ′ → N satisfying

• for each cone σ′ ∈ Σ′, there exists a σ ∈ Σ such that φQ(σ′) ⊆ σ where
φQ : N ′ ⊗Z Q → N ⊗Z Q;

• the element φ(b′i) is an integer combination of the bj ∈ N where b̄′i ∈ σ′,
b̄j ∈ σ and σ ∈ Σ is any cone that contains φQ(σ′).

For each morphism φ : Σ′ → Σ, there is a morphism X (Σ′) → X (Σ). Since we do
not make use of this construction, the proof is left to the reader.

For each d-dimensional cone σ in the stacky fan Σ, we define Box(σ) to be the
set of elements v ∈ N such that v̄ =

∑
ρi⊆σ qib̄i for some 0 ≤ qi < 1. Hence, the

set Box(σ) is in one-to-one correspondence with the elements in the finite group
N(σ). Let Box(Σ) be the union of Box(σ) for all d-dimensional cones σ ∈ Σ. For
each v ∈ N , we write σ(v̄) for the unique minimal cone containing v̄.

Lemma 4.6. If Σ is a complete fan, then the elements v ∈ Box(Σ) are in one-to-
one correspondence with elements g ∈ G which fix a point of Z. Moreover, we have
[Zg/G] ∼= X

(
Σ/σ(v̄)

)
.

Proof. By definition, an element v ∈ Box(Σ) corresponds to an element in N(τ)
for some d-dimensional cone τ ∈ Σ. In the proof of Proposition 4.3, we give an
isomorphism between N(τ) and Gτ . Hence, there is a bijection sending v to an
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element g in the subgroup Gτ ⊆ G. In addition, (4.2) implies that g acts trivially
on points z ∈ Z with zi = 0 for all ρi ⊆ τ which shows that g fixes a point in Z.

Conversely, suppose g ∈ G fixes a point z ∈ Z. Since the action of G on Z
is defined via the map α : G → (C∗)n where g �→

(
α1(g), . . . , αn(g)

)
, we see that

either αi(g) = 1 or zi = 0 for all 1 ≤ i ≤ n. The definition of Z guarantees
that there exists a cone in Σ containing all the rays ρi for which zi = 0. Let σ
be the minimal cone with this property. Because Σ is a simplicial fan, the ray
ρi is contained in σ if and only if αi(g) �= 1. Thus, the closed subvariety W (σ)
defined in Proposition 4.2 is equal to the invariant subvariety Zg. Moreover, our
choice of σ implies that the element g stabilizes ψ0(Zτ ) for every d-dimensional
cone τ which contains σ. It follows that g corresponds to an element v ∈ Box(Σ).
Finally, σ is clearly the intersection of all maximal cones τ for which v corresponds
to an element in N(τ). Therefore, σ = σ(v̄) and Proposition 4.2 establishes that
[Zg/G] = [W (σ)/G] ∼= X

(
Σ/σ(v̄)

)
. �

For a Deligne-Mumford stack X , its inertia stack I(X ) is defined to be the
fibered product X ×∆,X×X ,∆ X where ∆ denotes the diagonal map. For a scheme
S, an object in I

(
X

)
(S) can be identified with the pair (x, φ) where x is an object

in X (S) and φ is an automorphism of x. A morphism from (x, φ) → (x′, φ′) is
a morphism γ : x → x′ in X (S) such that γ ◦ φ = φ′ ◦ γ. Since we are working
over C, the inertia stack I(X ) is naturally isomorphic to the stack of representable
morphisms from constant cyclotomic gerbes to X ; see Section 4.4 in [2].

Proposition 4.7. If Σ is a complete fan, then I
(
X (Σ)

)
=

∐
v∈Box(Σ) X

(
Σ/σ(v̄)

)
where σ(v̄) is the minimal cone in Σ containing v̄.

Proof. Let S be a connected scheme. An object x of X (Σ)(S) is a principal
G-bundle E → S with a G-equivariant morphism f : E → Z. An automorphism
φ is an automorphism of the principal G-bundle E → S that is compatible with
E → Z. Since S is connected, φ corresponds to multiplication by an element g ∈ G.
Moreover, because f is G-equivariant and f = f ◦φ, the map f factors through Zg.
Hence, the principal G-bundle E → S with E → Zg is an object in [Zg/G](S).

For an arbitrary scheme S and an object in I
(
X (Σ)

)
(S), we can assign an

object in
∐

g∈G[Zg/G](S) by considering the connected components of S. Finally,
Lemma 4.6 shows that Zg �= ∅ if and only if g corresponds to an element v ∈ Box(Σ)
and that [Zg/G] ∼= X

(
Σ/σ(v̄)

)
. �

Remark 4.8. By combining Proposition 3.7 and Proposition 4.7, we see that the
coarse moduli space of I

(
X (Σ)

)
is isomorphic to the disjoint union of X

(
Σ/σ(v̄)

)
for all v ∈ Box(Σ). In particular, we recover the description of the twisted sectors
in Section 6 of [22].

5. Module structure on A∗
orb

(
X (Σ)

)
The goal of this section is to describe the orbifold Chow ring of a complete toric

Deligne-Mumford stack as an abelian group. Throughout this section, we assume
all fans are complete and simplicial and all Chow rings have rational coefficients.

