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Abstract

We give a dimension bound on the irreducible components of the characteristic variety of
a system of linear partial di.erential equations de0ned from a suitable 0ltration of the Weyl
algebra An. This generalizes an important consequence of the fact that a characteristic variety
de0ned from the order 0ltration is involutive. More explicitly, we consider a 0ltration of An

induced by any vector (u; v)∈Zn ×Zn such that the associated graded algebra is a commutative
polynomial ring. Any 0nitely generated left An-module M has a good 0ltration with respect to
(u; v) and this gives rise to a characteristic variety Ch(u;v)(M) which depends only on (u; v)
and M . When (u; v)= (0; 1), the characteristic variety is involutive and this implies that its
irreducible components have dimension at least n. In general, the characteristic variety may fail
to be involutive, but we are still able to prove that each irreducible component of Ch(u;v)(M)
has dimension at least n. c© 2001 Published by Elsevier Science B.V.

MSC: 16S32; 13P10; 17B35

1. Introduction

The geometry of the characteristic variety plays a central role in the study of systems
of linear partial di.erential equations. In algebraic analysis, the characteristic variety is
obtained from a 0ltration of the corresponding D-module. When D is equipped with the
order 0ltration, Sato et al. [11] and Gabber [6] show that each characteristic variety is
involutive with respect to the natural symplectic structure on the cotangent bundle. As
a consequence, they deduce the “Strong Fundamental Theorem of Algebraic Analysis”,
which says: if D is the sheaf of di.erential operators on an n-dimensional variety,
then each irreducible component of a characteristic variety must have dimension at
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least n. In this paper, we consider left An-modules which correspond to systems of
linear partial di.erential equations with polynomial coeFcients on An. Our goal is to
extend this dimension bound to all 0ltrations of the Weyl algebra An for which the
associated graded ring is a commutative polynomial ring and to extend this assertion
to a larger class of algebras.
We are primarily interested in this larger class of 0ltrations because of its con-

nection with monomial ideals in a commutative polynomial ring. Speci0cally, for a
generic vectors (u; v), the characteristic variety Ch(u;v)(M) is given by a square-free
monomial ideal or equivalently a simplicial complex. Monomials ideals form an impor-
tant link between algebraic geometry, combinatorics and commutative algebra. Much of
the success of GrIobner bases theory comes from an understanding of monomial ideals.
We believe that further exploration of this connection will lead to new insights into
An-modules. Problems of making e.ective computations in algebraic analysis, provide
a secondary motivation for considering 0ltrations other than the standard or order 0ltra-
tion. The choice of 0ltration can signi0cantly e.ect the complexity of the characteristic
variety.
To state our theorems more explicitly, we introduce some notation. We write x1; : : : ;

xn; y1; : : : ; yn for the generators of An satisfying the relations xixj − xjxi=0, yiyj −
yjyi=0 and yixj − xjyi= 
ij, where 
ij is the Kronecker symbol. Each vector (u; v)∈
Zn × Zn induces an increasing 0ltration on An by setting deg xi= ui and deg yi= vi.
We focus those vectors (u; v) for which the associated graded ring gr(u;v)(An) is the
commutative polynomial ring S = k[ Kx1; : : : ; Kxn; Ky 1; : : : ; Kyn]. Similarly, we can 0lter any
0nitely generated left An-module M by assigning degrees to a generating set of M . The
associated graded module grM is a module over the polynomial ring S and, hence,
the prime radical of AnnS(grM) de0nes a variety in A2n. This variety is called the
characteristic variety Ch(u;v)(M) of M . It is independent of the choice of degrees and
generators for M , but depends on the 0ltration of An. The main result of this paper is
the following:

Theorem 1.1. Let k be a 5eld of characteristic zero and let M be a 5nitely generated
left An-module. If the integer vector (u; v) induces a 5ltration satisfying gr(u;v)(An)= S;
then every irreducible component of Ch(u;v)(M) has dimension at least n.

The conclusion is vacuously satis0ed when Ch(u;v)(M) is empty and this can occur:
if M =A2=A2 · I , where I is the left ideal 〈y1−1; y2−1〉, then Ch(2;−1)(M) corresponds
to the S-ideal 〈1〉 indicating that the characteristic variety is empty. However, if (u; v)
is non-negative and M �=0, then Ch(u;v)(M) is never empty.
Theorem 1.1 re0nes Bernstein’s inequality [5] which states that there exists an

irreducible component of Ch(1;1)(M) of dimension at least n. On the other hand,
Theorem 1.1 follows from the fact that the characteristic variety Ch(0;1)(M) is in-
volutive with respect to the natural symplectic structure on A2n. The involutivity of
Ch(0;1)(M) was 0rst established by Sato et al. [11] using micro-local analysis; Gabber
[6] provided a purely algebraic proof. In our more general case, a di.erent proof is
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necessary because the characteristic variety Ch(u;v)(M) is not always involutive un-
der the natural symplectic structure on A2n. For example, the characteristic variety of
A2=A2 · I , where I is the left ideal 〈y21 − y2; x1y1 + 2x2y2〉, with respect to the vector
(1; 1; 1; 3) is given by the non-involutive S-ideal 〈 Kx2; Ky 2〉 ∩ 〈 Ky 1; Ky 2〉.
The general techniques used in the proof of Theorem 1.1 apply to a larger collection

of k-algebras. We develop these methods for a skew polynomial ring R which is an
almost centralizing extension of a commutative polynomial ring (see Section 2 for a
precise de0nition). We write GKdim for the Gelfand–Kirillov dimension. The second
major result of this paper is the following:

Theorem 1.2. Assume that (u; v) is an integer vector which induces an increasing
5ltration on R such that gr(u;v)(R) is a commutative polynomial ring. Let p be a
nonnegative integer and let M be a 5nitely generated R-module. If Ch(u;v)(M) has an
irreducible component of dimension p; then there is a submodule M ′ of M such that
GKdimM ′=p.

