


PROJECTIVE TORIC VARIETIES AS FINE MODULI SPACES OF
QUIVER REPRESENTATIONS

By ALASTAIR CRAW and GREGORY G. SMITH

Abstract. This paper proves that every projective toric variety is the fine moduli space for stable
representations of an appropriate bound quiver. To accomplish this, we study the quiver Q with rela-
tions R corresponding to the finite-dimensional algebra End (

⊕r
i=0

Li) where L := (OX , L1, . . . , Lr)
is a list of line bundles on a projective toric variety X. The quiver Q defines a smooth projective
toric variety, called the multilinear series |L|, and a map X ✲ |L|. We provide necessary and
sufficient conditions for the induced map to be a closed embedding. As a consequence, we obtain a
new geometric quotient construction of projective toric varieties. Under slightly stronger hypotheses
on L, the closed embedding identifies X with the fine moduli space of stable representations for the
bound quiver (Q, R).

1. Introduction. The dictionary between the geometry of a moduli space
X and the family of objects classified by X lies at the heart of modern algebraic
geometry. Fine moduli spaces, although substantially rarer than coarse ones, pro-
vide the fundamental example of this correspondence. A scheme X is a fine
moduli space for the equivalence classes of some objects if and only if there is
a universal family of the selected objects over X such that every other family
of objects is induced from the universal one by a unique morphism to X. The
hyperplane bundle on Pd and the tautological vector bundle on a Grassmannian
are the classic examples of universal families. A universal family is a powerful
tool for studying the geometry of X as illustrated by the forgetful morphism be-
tween moduli spaces of pointed stable curves, or the Fourier-Mukai transform
on abelian varieties. The primary goal of this paper is to realize every projective
toric variety as a fine moduli space of stable representations for an appropriate
bound quiver.

To be more precise, let X be a projective toric variety over a field k and
consider a list L := (OX , L1, . . . , Lr) of line bundles on X; for convenience set
L0 := OX . The finite-dimensional k-algebra End (

⊕r
i=0 Li) is encoded by a quiver

Q, called the complete quiver of sections for L, together with an ideal of relations
R in the path algebra kQ. We associate to the quiver Q a unimodular, projective
toric variety |L| called the multilinear series of Q. The variety |L| can be defined
combinatorially, by geometric invariant theory, or via representation theory; see
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Proposition 3.8. Since the isomorphism kQ/R ∼= End (
⊕r

i=0 Li) identifies arrows
in Q with global sections of line bundles, the quiver Q induces a map from X to
|L|. We prove the following:

THEOREM 1.1. If L1, . . . , Lr are basepoint-free line bundles on X, then the in-
duced map ϕ|L|: X ✲ |L| is a morphism and the image is presented as a
geometric quotient.

When r = 1, ϕ|L| coincides with the morphism from X to the linear series |L1|.
Lists L for which the induced morphism ϕ|L| is a closed embedding are

ubiquitous; see Proposition 4.14. Hence, Theorem 1.1 produces a wealth of new
geometric quotient constructions for a projective toric variety X. In particular,
these geometric quotients provide new “homogeneous coordinates” for the points
on X. In contrast with [9], [19], these quotient constructions are not intrinsic to the
toric variety; they depend on the choice of line bundles in L. Although we recover
the quotient constructions in [9], [19] for some toric varieties and particular lists
L, the homogeneous coordinate systems arising from a multilinear series |L| are
typically larger. Examples suggest that some of these larger coordinate systems
appear naturally in the quantum cohomology of X and the derived category of
coherent sheaves on X.

To achieve the primary goal, we relate the image ϕ|L|(X) to an important
subscheme of |L|. From the viewpoint of representation theory, the multilinear
series |L| is the fine moduli space of ϑ-stable representations with dimension
vector (1, . . . , 1) for the quiver Q where ϑ is a distinguished weight on Q; see
Proposition 3.8. The ideal of relations R in the path algebra kQ determines a
subscheme of |L| that coincides with the fine moduli spaceMϑ(Q, R) of ϑ-stable
representations with dimension vector (1, . . . , 1) for the bound quiver (Q, R). In
other words, the variety Mϑ(Q, R) classifies certain finite-dimensional modules
over the k-algebra End (

⊕r
i=0 Li). The universal ϑ-stable representation of (Q, R)

over Mϑ(Q, R) decomposes into a direct sum of line bundles called the tauto-
logical line bundles. Our main results can be summarized as follows:

THEOREM 1.2. Let X be a projective toric variety. There exist (many) lists L of
line bundles on X such that the induced morphism ϕ|L|: X ✲ |L| identifies X
with the fine moduli spaceMϑ(Q, R). Moreover, the tautological line bundles on
Mϑ(Q, R) coincide with the line bundles in the list L.