We first introduce the deformed group ring Q[N ]Σ associated to the stacky fan
Σ =

(
N, Σ, β

)
. As a vector space, Q[N ]Σ is simply the group ring Q[N ]; in other

words, Q[N ]Σ =
⊕

c∈N Q ·yc where y is a formal variable. Multiplication in Q[N ]Σ
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is defined as follows:

(5.1) yc1 · yc2 :=

{
yc1+c2 if there exists σ ∈ Σ such that c̄1 ∈ σ and c̄2 ∈ σ,
0 otherwise.

We endow Q[N ]Σ with a Q-grading as follows: if c̄ =
∑

ρi⊆σ(c̄) mib̄i where σ(c̄) is
the minimal cone in Σ containing c̄, then deg(yc) :=

∑
mi ∈ Q.

Given a stacky fan Σ, we denote by SΣ the subring of Q[N ]Σ generated over Q by
the monomials ybi . Since Σ is simplicial, the ring SΣ is isomorphic to the quotient
Q[x1, . . . , xn]/IΣ where the ideal IΣ is generated by the square-free monomials
xi1xi2 · · ·xis with ρi1 + · · · + ρis �∈ Σ. In particular, SΣ is a Z-graded ring and IΣ

is the Stanley-Reisner ideal associated to Σ.
To describe the Chow ring of X (Σ), we need certain line bundles corresponding

to the rays ρ1, . . . , ρn. Since the category of coherent sheaves on X (Σ) is equivalent
to the category of G-equivariant sheaves on Z (Example 7.21 in [26]), we can define
Li for 1 ≤ i ≤ n to be the line bundle on X (Σ) corresponding to the trivial line
bundle C × Z on Z with the G-action on C given by the i-th component αi of
α : G → (C∗)n.

We first calculate the non-orbifold Chow ring of X (Σ).

Lemma 5.1. If X (Σ) is a complete toric Deligne-Mumford stack, then there is an
isomorphism of Z-graded rings

SΣ〈∑n
i=1 θ(b̄i) · ybi : θ ∈ N�

〉 −→ A∗(X (Σ)
)

defined by ybi �→ c1(Li).

Proof. For 1 ≤ i ≤ n, let ai denote the unique minimal lattice generator of ρi

in Σ and let �i be the positive integer satisfying the relation b̄i = �iai. The
Jurkiewicz-Danilov Theorem (see page 134 in [21]) states that there is a surjective
homomorphism of graded rings from Q[x1, . . . , xn] to A∗(X(Σ)

)
given by xi �→ Di

where Di is the torus invariant Weil divisor on X(Σ) associated with ρi. The
kernel of this map is the ideal IΣ plus the ideal generated by the linear rela-
tions

∑n
i=1 θ(ai) · xi for all θ ∈ N�. Example 6.7 in [26] establishes a natural

isomorphism A∗(X (Σ)
) ∼= A∗(X(Σ)

)
defined by c1(Li) �→ �−1

i · Di. Since we have∑n
i=1 θ(ai) · �i · xi =

∑n
i=1 θ(b̄i) · xi for all θ ∈ N�, the composition of these two

isomorphism establishes the claim. �

This lemma allow us to establish Theorem 1.1 at the level of Q-graded Q-vector
spaces. More precisely, we prove the following result. If M is a Q-graded module
and c is a rational number, then we write M [c] for the c-th shift of M ; it is defined
by the formula M [c]c′ = Mc′+c.

Proposition 5.2. If X (Σ) is a complete toric Deligne-Mumford stack, then there
is an isomorphism of Q-graded Q-vector spaces:

Q[N ]Σ

〈
∑n

i=1 θ(bi) · ybi : θ ∈ N�〉
∼=

⊕
v∈Box(Σ)

A∗(X (Σ/σ(v̄))
)[

deg(yv)
]
.

Proof. The definition of SΣ and Box(Σ) implies that Q[N ]Σ =
⊕

v∈Box(Σ) yv · SΣ.
We first analyze the individual summands. Fix an element v ∈ Box(Σ) and let
τ := σ(v̄) be the minimal cone in Σ containing v̄. It follows from the definition of
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multiplication in the deformed group ring that yv ·SΣ is isomorphic to the quotient
of SΣ by the ideal generated by the elements yc where c lies outside the cones in Σ
containing τ .

Let SΣ/τ denote the subring of Q[N(τ)]Σ/τ generated by yb̃i for ρi ∈ link(τ). By
renumbering the rays in Σ, we may assume that ρ̃1, . . . , ρ̃� are the rays in link(τ).
Recall that b̃i is the image of bi in N(τ). For each ray ρi ∈ τ , choose an element
θi ∈ N� such that θi(bi) = 1 and θi(bj) = 0 for all b̄i �= b̄j ∈ τ . Consider the map
defined by

ybi �→


yb̃i for ρi ⊆ link(τ),
−

∑�
j=1 θi(bj) · yb̃j for ρi ⊆ τ ,

0 for ρi �⊆ τ ∪ link(τ).

Since this map is compatible with the multiplicative structures on SΣ and SΣ/τ , it
induces a surjective homomorphism from SΣ to SΣ/τ . Clearly, the kernel contains
the elements θi(bi) · ybi +

∑�
j=1 θi(bj)ybj for all ρi ∈ τ and the elements yc where

c lies outside the cones in Σ containing τ . Given any other element of the kernel,
we can use these relations to obtain a linear combination of monomials yw with
w̄ ∈ link(τ) which also belongs to the kernel. However, this is only possible if all
the coefficients of yw are zero, which implies that the given elements generate the
kernel.