For the special case in which GKdimM ′=GKdimM for every non-zero submodule
M ′ of M (M is called GKdim-pure), this theorem implies that the characteristic variety
is equidimensional.
Theorem 1.2 also generalizes known equidimensionality results to a larger class of

0ltrations. In particular, when R is the enveloping algebra of 0nite dimensional Lie
algebra, it extends Gabber’s equidimensionality theorem [7, ThOeorPeme 1] beyond the
standard 0ltration. For certain skew polynomial rings, it extends the equidimensionality
theorem in Li and van Ostaeyen [8, Corollary III 4:3:6] to non-Zariskian 0ltrations.
For example, the 0ltration of A2 induced by the (2;−1) is not Zariskian because the
element 1+ y1 is not invertible even if y1 belongs to (−1)-th level of the 0ltration of
A2. A 0ltration induced by a vector with negative entries is typically not Zariskian. Our
proof of Theorem 1.2 involves studying the growth of 0ltered modules and GrIobner
basis theory and di.ers signi0cantly from the homological methods used by BjIork [3],
Gabber [7] and Li and van Oystaeyen [8].
We now describe the contents of this paper. In the next section, we gather global

notation and preliminary results. In Section 3, we connect irreducible components of
the characteristic variety to the Gelfand–Kirillov dimension of submodules. To guar-
antee that the Gelfand–Kirillov dimension is well behaved, we restrict our attention
to 0nite dimensional 0ltrations throughout this section. Section 4 reviews the basics
of GrIobner basis theory and constructs a combinatorial object, called the GrIobner fan.
This generalizes the GrIobner fan of Mora and Robbiano [10] in the case of commu-
tative polynomial rings and Assi et al. [1] in the case of the Weyl algebra. In the last
section, we use the use the GrIobner fan to extend our results for 0nite dimensional
0ltrations to all 0ltrations in the polynomial region and prove our main theorems.
I would like to thank my advisor David Eisenbud for his support and encouragement,

Bernd Sturmfels for introducing me to algebraic analysis, Nobuki Takayama for his help
with the computer package sm1=kan, and Harrison Tsai for many useful discussions.



294 G.G. Smith / Journal of Pure and Applied Algebra 165 (2001) 291–306

2. Preliminaries

Throughout this paper k denotes a 0eld. Let B be the commutative polynomial ring
k[x1; : : : ; xm]. We concentrate on a k-algebra R which is generated by x1; : : : ; xm; y1; : : : ;
yn subject only to the relations:

(R1) yixj − xjyi=Q1i; j(x);

(R2) yiyj − yjyi=Q2i; j(x; y)=Q2;0i; j (x) +
n∑

‘=1
Q2; ‘i; j (x)y‘;

where Q1i; j(x)∈B and Q2; ‘i; j (x)∈B for all 16 ‘6 n. The skew polynomial ring R is
called an almost centralizing extension of B. The set of standard monomial {xayb=
xa11 · · · xamm yb1

1 · · ·ybn
n : (a; b)∈Nm×Nn} forms a k-basis for R. In particular, each element

f∈R has a unique standard expression of the form
∑

�a;bxayb. For more informa-
tion about almost centralizing extension, see Subsections 8:6:6–8:6:7 in McConnell and
Robson [9].

Example 2.1. If g is a 0nite dimensional Lie algebra over k then any crossed product
B∗U (g) is an almost centralizing extension of B. Notably, the commutative polynomial
ring, the Weyl algebra An and the enveloping algebra U (g) all have this form.

A vector (u; v)∈Zm × Zn induces an increasing 0ltration of R: for i∈Z, set FiR:=
k{xayb: u · a + v · b6 i; a∈Nm; b∈Nn}. This clearly gives an increasing sequence of
vectors spaces satisfying the conditions 1∈F0R and

⋃
i∈Z FiR=R. When FiR · FjR

⊆ Fi+jR, the associated graded ring is gr(u;v)(R)=
⊕

i∈Z FiR=Fi−1R. An element f
belonging to the vector space FiR − Fi−1R is said to have degree i and we write
deg(u v)f= i.
The polynomial region associated to R, denoted PR(R), is set of all vectors (u; v)

such that gr(u;v)(R) is the commutative polynomial ring generated by the initial forms
Kxi and Ky i of xi and yi, respectively. We denote this commutative polynomial ring by S.
Since S is noetherian ring, R is both a left and a right noetherian ring. We will focus
exclusively on vectors (u; v) belonging to the polynomial region. The next proposition
provides a more explicit interpretation of PR(R).