This fine moduli interpretation yields a functorial approach to projective toric
varieties. Specifically, it allows one to describe the data needed to specify a map
from a scheme to a projective toric variety as in [10], [19].

Theorem 1.2 also helps clarify the relationship between descriptions of the
derived category Db(OX −mod) and realizations of X as a fine moduli space of
quiver representations. [8] shows that Db(OX −mod) is equivalent to the derived
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category of finite-dimensional modules over End (
⊕r

i=0 F i) if and only if the co-
herent sheaves F i form a complete strong exceptional collection on X. On certain
toric quiver varieties, [1] describe such collections in which the F i are line bun-
dles; toric quiver varieties are fine moduli spaces of quiver representations. The
influential [22] constructs complete strong exceptional collections of line bundles
on several smooth toric surfaces by realizing the surfaces as fine moduli spaces
of stable representations of a bound quiver. Given a smooth projective variety
with a complete strong exceptional collection of line bundles, [4] establishes that
the variety is isomorphic to a connected component of a corresponding moduli
space of stable quiver representations. [20] proves that every toric variety has a
complete exceptional collection of coherent sheaves and, in contrast, [18] exhibits
a smooth toric surface that does not have a complete strong exceptional collec-
tion of line bundles. In this context, Theorem 1.2 clearly differentiates between
a fine moduli interpretation of a variety and the existence of a complete strong
exceptional collection of line bundles.

This paper is organized as follows. Our notation and some standard results
from toric geometry and quiver theory are described in §2. In §3, we define
a quiver of sections and its associated multilinear series. This generalizes the
classical notion of a linear series from a single line bundle to a list of line
bundles. The induced map to the multilinear series is studied in §4. In particular,
we give necessary and sufficient conditions for the induced map to be a morphism
or a closed embedding. Finally, §5 examines representations of a bound quiver
of sections and establishes our main results.

Acknowledgments. We thank Diane Maclagan, Sorin Popescu, Nicholas
Proudfoot and Karen Smith for stimulating conversations. We also thank an
anonymous referee for valuable comments and suggestions. This paper owes
much to experiments made with [13].

2. Background and notation. We collect here standard definitions, results
and notation. In this paper, N denotes the nonnegative integers and k is an alge-
braically closed field of characteristic zero.

2.1. Toric varieties. Let X be a projective toric variety over k determined
by a strongly convex rational polyhedral fan ΣX ⊆ NX ⊗Z R ∼= Rd where NX is
a lattice of rank d. The dual lattice is MX := HomZ (NX ,Z) and TX := NX ⊗Z k∗
is the algebraic torus acting on X. The i-dimensional cones of ΣX form the set
ΣX(i). Since X is projective,

⋃
σ∈ΣX

σ = NX⊗ZR and ΣX(d) is the set of maximal
cones.

Each ρ ∈ ΣX(1) corresponds to an irreducible TX-invariant Weil divisor Dρ

on X. These divisors generate the free abelian group ZΣX (1) of TX-invariant Weil
divisors and the semigroup NΣX (1) of effective TX-invariant Weil divisors. The
quotient of ZΣX (1) by the subgroup of principal divisors is the class group (or



1512 ALASTAIR CRAW AND GREGORY G. SMITH

Chow group) Cl (X). The TX-invariant Cartier divisors CDiv (X) form a subgroup
of ZΣX (1). Moreover, there is a commutative diagram

0 ✲ MX ✲ CDiv (X) ✲ Pic (X) ✲ 0

0 ✲ MX

������
✲ ZΣX (1)

❄
✲ Cl (X)

❄
✲ 0

(2.1)

where the rows are exact and the vertical arrows are inclusions; see §3.4 in [15].
The projection from ZΣX (1) to Cl (X) is denoted by u �→ [u] and the inclusion
of Pic (X) into Cl (X) is also denoted by L �→ [L]. For a line bundle L on X
and a global section s ∈ H0(X, L), div (s) denotes the effective Cartier divisor
determined by s.