Since Lemma 5.1 establishes that
SΣ/τ

〈
∑�

i=1 θ̃(b̃i) · yb̃i : θ̃ ∈ N(τ)�〉
∼= A∗(X (Σ/τ )

)
,

we have a surjective Q-graded Q-linear map from yv · SΣ to A∗(X (Σ/τ )
)
[deg(yv)]

whose kernel is generated by the elements θi(bi) · ybi +
∑�

j=1 θi(bj)ybj for all ρi ∈ τ

and the pullbacks of the linear relations
∑�

i=1 θ̃(b̃i) · yb̃i where θ̃ ∈ N(τ)�. Finally,
taking the direct sum over all v ∈ Box(Σ) produces a surjective Q-graded Q-linear
map from Q[N ]Σ to

⊕
v∈Box(Σ) A∗(X (Σ/σ(v̄))

)[
deg(yv)

]
whose kernel is generated

by the elements
∑n

i=1 θ(bi) · ybi where θ ∈ N�. �

Remark 5.3. Although the elements θi in the proof of Proposition 5.2 are not
uniquely determined, the possible choices differ by elements in N(τ)�. It follows
that the surjection from yv · SΣ to SΣ/τ [deg(yv)] is not canonically defined, but
the surjection from yv · SΣ to A∗(X (Σ/τ )

)[
deg(yv)

]
is.

Remark 5.4. The degree shift in Proposition 5.2 is also called the age of the com-
ponent of the inertia stack; see Subsection 7.1 in [2].

6. The product structure on A∗
orb

(
X (Σ)

)
In this section, we study multiplication in A∗

orb

(
X (Σ)

)
. Specifically, we complete

the proof of Theorem 1.1 by showing that multiplication in the deformed group ring
coincides with the orbifold product. To use the results on twisted stable curves in
[1] [2], we assume that X (Σ) has a projective coarse moduli space. Proposition 3.7
implies that this is equivalent to saying Σ is the normal fan of a polytope.

To compare the two products, we first give a combinatorial description of the
moduli space K := K0,3

(
X (Σ), 0

)
of 3-pointed twisted stable maps of genus zero

and degree zero to X (Σ). The moduli space K is a smooth proper Deligne-Mumford
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stack with a projective coarse moduli space; see Theorem 3.6.2 in [2]. By identi-
fying the inertia stack I

(
X (Σ)

)
with the stack of representable morphisms from a

constant cyclotomic gerbe to X (Σ), Lemma 6.2.1 in [2] produces three evaluation
maps denoted evi : K → I

(
X (Σ)

)
for 1 ≤ i ≤ 3. The existence of evi stems from

the following. Given a scheme S and a family of twisted stable maps in K(S), the
coarse curve is just P1 × S and the markings can be identified as {0} × S, {1} × S
and {∞} × S. Constructing a lifting evi is equivalent to constructing a root of
the normal bundle of the i-th marking, functorially in S. This is equivalent to
constructing a root of the tangent space of P1 restricted to the i-th marking and a
line bundle over a point obviously has the appropriate root.

Proposition 4.7 shows that I
(
X (Σ)

)
=

∐
v∈Box(Σ) X

(
Σ/σ(v̄)

)
, so we can index

the components of K by the images of the evaluation maps. Let Kv1,v2,v3 be the
component of K such that evi maps to X

(
Σ/σ(v̄i)

)
for 1 ≤ i ≤ 3. For brevity, we

write v1 + v2 + v3 ≡ 0 to indicate that there exists a cone σ ∈ Σ containing v̄i for
1 ≤ i ≤ 3 such that the sum v1 + v2 + v3 belongs to the subgroup Nσ in N .

Proposition 6.1. If X (Σ) is a toric Deligne-Mumford stack with a projective
coarse moduli space, then

K =
∐

(v1,v2,v3)∈Box(Σ)3

v1+v2+v3≡0

X
(
Σ/σ(v̄1, v̄2, v̄3)

)
,

where σ(v̄1, v̄2, v̄3) is the minimal cone in Σ containing v̄1, v̄2 and v̄3.

Proof. We begin by examining the geometric points of K. A C-valued point of
K is a representable morphism f from a twisted curve C to X (Σ) such that the
induced map on coarse moduli spaces sends P1 to a point x ∈ X(Σ). Hence, the
map f factors through a closed substack BG′ in X (Σ) where G′ ⊆ G is the isotropy
group of x ∈ X (Σ) and BG′ is the classifying stack [x/G′]. Corollary 1.6.2 in
[19] shows that the morphism from C to BG′ is also representable, which implies
that the fibered product Ĉ := C ×BG′ x is a scheme. Since C is smooth, we see
that Ĉ is a smooth curve, although it is typically disconnected. Let H be the
subgroup of G′ that acts trivially on the set of connected components of Ĉ. Since
G′ is abelian, the group H is the stabilizer of each connected component of Ĉ. By
choosing a connected component C of Ĉ, we obtain C ∼= [C/H ]. Assuming the
points {0, 1,∞} in P1 correspond to the markings on C, the properties of a twisted
curve imply that the map C → P1 is an isomorphism over P1 −{0, 1,∞}. It follows
that C is a proper smooth Galois cover of P1 with Galois group H branched over 0,
1 and ∞. Specifically, if γ1, γ2, γ3 are the generators of the fundamental group of
P1−{0, 1,∞} corresponding to counterclockwise loops around 0, 1, ∞, respectively,
then C is induced by a homomorphism π1(P1 − {0, 1,∞}) → G sending γ1 to gi

such that g1 · g2 · g3 = 1 and g1, g2, g3 generate H as a subgroup of G.
By definition, the map evi is induced by the representable morphism from the

cyclotomic gerbe in C lying over the corresponding point in P1 to X (Σ); recall
that over C the inertia stack I