Proposition 2.2. The polynomial region PR(R) is the open convex polyhedral cone
given by the intersection of the following open half-spaces:

(I)

{
deg(u;v) xiyj ¿ deg(u;v)Q

1
i; j for all 16 j6 n and 16 i6m;

deg(u;v) yiyj ¿ deg(u;v)Q
2
i; j for all 16 i; j6 n:

Proof. Let f1; : : : ; fj be elements of the k-vector space generated by the elements
x1; : : : ; xm; y1; : : : ; yn. Now, if � is a permutation of {1; : : : ; j}, we claim that f1f2 · · ·
fj ∈f�(1)f�(2) · · ·f�( j) + F‘−1R, where ‘ is the degree of the left-hand side. Since
the elements x1; : : : ; xm commute and Q1i; j(x) and Q2i; j(x; y) are at most linear in the
variables y1; : : : ; yn, it suFces to prove this when � is a transposition. By linearity, the
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assertion is equivalent to the conditions:

yixj − xjyi=Q1i; j(x)∈Fui+uj−1R;

yiyj − yjyi=Q2i; j(x; y)∈Fvi+vj−1R:

We conclude that FiR · FjR ⊆ Fi+jR and that gr(u;v)(R) is a commutative k-algebra
generated by Kx1; : : : ; Kxm; Ky 1; : : : ; Kyn.
To see that gr(u;v)(R)= S, it suFces to see that there are no k-linear relations between

the monomials in gr(u;v)(R). A relation among the monomials in gr(u;v)(R), would yield
a relation among the standard monomials in R. However, the standard monomials form
a k-basis for R which completes the proof.

Remark 2.3. If p=max{deg(1;0)Q‘
i; j: for all i; j; ‘}+1, then the positive vector (1; p1)

belongs to the polynomial region PR(R).

Remark 2.4. The set of all real vectors satisfying the inequalities (I) is denoted
PR(R)⊗ R—it will play an important role in Section 4.

Example 2.5. All vectors in Zm × Zn belong to the polynomial region for S and
PR(An)= {(u; v): ui+ vi ¿ 0 for all 16 i6 n}. If the Lie algebra sl2 has the standard
basis y1; y2; y3 such that y2y3−y3y2 = 2y3, y2y1−y1y2 =−2y1 and y1y3−y3y1 =y2,
then PR(U (sl2)) is the open cone de0ned by the inequalities v1 + v3¿v2 and v2¿ 0.

The associated Rees ring of R with respect to (u; v) is R̃=
⊕

i∈Z FiR; the k-algebra
structure on R makes it into a graded k-algebra. For f∈FiR, we write the homogeneous
element represented by f in R̃i as (f̃)i. The central non-zero-divisor represented by the
identity 1 of R in R̃1 is denoted by x0. More concretely, the Rees ring R̃ is generated
by x0; : : : ; xm; y1; : : : ; yn subject to the relations:

(R̃1) yixj − xjyi= x
uj+vi−q1i; j
0 Q1i; j(x);

(R̃2) yiyj − yjyi= x
vi+vj−q2i; j
0 Q2i; j(x; y);

where Q10; j(x)= 0 and q‘
i; j =deg(u;v)Q

‘
i; j for ‘=1; 2. We stress that R̃ is an almost

centralizing extension of B[x0] and the relations (R̃1) and (R̃2) are homogeneous
with respect to (u; v). The condition that (u; v) belongs to the polynomial region
PR(R) insures that x0 has a nonnegative exponent in relations (R̃1) and (R̃2). The
homogenization map from R to R̃ is de0ned by sending f=

∑
�a;bxayb in R to

f̃=
∑

�a;bxi−u·a−v·b
0 xayb where deg(u;v)(f)= i. In the other direction, the substitution

x0 = 1 gives a k-algebra homomorphism from R̃ to R. More details on Rees rings can
be found in Section I:4 of Li [8].
All modules considered in this paper will be 0nitely generated left modules. By a

0ltered R-module, we mean an R-module with an increasing sequence of vector spaces
FiM satisfying the conditions FiR ·FjM ⊆ Fi+jM , and

⋃
i∈Z FiM =M . The associated

Rees module is the graded k-module M̃ =
⊕

i∈Z FiM—the R-module structure on M
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makes M̃ into a graded R̃-algebra. The associated graded module is grM =
⊕

i∈Z FiM=
Fi−1M . It follows that grM is a graded gr(u;v)(R)-module. A good 0ltration is a 0l-
tration of an R-module M for which there are z1; : : : ; zp ∈M and w1; : : : ; wp ∈Z such
that FiM =

∑p
j=1 Fi−wjRzj. Every 0nitely generated R-module M has a good 0ltration

and any module with a good 0ltration is necessarily 0nitely generated over R. For a
good 0ltration of M , we de0ne the characteristic ideal I(M) to be the prime radical of
AnnS(grM). Since any two good 0ltrations are equivalent, the characteristic ideal I(M)
is independent of the choice of good 0ltration; however I(M) does depend on (u; v).
The characteristic variety of M is the reduced scheme Ch(u;v)(M)=Spec(gr(u;v)(R)=
I(M)).

3. Finite dimensional #ltrations

Under the assumption that R has a 0nite dimensional 0ltration, we are able to relate
the dimension of the irreducible components of Ch(u;v)(M) to the Gelfand–Kirillov
dimension of submodules of M . We accomplish this by using the Rees module M̃
to link submodules of M and graded submodules of gr(M). We begin with a brief
discussion of Gelfand–Kirillov dimension.
We de0ne the Gelfand–Kirillov dimension only for R-modules with a given good

0nite dimensional 0ltration. For a function $ :N → R¿0, set %($)= inf{d: f(i)6 id

for i�0}. The Gelfand–Kirillov dimension of a 0ltered R-module M is de0ned to
be GKdimM = %(dimk FiM). Subsection 8:6:18 in McConnell and Robson [9] implies
that GKdimM is independent of the choice of the good 0nite dimensional 0ltration.
However, changing the 0ltration of R may signi0cantly alter the 0ltration of M and
the module grM . Regardless, Theorem 5:2 shows that GKdimM is also independent
of the 0nite dimensional 0ltration of R.
Now, if (u; v)∈PR(R) is not positive, then dimk FiR is in0nite for i�0. Thus, R

has a 0nite dimensional 0ltration if and only if (u; v) is positive. With this additional
hypothesis, we can give a useful description of the function i �→ dimk FiM . Recall that
a function & :Z→ C is called a quasi-polynomial if there exists a positive integer p and
polynomials Qj for 06 j6p− 1 such that, for all i∈Z, we have &(i)=Qj(i) where
i= rp + j with 06 j6p − 1. The degree of a quasi-polynomial is the maximum of
degree of the polynomials Qj. The next proposition generalizes the almost commutative
results in Section 8:4 of McConnell and Robson [9].