(
X (Σ)

)
is canonically isomorphic to the stack of

representable morphisms from a constant cyclotomic gerbe to X (Σ). Hence, the
evaluation map evi sends f to the geometric point (x, gi) in the inertia stack. Be-
cause gi belongs to the isotropy group of x, it fixes a point in Z. Thus, Lemma 4.6
shows that gi corresponds to an element vi ∈ Box(Σ) and evi maps to the com-
ponent [Zgi/G] = X

(
Σ/σ(v̄i)

)
of the inertia stack. Moreover, the condition that
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g1 ·g2 ·g3 = 1 means that there exists a cone σ ∈ Σ containing v̄1, v̄2, v̄3 and the sum
v1 + v2 + v3 belongs to the subgroup Nσ in N . Therefore, the component Kv1,v2,v3

is nonempty if and only if v1 + v2 + v3 ≡ 0.
The morphisms evi : Kv1,v2,v3 → X

(
Σ/σ(v̄i)

)
are compatible with the inclusion

maps into X (Σ) for 1 ≤ i ≤ 2, which yields a morphism

e : Kv1,v2,v3 → X
(
Σ/σ(v̄1)

)
×X (Σ) X

(
Σ/σ(v̄2)

)
= [Zg1/G] ×[Z/G] [Zg2/G] .

Because H is the subgroup of G generated by g1 and g2 (note: g3 = g−1
1 g−1

2 ), we
have Zg1×ZZg2 = Z〈g1,g2〉 = ZH . It follows that [Zg1/G]×[Z/G] [Zg2/G] = [ZH/G].
Our analysis of the geometric points of K shows that e induces a bijection between
the C-valued points of the coarse moduli spaces of Kv1,v2,v3 and [ZH/G]. Since
both Kv1,v2,v3 and [ZH/G] are smooth Deligne-Mumford stacks, their coarse moduli
spaces have at worst quotient singularities. Applying Theorem VI.1.5 in [17], we
deduce that, in fact, e produces an isomorphism between the coarse moduli spaces.

To prove that e is an isomorphism of stacks, it remains to show that e gives
an isomorphism between the isotropy groups of C-valued points. Indeed, since
K is smooth (see page 18 in [2]) and e is representable, the isomorphism follows
from a similar statement for the lifting of e to the atlases. Proposition 7.1.1 in
[1] indicates that the automorphism group of a twisted stable curve is the direct
product of the automorphism groups of the nodes, which implies that our curve C
has only the trivial automorphism. Hence, an isotropy of the twisted stable map
f : C → BG′ ⊆ X (Σ) corresponds to a diagram

E
φ−−−−→ E′	 	

C C
where φ is a G′-equivariant map of principal G′-bundles over C. Since C is connected,
the map φ is multiplication by an element of G′. Therefore, the isotropy group of
the map f is precisely G′, which completes the proof. �

Proposition 6.1 also provides a presentation for the universal twisted stable curve
over K. To describe the universal curve, we focus on the component Kv1,v2,v3 . As
above, we write H for the subgroup of G corresponding to {v1, v2, v3} and C → P1

for the associated Galois cover. Consider the quotient stack

Uv1,v2,v3 := [(ZH × C)/(G × H)] = [ZH/G] × [C/H ] .

If S is a scheme, then the objects in Uv1,v2,v3(S) are principal (G × H)-bundles
E → S with a (G×H)-equivariant map E → ZH ×C. The twisted projection map
π from Uv1,v2,v3 to Kv1,v2,v3 = [ZH/G] is defined as follows: If H acts on E via the
map h �→ (h−1, h) ∈ G × H , then E/H is a principal G-bundle over S. To obtain
an object in Kv1,v2,v3(S), observe that the (G × H)-equivariant map E → ZH × C
induces a G-equivariant map from E/H to ZH . By verifying that π is compatible
with morphisms in Uv1,v2,v3(S) and Kv1,v2,v3(S), we conclude that π is a morphism
of stacks. With these definitions, we have

Corollary 6.2. The universal twisted stable curve over Kv1,v2,v3
∼= [ZH/G] is given

by the twisted projection map π : Uv1,v2,v3 = [(ZH × C)/(G × H)] → [ZH/G].
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Proof. Fix a map S → [ZH/G] where S is a scheme and consider the fibered product
D := Uv1,v2,v3 ×[ZH/G] S. Assuming that S → [ZH/G] corresponds to the principal
G-bundle E → S with a G-equivariant map E → ZH , it follows that D equals
[(E×C)/(G×H)] where the (G×H)-action is given by (e, c, g, h) �→ (e ·gh−1, c ·h).
The twisted projection map π induces a map D → [E/G] = S. Because the anti-
diagonal action of H on E × C is free, the quotient Y := (E × C)/H is a scheme.
Hence, we have D = [Y/G] where the G-action on Y is induced by the action on
E × C. Since H acts trivially on ZH , the G-equivariant map E → ZH induces a
G-equivariant map Y → ZH which shows that D maps to [ZH/G] ⊆ [Z/G] = X (Σ).
Moreover, if R = R1 + R2 + R3 is the ramification divisor of the Galois cover
C → P1, then the image of the open set E × (C − R) gives an open substack of
[Y/G] which is isomorphic to S×

(
P1−{0, 1,∞}

)
. By definition, the evaluation map

evi from D to the inertia stack I
(
X (Σ)

)
arises from the representable morphism

from [(E × Ri)/(G × H)] to X (Σ). In particular, evi is induced by the closed
embedding [ZH/G] → [Zgi/G] ∼= X

(
Σ/σ(v̄i)

)
. We conclude that Uv1,v2,v3 is a

family of twisted stable curves over [ZH/G] with a map f : Uv1,v2,v3 → X (Σ) and
evaluation maps evi : Uv1,v2,v3 → X

(
Σ/σ(v̄i)

)
⊆ I

(
X (Σ)

)
for 1 ≤ i ≤ 3.

Let U ′ denote the universal family of twisted stable curves over Kv1,v2,v3 . By the
universal mapping property of U ′, there is a map µ : [ZH/G] → Kv1,v2,v3 such that

µ∗(U ′) −−−−→ U ′	 	
[ZH/G]

µ−−−−→ Kv1,v2,v3

is a Cartesian diagram. Combining the definition of e with the first paragraph,
we see that e ◦ µ = id. Since Proposition 6.1 shows that e is an isomorphism, we
conclude that µ is also an isomorphism and Uv1,v2,v3 is isomorphic to U ′. �

Next, we describe the virtual fundamental class on K. Recall that Lk denotes
the line bundle on X (Σ) corresponding to the line bundle C × Z on Z where the
G-action on C is given by the k-th component αk of α : G → (C∗)n.

Proposition 6.3. Let Kv1,v2,v3 be a component of the moduli space K. If the
integers mk ∈ {1, 2} are defined by the relation v1 + v2 + v3 =

∑
ρk⊆σ(v̄1,v̄2,v̄3)

mkbk

in N , then the virtual fundamental class of the component Kv1,v2,v3 is∏
mk=2

c1(Lk)
∣∣
X (Σ/σ(v̄1,v̄2,v̄3))

.

Proof. Let f : Uv1,v2,v3 → X (Σ) be the natural map and let π : Uv1,v2,v3 → [ZH/G]
be the twisted projection map. Since Kv1,v2,v3 is smooth, the virtual fundamental
class of K is given by the top Chern class of the bundle R1π∗f

∗(TX (Σ)); see Sec-
tion 6.2 in [2]. To calculate this Chern class, observe that the pullback of the tangent
bundle f∗(TX (Σ)) corresponds to a (G×H)-equivariant bundle V on ZH ×C; V is
a trivial vector bundle of rank n where the (G × H)-action is induced by the map
α : G → (C∗)n on its basis. Let p : ZH × C → ZH be the projection map and let
pH
∗ be the invariant pushforward (pushing forward and taking invariant sections).

Since the associated derived functor R1pH
∗ sends (G × H)-equivariant sheaves on

ZH × C to G-equivariant sheaves on ZH , it suffices to compute R1pH
∗ (V).
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Let Wk be the trivial line bundle on ZH × C with (G × H)-action induced by
the k-th component αk of α : G → (C∗)n and consider the following exact sequence
of vector bundles on ZH × C: 0 → p∗(TZH ) → V →

⊕
ρk∈σ(v̄1,v̄2,v̄3)

Wk → 0.
Since the H-invariant part of R1p∗p

∗(TZH ) = R1p∗(OZH×C) ⊗ TZH is trivial, it
suffices to calculate R1pH

∗ (Wk). Given a point z ∈ ZH , the restriction of Wk to
z×C is isomorphic to the trivial line bundle Lk on C with the H-action induced by
αk. Since the Leray spectral sequence degenerates, H1(C,Lk) ∼= H1

(
P1, (p′)H

∗ (Lk)
)

where p′ : C → P1 is the Galois cover. Because vj ∈ Box(Σ) for 1 ≤ j ≤ 3, there
are aj,k ∈ Q such that 0 ≤ aj,k < 1 and v̄j =

∑
aj,k b̄k where ρk ∈ σ(v̄1, v̄2, v̄3). By

hypothesis, we have v1 +v2+v3 ≡ 0 which means that a1,k +a2,k +a3,k is an integer
between 0 and 2. Lemma 4.6 establishes that vj corresponds to an element gj ∈ G

and the proof of Proposition 4.3 shows that αk(gj) = exp(2π
√
−1aj,k). From this

explicit description of the H-action on Lk, it follows that (p′)H
∗ (Lk) ∼= pH

∗
(
Wk

∣∣
z×C

)
is isomorphic to OP1(−a1,k − a2,k − a3,k). Since

dim H1
(
P1,OP1(−a1,k − a2,k − a3,k)

)
= 1 when a1,k + a2,k + a3,k = 2,

we deduce that R1pH
∗ (Wk) is the line bundle C×Z on Z where the G-action on C

is given by the k-th component αk. When a1,k + a2,k + a3,k �= 2, the cohomology
group vanishes and R1pH

∗ (Wk) is zero. Therefore, we have

R1π∗f
∗(TX (Σ)) ∼=

⊕
mk=2

Lk

∣∣
[ZH/G]

and taking the top Chern class completes the proof. �

Remark 6.4. The virtual classes in Proposition 6.3 are analogous to the classes
c(g, h) in [14]. However, we do not need the language of parabolic bundles because
we give an explicit description for the H-action on the trivial line bundles Lk.