Proposition 3.1. Assume the vector (u; v)∈PR(R) is positive. If M is a non-zero
R-module with a good 5nite dimensional 5ltration such that grM has Krull dimension
d; then one has the following:
(1) There are positive integers c0; : : : ; cd and Q(t)∈Z[t; t−1] such that∑

i¿0

(dimk FiM) · ti= Q(t)∏d
j=0 (1− tcj)

; with Q(1)¿ 0:

(2) The function i �→ dimk FiM is a quasi-polynomial of degree d.
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Proof. By assumption, S is positively graded commutative k-algebra, so Proposition
4:4:1 in Bruns and Herzog [2] implies that there are positive integers c1; : : : ; cd and
Q(t)∈Z[t; t−1] such that∑

i¿0

(dimk(grM)i)ti=
Q(t)∏d

j=1(1− tcj)
and Q(1)¿ 0:

Hence, we have∑
i¿0

(dimk FiM)ti=

(
Q(t)∏d

j=1(1− tcj)

)(
1
1− t

)
;

which proves part (1). Part (2) follows immediately from part (1) by applying
Proposition 4:4:1 in Stanley [13].

The second part of this proposition clearly implies the following:

Corollary 3.2. If the vector (u; v)∈PR(R) is positive and N is a 5nitely generated
graded S-module; then the Gelfand–Kirillov dimension and Krull dimension of N are
equal.

We next provide morphisms linking the submodules of M , M̃ and gr(M). We always
assume that the 0ltration on a submodule is the unique 0ltration induced by the module
containing it. Because R is left noetherian, good 0ltrations induce good 0ltrations on
submodules.

Proposition 3.3. Let x0 be the canonical central regular element of degree 1 in Rees
ring R̃. If M is a 5ltered R-module and M̃ is the associated Rees module; one has
the following:
(1) There exists a surjective homomorphism +1 : M̃ → M such that Ker +1 = (1−x0) ·

M . Moreover; for all submodules M ′ ⊆ M; one has +1(M̃ ′)=M ′.
(2) There exists a surjective graded homomorphism +0 : M̃ → gr(M) such that Ker +0

= x0M . Furthermore; +0 maps graded submodules of M̃ to graded submodules of
gr(M) and every graded submodule of gr(M) arises in this manner.

Proof. (1) Every element z̃ ∈ M̃ can be written uniquely as a 0nite sum of homoge-
neous components; z̃=

∑p
j=0 (z̃)‘j where ‘0¡ · · ·¡‘p. Let +1 : M̃ → M be de0ned

by +1(z̃)=
∑p

j=0 (z)‘j where (z)‘j ∈F‘jM . The de0nition of the R̃-module structure on
M̃ insures that +1 is a k-module homomorphism and the image is an R-module. It is
clearly surjective. Now, if

∑p
j=0 (z)‘j =0 then

∑p
j=0 (z̃)‘j x

‘p−‘j
0 = 0. Hence, the element

z̃=
p∑

j=0

(z̃)‘j −
p∑

j=0

(z̃)‘j x
‘p−‘j
0 =

p∑
j=0

((z̃)‘j − (z̃)‘j x‘p−‘j
0 )

belongs to (1−x0)M̃ and we have Ker +1 ⊆ (1−x0)M̃ . It is obvious from the de0nition
of +1 that we have (1− x0)M̃ ⊆ Ker +1 and +1(M̃ ′)=M ′.
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(2) For all i∈Z, we have isomorphisms M̃ i=x0M̃ i−1 ∼= FiM=Fi−1M =gr(M)i. Com-
bining these maps gives the required isomorphism M̃ =x0M̃ ∼= gr(M). Moreover, we
have

+0(f̃z̃)=fz + (x0M)= (f + x0R)(z + x0M)= +0(f̃)+0(z̃)

and, thus, +0 takes R̃-modules to gr(R)-modules. Finally, for a graded submodule N of
gr(M), consider the R̃-submodule L of M̃ generated by the set +−1

0 (N ). To demonstrate
that +0(L)=N , it suFces to show +0(L) ⊆ N . Every element of L can be written in
the form

∑p
j=0 f̃jz̃j for some f̃j ∈ R̃ and z̃j ∈ +−1

0 (N ). Applying +0, we obtain

+0

 p∑
j=0

f̃jz̃j

= p∑
j=0

+0(f̃j)+0(z̃j)=
p∑

j=0

fjzj;

where fj ∈ gr(A) and zj ∈N . Therefore, we have +0(L) ⊆ N which completes the
proof.

Before studying the Gelfand–Kirillov dimension of graded submodules of M̃ , we
record a useful lemma; see Proposition 2:16 in BjIork [4].

Lemma 3.4 (BjIork [4]). Let M be a 5ltered R-module. If L be a graded submodule
of M̃ ; then the graded module (+1(L))∼ contains L and the quotient (+1(L))∼=L is
an x0-torsion module.