We end this section with a proof of Theorem 1.1. Let ι : I
(
X (Σ)

)
→ I

(
X (Σ)

)
denote the natural involution on the inertia stack defined by (x, φ) �→ (x, φ−1)
and let ěv3 := ι ◦ ev3 be the twisted evaluation map; see Section 4.5 in [2]. If
γ1, γ2 ∈ A∗(I(

X (Σ)
))

, then the orbifold product (Definition 6.2.2 in [2]) is

γ1 ∗ γ2 := (ěv3)∗
(
ev∗

1(γ1) ∩ ev∗
2(γ2) ∩ [K]vir

)
where [K]vir denotes the virtual fundamental class on K. This definition agrees
with the definition of the quantum product in degree zero.

Remark 6.5. Proposition 6.1 shows that the component Kv1,v2,v3 of the moduli
stack is nonempty if and only if v1 + v2 + v3 ≡ 0. Hence, if γ1 ∈ A∗(X (Σ/σ(v̄1))

)
and γ2 ∈ A∗(X (Σ/σ(v̄2))

)
, then the orbifold product γ1 ∗ γ2 is nonzero only if

there is a cone in Σ containing v̄1 and v̄2.

Proof of Theorem 1.1. By combining Proposition 4.7 and Proposition 5.2, we ob-
tain the following isomorphism of Q-graded Q-vector spaces:

A∗
orb

(
X (Σ)

)
=

⊕
v∈Box(Σ)

A∗(X (Σ/σ(v̄))
)[

deg(yv)
] ∼= Q[N ]Σ

〈
∑n

i=1 θ(bi) · ybi : θ ∈ N�〉 .

It remains to show that the orbifold product agrees with the product structure on
the deformed group ring. Since the elements of Box(Σ) generate A∗

orb

(
X (Σ)

)
as a
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module over the ybi , it suffices to show that yc∗ybi = yc ·ybi and yv1 ∗yv2 = yv1 ·yv2

where c ∈ N and v1, v2 ∈ Box(Σ).
We first consider the product yc∗ybi where c ∈ N . By taking advantage of the lin-

ear relations
∑n

i=1 θ(bi) ·ybi for θ ∈ N�, we reduce to the case that bi does not lie in
the minimal cone σ(c̄) containing c̄. Let v be the representative of c in Box(Σ). By
Remark 6.5, the only contribution to the product yc∗ybi comes from the component
Kv,0,v′ where v′ ∈ Box(Σ) is defined by the equation v + v′ =

∑
ρi⊆σ(c̄) bi. Hence,

Kv,0,v′ is isomorphic to X
(
Σ/σ(c̄)

)
, both ev1, ěv3 : X

(
Σ/σ(c̄)

)
→ X

(
Σ/σ(c̄)

)
are

the identity map and ev2 : X
(
Σ/σ(c̄)

)
→ X (Σ) is the closed embedding. The

restriction of ybi from X (Σ) to X
(
Σ/σ(c̄)

)
is equal to yb̃i if b̄i and σ(c̄) lie in

a cone of Σ and it is equal to zero otherwise. Since Proposition 6.3 shows that
the virtual fundamental class is 1, if ev∗

2(y
bi) �= 0, then yc ∗ ybi is simply multi-

plication in A∗(X
(
Σ/σ(c̄)

))
and Proposition 5.2 shows that this agrees with mul-

tiplication in the deformed group ring. Moreover, when ev∗
2(ybi) = 0, we have

yc ∗ ybi = 0 = yc · ybi .
Next, consider the product yv1 ∗ yv2 where v1, v2 ∈ Box(Σ). If v̄1 and v̄2 are not

contained in a cone, then Remark 6.5 implies that yv1 ∗ yv2 = 0 and (5.1) implies
that yv1 · yv2 = 0. On the other hand, suppose the cone σ ∈ Σ contains v̄1 and v̄2.
Let v3 ∈ Box(Σ) be the element such that v̄3 ∈ σ(v̄1, v̄2) and v1 + v2 + v3 ≡ 0; in
other words, there exist integers mi such that v1 + v2 + v3 =

∑
ρi⊆σ(v̄1,v̄2,v̄3) mibi

and 1 ≤ mi ≤ 2. Proposition 6.1 shows that the component Kv1,v2,v3 is isomor-
phic to X

(
Σ/σ(v̄1, v̄2, v̄3)

)
and the evaluation map evi corresponds to the closed

embedding X
(
Σ/σ(v̄1, v̄2, v̄3)

)
→ X

(
Σ/σ(v̄i)

)
. If I is the set of indices i such

that mi = 2, then Proposition 6.3 shows that the virtual fundamental class on
X

(
Σ/σ(v̄1, v̄2, v̄3)

)
is the product of the pullbacks of the divisor classes ybi where

i ∈ I. Because of the degree shift, the class yvi ∈ A∗
orb

(
X (Σ)

)
is identified with the

class 1 ∈ A∗(X (
Σ/σ(v̄i)

))
and yv1 ∗ yv2 is the image of the virtual fundamental

class under the twisted evaluation map ěv3. In particular, if J denotes the set of
indices i such that b̄i ∈ σ(v̄1, v̄2) but bi �∈ σ(v̄3), then unraveling the identification
maps shows that yv1 ∗yv2 = yv̌3 ·

∏
i∈I ybi ·

∏
j∈J ybj where v̌3 is the representation of

−v3 ∈ Box(Σ). The factor yv̌3 arises from the involution ι : I
(
X (Σ)

)
→ I

(
X (Σ)

)
.

Since v̌3 +
∑

i∈I bi +
∑

j∈J bj = v1 + v2, we conclude that yv1 ∗ yv2 = yv1 · yv2 . �

7. Applications to crepant resolutions

In this section, we relate the orbifold Chow ring to the Chow ring of a crepant
resolution by showing that both rings are fibers of a flat family. This provides a new
proof that the graded components of these Chow rings have the same dimension. On
the other hand, we also establish that these Chow rings are not generally isomorphic.

A rational fan Σ with n rays produces a canonical stacky fan Σ := (N, Σ, β)
where N is the distinguished lattice in the vector space containing Σ and β : Zn → N
is the map defined by the minimal lattice points on the rays. Hence, there is a
natural toric Deligne-Mumford stack X (Σ) associated to every toric variety X(Σ).
Proposition 3.7 shows that X(Σ) is the coarse moduli space of X (Σ).

Theorem 7.1. Let X(Σ) be a projective simplicial toric variety and let X (Σ) be
the associated toric Deligne-Mumford stack. If Σ′ is a regular subdivision of Σ such
that X(Σ′) is a crepant resolution of X(Σ), then there is a flat family T → P1 of
schemes such that T0

∼= Spec A∗
orb

(
X (Σ)

)
and T∞ ∼= Spec A∗(X(Σ′)

)
.
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Remark 7.2. Any regular subdivision Σ′ of Σ induces a morphism X(Σ′) → X(Σ);
see Section 1.4 in [15]. This morphism is a crepant resolution if and only if there is
a Σ-linear support function h′ : Qd → Q such that h′(0) = 0 and h′(bi) = −1 where
b1, . . . , bm are the minimal lattice points on the rays in Σ′; see Section 3.4 in [15].

Proof. We construct a family of algebras over P1 such that the fiber over zero is
isomorphic to A∗

orb

(
X (Σ)

)
and the fiber over ∞ is isomorphic to A∞ ∼= A∗(X (Σ′)

)
.

We also prove that this family is flat outside of a Zariski closed subset of P1−{0,∞}.
The family T → P1 is obtained by extending our family over this finite set.

We begin with some notation. Let b1, . . . , bn be the minimal lattice points on
the rays in Σ and let bn+1, . . . , bm be the minimal lattice points on the additional
rays in Σ′. Since X(Σ′) is smooth, the lattice points b1, . . . , bm generate the group
N . Hence, the ring Q[N ]Σ is isomorphic to the quotient of the polynomial ring
S := Q[yb1 , . . . , ybm ] by the binomial ideal I2 which encodes the multiplication rules
in (5.1). Fix a Z-basis θ1, . . . , θd for N� := HomZ(N, Z) and let I1 be the ideal in S
generated by linear equations

∑m
i=1 θj(bi) ybi for 1 ≤ j ≤ d. The assumption that

Σ′ is a regular subdivision of Σ means that there is a Σ′-linear support function
h : N → Z such that h(bi) = 0 for 1 ≤ i ≤ n, h(bi) > 0 for n + 1 ≤ i ≤ m and
h(c1 + c2) ≥ h(c1) + h(c2) for all lattice points c1, c2 lying in the same cone of Σ.
This inequality is strict unless c1 and c2 lie in the same cone of Σ′.

To describe our family over P1 − {∞}, let Ĭ1 be the ideal in S[t1] generated
by

∑m
i=1 θj(bi) ybit

h(bi)
1 for 1 ≤ j ≤ d. Since h(bi) = 0 if and only if 1 ≤ i ≤ n,

Theorem 1.1 implies that

S[t1]
Ĭ1 + I2 + 〈t1〉

∼=
S

〈
∑n

i=1 θj(bi)ybi : 1 ≤ j ≤ d〉 + I2

∼= A∗
orb

(
X (Σ)

)
.

Moreover, it follows from the decomposition of I2 in Proposition 4.8 in [13] that the
sequence

∑n
i=1 θj(bi)ybi for 1 ≤ j ≤ d forms a homogeneous system of parameters

on S/I2. Lemma 4.6 in [24] shows that S/I2 is a Cohen-Macaulay ring, so we deduce
that

∑n
i=1 θj(bi)ybi for 1 ≤ j ≤ d is a regular sequence. Being a regular sequence

is an open condition on the set of d-tuples of degree one elements in a finitely
generated Q-algebra. Therefore, the Hilbert function of the family S[t1]/(Ĭ1 + I2)
over Q[t1] is constant outside a finite set in Q∗.