Proposition 3.5. If (u; v)∈PR(R) is positive; M is an R-module with a good 5nite
dimensional 5ltration and L is a graded submodule of M̃ ; then one has the following:
(1) GKdim L=GKdim(+1(L))∼;
(2) 1 + GKdimM =GKdim M̃ ;
(3) 1 + GKdim +1(L)=GKdim L.

Proof. (1) Let $(i)= dimk Li, L′=(+1(L))∼ and $′(i)= dimk L′
i . By Lemma 3.4, Li

is a subvector space of L′
i which implies $(i)6$′(i) and GKdim L6GKdim L′. On

the other hand, Lemma 3.4 also states that the quotient L′=L is an x0-torsion module.
Since L′ is a 0nitely generated module, there exists an integer ‘ such that x‘0L

′
i ⊆ Li+‘.

Thus, we have $′(i)6$(i + ‘) which implies GKdim L′6GKdim L. Combining the
two inequality yields the 0rst part.
(2) The de0nition of GKdim implies that GKdimM = %(dimk FiM) and GKdim M̃ =

%(
∑i

j=0 dimk FjM) However, a monotonically increasing function $ :N→ R¿0 and the
function  (i)=

∑i
j=0 $(j) are related by the equation %( )= %($)+ 1 and this proves

the second assertion.
(3) Applying part (2) gives 1+GKdim +1(L)=GKdim(+1(L))∼ and combining this

part (1) yields the third assertion.

We have the analogous result for submodules of M̃ and grM .
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Proposition 3.6. Let (u; v)∈PR(R) be a positive vector and let M be an R-module
with a good 5ltration. If L is a graded R̃-submodule of M̃ then 1 + GKdim +0(L)=
GKdim L.

Proof. Observe that dimk Fi(+0(L))=
∑i

j=0 dimk Lj=x0Lj−1 = dimk Li and dimk FiL=∑i
j=0 dimk Lj. Since x0 is a non-zero-divisor of degree 1 on L, we have dimk Li6

dimk Li+1. Thus, applying the formula %( )= %($) + 1, relating an increasing function
$ :N→ R¿0 and  (i)=

∑i
j=0 $(j), completes the proof.

We now prove the main result in this section.

Theorem 3.7. Let p be a non-negative integer; let (u; v)∈PR(R) be a positive vec-
tor and let M be a 5ltered R-module. If Ch(u;v)(M) has an irreducible compo-
nent of dimension p then there exists a submodule M ′ of M such that GKdim
M ′=p.

Proof. By de0nition, irreducible components of Ch(u;v)(M) correspond to minimal
primes in the support of grM . Hence, if there exists an irreducible component of
Ch(u;v)(M) of dimension p, then we have a minimal prime p in the support of grM
of dimension p. Each minimal prime p in the support of grM corresponds to a graded
submodule of grM of the form (S=p)(j) for some j∈Z and Corollary 3.2 implies the
Krull dimension of (S=p)(j) is equal to its Gelfand–Kirillov dimension. Thus, we have
a graded submodule of grM with Gelfand–Kirillov dimension p. We complete this
proof by showing that the following three conditions are equivalent:
(a) there exists a submodule M ′ of M with GKdimM ′=p;
(b) there exists a graded submodule L of M̃ with GKdim L=p+ 1;
(c) there exists a graded submodule N of gr(M) with GKdimN =p.
Indeed, we have
(a) ⇒ (b): By Proposition 3:5:2, the graded submodule M̃

′
of M̃ has Gelfand–Kirillov

dimension p+ 1.
(b) ⇒ (a): Follows immediately from Proposition 3:5:3.
(b) ⇒ (c): Follows immediately from Proposition 3.6.
(c) ⇒ (b): By Proposition 3.3 there exists a graded submodule L of M̃ such that

+0(L)=N .

Remark 3.8. Since GKdimM =GKdim grM for any R-module M , we see that the
Gelfand–Kirillov dimension of M is an upper bound on the Krull dimension of each
irreducible component of Ch(u;v)(M).

Remark 3.9. We have not used the fact that R is an almost centralizing extension of
B, so Theorem 3.7 holds for a module M with a good 0nite dimensional 0ltration over
a 0ltered k-algebra.
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4. Gr,obner fan

To study characteristic ideals and the natural adjacency relations among them, we de-
scribe the GrIobner fan of an R-ideal. In particular, we generalize Mora and
Robbiano’s [10] construction for commutative polynomial rings and Assi et al. [1]
work on the Weyl algebra. Our setting has the advantage that the commutative polyno-
mial ring, Weyl algebra and homogenized Weyl algebra are all done at once, shortening
the treatment in Saito et al. [12].
For the reader’s convenience, we recall some “GrIobner basics”. For f=

∑
�a;bxayb ∈

R, the initial form of f with respect to vector (u; v)∈Rm⊗Rn is the element in(u;v)(f)=∑
u·a+v·b=‘ �a;b Kxa Ky b in S, where ‘=max{u · a + v · b : �a;b �=0}.

Proposition 4.1. If I is an R-ideal and (u; v)∈PR(R)⊗R then in(u;v)(I)= k ·{in(u;v)(f):
f∈ I} is an S-ideal. Moreover; if (u; v) belongs to PR(R) then gr I is isomorphic to
in(u;v)(I).