For the family over P1 −{0}, let Ĭ2 be the binomial ideal in S[t2] which encodes
the product rule

yc1 · yc2 =

{
yc1+c2 t

h(c1+c2)−h(c1)−h(c2)
2 if there exists σ ∈ Σ such that c1, c2 ∈ σ,

0 otherwise.

Because h(c1 + c2) ≥ h(c1) + h(c2) and equality holds if and only if c1 and c2 lie in
the same cone of Σ′, this product becomes

yc1 · yc2 =

{
yc1+c2 if there exists σ′ ∈ Σ′ such that c1, c2 ∈ σ′,
0 otherwise

over t2 = 0. Hence, S[t2]/(Ĭ2 +〈t2〉) ∼= S/IΣ′ , where IΣ′ is the Stanley-Reisner ideal
associated to Σ′, and Lemma 5.1 shows that S[t2]/(I1 + Ĭ2 + 〈t2〉) ∼= A∗(X (Σ)

)
.

As Q-vector spaces, both S/I2 and S/IΣ′ have a basis consisting of the monomials
in S corresponding to lattice points in N . Proposition 4.8 in [13] implies that the
sequence

∑n
i=1 θj(bi)ybi for 1 ≤ j ≤ d forms a homogeneous system of parameters
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on S/I2, and Theorem 5.1.16 in [5] shows that this sequence is also a homogeneous
system of parameters on S/IΣ′ . Thus,

∑m
i=1 θj(bi)ybi for 1 ≤ j ≤ d is a regular

sequence on both S/I2 and S/IΣ′ and the Hilbert functions of S/(I1 + I2) and
S/(I1 + IΣ′) are equal.

We combine the two one-parameter families by using the automorphisms ϕk for
k = 1, 2 of S[tk, t−1

k ] defined by ϕk(ybi) = ybit
h(bi)
k . Since ϕk takes Ik · S[tk, t−1

k ] to
Ĭk · S[tk, t−1

k ], these automorphisms induce the following isomorphisms:

S[t1, t
−1
1 ]

Ĭ1 + I2

∼=
S

I1 + I2

∼=
S[t2, t

−1
2 ]

I1 + Ĭ2

.

Since a family of affine cones is a flat family if and only if the Hilbert function is
constant (see Proposition III-56 in [12]), we conclude that our family is flat on a
Zariski open subset of P1 which contains both 0 and ∞. �

Remark 7.3. In analogy with Theorem 15.17 in [11], the flat family constructed in
the proof of Theorem 7.1 can be interpreted as a pair of Gröbner deformations with
respect to the appropriate weight orders connecting the ideal Ĭ1 + Ĭ2 with its initial
ideals 〈

∑n
i=1 θj(bi)ybi : 1 ≤ j ≤ d〉 + Ĭ2 and Ĭ1 + IΣ′ .

Remark 7.4. According to the Cohomological Crepant Resolution Conjecture of
Ruan [23], the orbifold cohomology of X (Σ) should be isomorphic to the (small)
quantum cohomology of X(Σ′) for a very special choice of parameters of quantum
cohomology. It is plausible that all fibers of the flat family of Theorem 7.1 appear
as the quantum cohomology of X(Σ′) for a suitable choice of parameters. However,
the Cohomological Crepant Resolution Conjecture itself is by no means easy to
settle even in the toric case, since it is generally rather difficult to calculate the
quantum cohomology of toric varieties.

We end with an example in which A∗(X(Σ′)
)

is not isomorphic to A∗
orb

(
X (Σ)

)
.

Example 7.5. Let N = Z2 and let Σ ⊆ R2 be the complete fan in which the rays
are generated by the lattice points b1 := (1, 0), b2 := (0,−1) and b3 := (−1, 2).
Hence, the toric variety X(Σ) is the weighted projective space P(1, 2, 1) and the
associated toric Deligne-Mumford stack is the quotient [(C3 − {0})/C∗] where the
action is given by (z1, z2, z3) · λ = (λz1, λ

2z2, λz3). If we simply write xi for the
element ybi ∈ Q[N ], then Theorem 1.1 implies that

A∗
orb

(
X (Σ)

) ∼=
Q[x1, x2, x3, x4]〈

x1x3 − x2
4, x2x4, x1 − x3,−x2 + 2x3

〉 ∼=
Q[x3, x4]〈

x2
3 − x2

4, x3x4

〉 .

Let Σ′ be the fan obtained from Σ by inserting the ray generated by b4 := (0, 1).
It follows that X(Σ′) is the Hirzeburch surface F2, X(Σ′) → X(Σ) is a crepant
resolution (it blows down the (−2)-curve in F2), and Lemma 5.1 gives

A∗(X(Σ′)
) ∼=

Q[x1, x2, x3, x4]〈
x1x3, x2x4, x1 − x3,−x2 + 2x3 + x4

〉
∼=

Q[x3, x4]〈
x2

3, 2x3x4 + x2
4

〉 =
Q[x3, x4]〈

x2
3, (x3 + x4)2

〉 .

Since there is a degree one element x ∈ A∗(X(Σ′)
)

such that x2 = 0 and there is
no such element in A∗

orb

(
X (Σ)

)
, we conclude that A∗

orb

(
X (Σ)

)
�∼= A∗(X(Σ′)

)
.
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