Proof. Since in(u;v)(I) is closed under addition, it suFces to show that it is closed
under left multiplication by Kx1; : : : ; Kxm; Ky 1; : : : ; Kyn. For an element f=

∑
�a;bxayb ∈ I ,

we have

Kxi · in(u;v)(f)= in(u;v)
(∑

�a;bxa+ei yb
)
= in(u;v)(xi · f);

where ei is the ith standard basis vector. Similarly, we obtain

Ky iin(u;v)(f)= in(u;v)
(∑

�a;bxayb+ei + Q(x; y)
)
= in(u;v)(yif);

because (u; v)∈PR(R) ⊗ R implies that Q(x; y)∈R has a smaller initial form than∑
�a;bxayb+ei .
When (u; v)∈PR(R), {in(u;v)(f): f∈ I and deg(u;v)(f)= i} is a complete set of

representatives for the cosets of (gr I)i. Hence, there exists a bijective set map between
in(u;v)(I) and gr I . One easily veri0es that the S-module structure of in(u;v)(I) and gr I
agree under this correspondence.

The S-ideal in(u;v)(I) is called the initial ideal of the R-ideal I with respect to (u; v).
A 0nite subset G is a GrIobner basis of I with respect to (u; v) if I is generated by G

and in(u;v)(I) is generated by the initial forms in(u;v)(G)= {in(u;v)(g): g∈G}.
Now, there is a second type of GrIobner basis arising from certain orderings on R. A

total ordering ≺ on the standard monomials in R is called a multiplicative order when
the following three conditions hold:
(M1) xa ≺ xiyj for all monomials xa appearing in Q1i; j(x);
(M2) xay‘ ≺ yiyj for all monomials xay‘ appearing in Q2i; j(x; y);
(M3) xayb ≺ xa

′
yb′ ⇒ xa+cyb+d ≺ xa

′+cyb′+d for all (c; d)∈Nm ×Nn:
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A multiplicative order ≺ is called a term order if 1= x0y0 is the smallest element
of ≺. A multiplicative order which is not a term order has in0nite strictly decreasing
chains but a term order does not.

Remark 4.2. Conditions (M1) and (M2) correspond directly to the relations (R1) and
(R2) in the de0nition of R. Without these assumptions the order would not be com-
patible with multiplication.

Fix a multiplicative order ≺. The initial monomial in≺(f) of f∈R is the monomial
Kxa Ky b ∈ S such that xayb is the ≺-largest monomial appearing in the standard expansion
of f in R. For an R-ideal I , the initial ideal in≺(I) is the monomial ideal in S generated
by {in≺(f): f∈ I}. A 0nite subset G is a GrIobner basis of I with respect to ≺ if I is
generated by G and in≺(I) is generated by in≺(G)= {in≺(g): g∈G}. A GrIobner basis
is reduced if, for any two distinct elements g; g′ ∈G, the exponent vector of in≺(g) is
componentwise larger than any exponent vector appearing in the standard expression
of g′ in R.
The next two propositions relate the two di.erent notions of GrIobner basis in R.

For a vector (u; v)∈PR(R)⊗R and a term order ≺, the multiplicative monomial order
≺(u;v) is de0ned as follows:

xa
′
yb′ ≺(u;v) xayb ⇔


u · (a − a′) + v · (b− b′)¿ 0

or

(
u · (a − a′) + v · (b− b′)= 0

and xa
′
yb′ ≺ xayb

)
:

Note that ≺(u;v) is a term order if and only if (u; v) is non-negative.

Proposition 4.3. Let I be any R-ideal; (u; v)∈PR(R)⊗R and let ≺ be any term order.
If G a Gr?obner basis for I with respect to ≺(u;v); then one has:
(1) The set G is a Gr?obner basis for I with respect to (u; v);
(2) The set in(u;v)(G)= {in(u;v)(g): g∈G} is a Gr?obner basis for in(u;v)(I) with respect

to ≺;
(3) If G is the reduced Gr?obner basis for I with respect to ≺(u;v); then in(u;v)(G) is

also reduced.

Proof. Parts (1) and (2) are analogous to Theorem 1:1:6 in Saito et al. [12]. Part (3)
follows from the fact that the exponent vectors appearing in in(u;v)(g) for g∈G form
a subset of the exponent vectors appearing the standard expression of g in R.

Although generally there are in0nitely many di.erent term orders, this does not lead
to an in0nite number of distinct initial ideals.

Theorem 4.4. An R-ideal I has only 5nitely many distinct initial ideals in≺(I) where
≺ is a term order.
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Proof. See Theorem 1.2 in Sturmfels [14].

A multiplicative order ≺ on R lifts to a multiplicative order ¡ on R̃ by the following
convention:

xa
′
0
0 xa

′
yb′ ¡xa00 xayb ⇔


a′0 − a0¿ 0

or

(
a′0 − a0 = 0

and xa
′
yb′ ≺ xayb

)
:

Note that ≺ is a term order if and only if ¡ is a term order.

Proposition 4.5. Let ≺ be a multiplicative order on R and let Ĩ be the homogenization
of an R-ideal I with respect to (u; v)∈PR(R). If G̃ is a Gr?obner basis for Ĩ with
respect to ¡ then its dehomogenization G is a Gr?obner basis for I with respect to ≺.

Proof. Since Ĩ |x0=1 = I , the set G generates I if and only if G̃ generates Ĩ . Thus, it
suFces to study the initial ideals. Clearly, h∈ in≺(I) implies h∈ in¡(Ĩ). Since G̃ is
a GrIobner basis, h= in¡(f̃g̃) for some f̃∈ R̃ and g̃∈ G̃. Dehomogenizing, we obtain
h= in≺(f̃|x0=1g̃|x0=1) which implies h∈ in≺(G) as required.

Fix an R-ideal I . Two degree vectors (u; v) and (u′; v′) in PR(R) ⊗ R are equiv-
alent with respect to I if in(u;v)(I)= in(u′ ;v′)(I). We denote the equivalence class of
vectors (u; v) with respect to I by CI [(u; v)]. The GrIobner region GR(I) is the set
of all (u; v)∈PR(R) ⊗ R such that in(u;v)(I)= in(u′ ;v′)(I) for some positive vector
(u′; v′)∈PR(R).

Proposition 4.6. Suppose that R is a graded k-algebra with respect to a positive vector
(u; v)∈PR(R). If I is a homogeneous R-ideal; then we have GR(I)=PR(R)⊗ R.

Proof. See Proposition 1:12 in Sturmfels [14].

Notice that, for any R-ideal I and a positive vector (u; v)∈PR(R), the Rees ring R̃
and Ĩ satisfy the hypothesis of the above proposition.
A 0nite subset U of I is called a universal GrIobner basis if it is simultaneously a

GrIobner basis of I with respect to all (u; v)∈PR(R). This de0nition is di.erent than
the one found Sturmfels [14]; Sturmfels’ considers only vectors (u; v) in the GrIobner
region GR(I). Proposition 4.6 shows that these two di.erent notions of a universal
GrIobner basis agree for homogeneous ideals in a graded ring.

Corollary 4.7. Every R-ideal I has a 5nite universal Gr?obner basis.

Proof. Consider homogenization Ĩ of I with respect to a positive vector in PR(R). By
Theorem 4.4 there exists only 0nitely many distinct reduced GrIobner basis for Ĩ with
respect to term orders—let G̃ be their union. Choose (u; v)∈PR(R) and 0x a term
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order ≺ on R. Let ¡(u;v) denote the multiplicative order on R̃ obtained from ≺(u;v).
By construction, G̃ is a GrIobner basis with respect to ¡(u;v) when (u; v)∈PR(R) is
positive. Applying Proposition 4.6, it follows that G̃ is a GrIobner basis with respect
to ¡(u;v) for all (u; v)∈PR(R). If G is the dehomogenization of G̃, then Proposition
4.5 implies that G is a GrIobner basis of I for ≺(u;v) where (u; v)∈PR(R). Finally,
Proposition 4.3 shows that G is a universal GrIobner basis for I .

The next proposition shows that GrIobner bases with respect to vectors (u; v) gener-
alize those with respect to term orders.

Proposition 4.8. Let I be an R-ideal. For any term order ≺ there exists a positive
vector (u; v)∈PR(R)⊗ R such that in≺(I)= in(u;v)(I).

Proof. See Proposition 2:1:5 in Saito et al. [12].

We prove a key tool in the construction of the GrIobner fan.

Proposition 4.9. Let I be an R-ideal; (u′; v′)∈PR(R) ⊗ R and let (u; v) belong to
PR(S)⊗R=Rm ×Rn. If 2¿ 0 is su@ciently small; then one has in(u;v)(in(u′ ;v′)(I))=
in(u′+2u;v′+2v)(I).

Proof. Let ≺ be any term order and let ≺2 be the multiplicative order de0ned as
follows:

xa
′
yb′ ≺2 xayb ⇔



(u′ + 2u; v′ + 2v) · (a − a′; b− b′)¿ 0

or

(
(u′ + 2u; v′ + 2v) · (a − a′; b− b′)= 0

and (u′; v′) · (a − a′; b− b′)¿ 0

)

or


(u′ + 2u; v′ + 2v) · (a − a′; b− b′)= 0

(u′; v′) · (a − a′; b− b′)= 0;

and xa
′
yb′ ≺ xayb:

 :

Fix a universal GrIobner basis U for I and choose 2 small enough so that the following
assertions hold:
(1) (u′ + 2u; v′ + 2v)∈PR(R),
(2) for all elements g in U, the standard form of g breaks into four pieces g(x; y)=

g0(x; y)+g1(x; y)+g2(x; y)+g3(x; y) such that in≺2(g)= g0( Kx; Ky), in(u′+2u;v′+2v)(g)=
g0( Kx; Ky) + g1( Kx; Ky), and in(u′ ;v′)(g)= g0( Kx; Ky) + g1( Kx; Ky) + g2( Kx; Ky).

In particular, we have

(†) in(u;v)(g0(x; y) + g1(x; y) + g2(x; y))= g0( Kx; Ky) + g1( Kx; Ky):

Since U is a GrIobner basis with respect to ≺2, Proposition 4.3 provides two additional
GrIobner bases in the polynomial ring S:
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(i) The initial forms g0( Kx; Ky) + g1( Kx; Ky) for g∈U are a GrIobner basis for the initial
ideal in(u′+2u;v′+2v)(I) with respect to ≺2.

(ii) The initial forms g0( Kx; Ky) + g1( Kx; Ky) + g2( Kx; Ky) for g∈U are a GrIobner basis for
the initial ideal in(u′ ;v′)(I) with respect to ≺2.

Now, the de0nition of ≺2, statement (ii) and Proposition 4:3:2 imply that the polyno-
mials g0( Kx; Ky) + g1( Kx; Ky) + g2( Kx; Ky) are a GrIobner basis for the ideal in(u′ ;v′)(I) with
respect the vector (u; v). Moreover, (†) indicates that the polynomials g0( Kx; Ky)+g1( Kx; Ky)
generate the ideal in(u;v)(in(u′ ;v′)(I)) and therefore statement (ii) completes the proof.

We are now in a position to give a description of the equivalence classes CI [(u; v)].

Proposition 4.10. Let I be an R-ideal; let ≺ be a term order and let (u; v) belong to
GR(I). If G is the reduced Gr?obner basis of I with respect to ≺(u;v); then one has

CI [(u; v)]= {(u′; v′)∈GR(I): in(u;v)(g)= in(u′ ;v′)(g) ∀g∈G}
and; hence; each equivalence class CI [(u; v)] is a relatively open rational convex poly-
hedral cone.

Proof. See Proposition 2:3 in Sturmfels [14].

We end with the main result of this section.

Theorem 4.11. For I an R-ideal; the 5nite set

GF(I):={CI [(u; v)]: for all (u; v)∈GR(I)}
forms a fan; called the Gr?obner fan of I .

Proof. Given the above lemmas and propositions, the proof is now identical to Propo-
sition 2:4 in Sturmfels [14].

5. Bounds on the irreducible components

This section contains the proofs of the main results of this paper. We start by stating
an elementary lemma from commutative algebra—see Lemma 2:2:2 in Saito et al. [12].

Lemma 5.1. If J is any ideal in S and (u; v)∈PR(S)=Rm × Rn then one has the
following:
(1) Kdim in(u;v)(J )6Kdim J .
(2) If (u; v) is positive; then Kdim in(u;v)(J )=Kdim J .

Making use of the GrIobner fan, we next study e.ect that varying the 0ltration of
R has on the Gelfand–Kirillov dimension of an R-module. Recall that M has a good
0nite dimensional 0ltration if and only if the vector (u; v) is positive.
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Proposition 5.2. If M is a 5nitely generated R-module, then the Gelfand–Kirillov
dimension of M is independent of the positive vector (u; v)∈PR(R).

Proof. Subsection 8:6:5 in McConnell and Robson [9] states GKdimM =GKdim grM
when M has a good 0nite dimensional 0ltration. We also know that the Gelfand–
Kirillov dimension and Krull dimension of gr(M) are equal by Corollary 3.2. Since
the Krull dimension of a 0nitely generated module is the Krull dimension of its support,
it suFces to consider ideals. In particular, one reduces to proving that, for an R-ideal I ,
the initial ideal in(u;v)(I) is independent of the choice of positive vector (u; v)∈PR(R).
We prove this statement by constructing a homotopy between two initial ideals. Let

(u1; v1) and (u2; v2) be two positive vectors in PR(R); we claim that Kdim in(u1 ;v1)(I)=
Kdim in(u2 ;v2)(I). Proposition 4.10 implies that each equivalence class CI [(u2; v2)] is a
convex cone, so in(u2 ;v2)(I)= in(ru2 ;rv2)(I) for any 0¡r ∈R. By replacing (u2; v2) with
a scalar multiple, we may guarantee that (u2−u1; v2−v1) is a positive vector. It follows
that (1−r)(u1; v1)+r(u2; v2) is a positive vector and belongs to GR(I) for all r ∈ [0; 1].
De0ne Jr to be the ideal in(1−r)·(u1 ;v1)+r·(u2 ;v2)(I). Since the line segment from (u1; v1)
to (u2; v2) intersects 0nitely many distinct walls of the GrIobner fan, there are real
numbers 0= r0¡r1¡ · · ·¡r‘=1 such that the ideal Jr remains unchanged as the
parameter r ranges inside the open interval (rj; rj+1); we denote this ideal by J(rj ;rj+1).
By Proposition 4.9, we have in(u2 ;v2)(Jrj)= J(rj ;rj+1) = in(u1 ;v1)(Jrj+1). By applying Lemma
5.1, we see that Kdim Jrj =Kdim J(rj ;rj+1) =Kdim Jrj+1 . Combining these equalities for
06 j¡‘ completes the proof.

Remark 5.3. Combining Proposition 5.2 with subsection 8:6:18 in McConnell and Rob-
son [9], we see that the Gelfand–Kirillov dimension of a 0nitely generated R-module
M does not depend on the choice of 0nite dimensional 0ltrations for R or M . In par-
ticular, the Gelfand–Kirillov dimension appearing in Theorem 1.2 is independent of the
vector (u; v).

We are now ready to prove:

Proof of Theorem 1.2. Fix a positive vector in PR(R) and let R̃ and M̃ be associated
Rees ring and module. Now, suppose Ch(u;v)(M) has an irreducible component of
dimension p. Since

AnnS(gr(M))= gr(AnnR(M))= in(u;v)(AnnR(M));

this means that the S-ideal in(u;v)(AnnR(M)) has a minimal prime p of dimension p.
By Proposition 4.3 and Proposition 4.5, we have

in(u;v)(AnnR(M))= in(1;u;v)(AnnR̃(M̃))| Kx0=1:
Because Kx0 is a non-zero-divisor on S[ Kx0], p lifts to a minimal prime of dimen-
sion p + 1 over in(1;u;v)(AnnR̃(M̃)). By Proposition 4.6, there exists a positive vector
(u0; u′; v′)∈PR(R̃) such that in(1;u;v)(AnnR̃(M̃))= in(u0 ;u′ ;v′)(AnnR̃(M̃)). Theorem 3.7
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implies that M̃ has a submodule L satisfying GKdim L=p + 1 and Proposition 3.5
implies +0(L) is a submodule of M with Gelfand–Kirillov dimension p.

We recall Bernstein’s inequality which is also called the “Weak Fundamental The-
orem of Algebraic Analysis”—see Section 1:4 in BjIork [3] for two distinct proofs.

Theorem 5.4 (Bernstein). Let k be a 5eld of characteristic zero. If An has the 5ltra-
tion induced by (1; 1) (called the standard 5ltration) and M is a 5nitely generated
An-module; then one has GKdimM¿ n.

Proof of Theorem 1.1. This follows immediately from Theorem 1.2 and Theorem 5.4.
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