The total coordinate ring of X is the polynomial ring SX := k[xρ: ρ ∈ ΣX(1)].
Following [9], SX is the semigroup algebra of NΣX (1) with the Cl (X)-grading
induced by deg (xu) = deg (

∏
ρ xuρ

ρ ) = [u] ∈ Cl (X). A divisor D =
∑
ρ∈ΣX (1) uρDρ

determines a Laurent monomial

xu =
∏

ρ∈ΣX (1)

xuρ
ρ ∈ k[x±1

ρ : ρ ∈ ΣX(1)]

and we often write the monomial as xD. The support of D or xu is the set

supp (D) = supp (xu) = {ρ ∈ ΣX(1): uρ �= 0}.

For a cone σ ∈ ΣX , σ̂ is the set of one-dimensional cones in ΣX that are not con-
tained in σ and xσ̂ =

∏
ρ∈σ̂ xρ is the associated monomial in SX . The irrelevant

ideal of X is the square-free (i.e. reduced) monomial ideal BX := (xσ̂: σ ∈ ΣX).
Theorem 2.1 in [9] shows that the pair (SX , BX) encodes a quotient construc-
tion of X. Specifically, if V(BX) is the subvariety of AΣX (1) defined by BX , then
the toric variety X is a categorical quotient of AΣX (1) \ V(BX) by the group
HomZ ( Cl (X),k∗); the group action is induced by the Cl (X)-grading of SX .

2.2. Quivers. A quiver Q is specified by two finite sets Q0 and Q1, whose el-
ements are called vertices and arrows, together with two maps hd, tl: Q1 ✲ Q0

indicating the vertices at the head and tail of each arrow. A nontrivial path in
Q is a sequence of arrows p = a1 · · · a� with hd (ak) = tl (ak+1) for 1 ≤ k < �.
We set tl (p) = tl (a1) and hd (p) = hd (a�). Each i ∈ Q0 gives a trivial path ei

where tl (ei) = hd (ei) = i. The path algebra kQ is the k-algebra whose underlying
k-vector space has a basis consisting of paths in Q; the product of two basis ele-
ments equals the basis element defined by concatenation of the paths if possible
or zero otherwise. A cycle is a path p in which tl (p) = hd (p). A quiver is acyclic
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if it contains no cycles. A vertex is a source if it is not the head of any arrow
and a quiver is rooted if it has a unique source.

A walk γ in Q is an alternating sequence i0a1i1 · · · a�i� of vertices i1, . . . , i�
and arrows a1, . . . , a� where ak is an arrow between ik−1 and ik. If tl (ak) = ik−1

and hd (ak) = ik then ak is a forward arrow in γ; otherwise tl (ak) = ik, hd (ak) =
ik−1 and ak is a backward arrow. If a ∈ Q1 then a−1 denotes the walk from hd (a)
to tl (a). A walk γ is closed if i0 = i� and a circuit is a closed walk in which the
arrows a1, . . . , a� are distinct. A quiver is connected if there is a walk between
any two vertices. A tree is a connected acyclic quiver. We say that Q′ ⊆ Q is a
spanning subquiver if Q′0 = Q0.

The vertex space ZQ0 is the free abelian group of functions from Q0 to Z
and the arrow space ZQ1 is the free abelian group of functions from Q1 to Z. The
characteristic functions χi: Q0 ✲ Z for i ∈ Q0 and χa: Q1 ✲ Z for a ∈ Q1

form the standard bases for the vertex and arrows spaces. We write NQ0 and NQ1

for the semigroups generated by all N-linear combinations of the characteristic
functions χi and χa respectively. The incidence map inc: ZQ1 ✲ ZQ0 is defined
by inc (χa) = χhd (a)−χtl (a). A function θ: Q0 ✲ Z is an integral weight of Q
if
∑

i∈Q0
θi = 0 and a function f : Q1 ✲ Z is an integral circulation if

∑
a∈Q1
tl (a)=i

fa =
∑
a∈Q1

hd (a)=i

fa for each i ∈ Q0.

The weight lattice Wt (Q) ⊂ ZQ0 and the circulation lattice Cir (Q) ⊂ ZQ1 are
generated by the integral weights and circulations respectively. There is an exact
sequence

0 ✲ Cir (Q) ✲ ZQ1 inc✲ Wt (Q)(2.2)

and the incidence map is surjective when Q is connected; see §4 in [6]. For
a ∈ Q1 and a walk γ, let multγ (a) ∈ Z equal the number of times a appears as a
forward arrow in γ minus the number of times it appears as a backward arrow.
Given a walk γ, we set f (γ) :=

∑
a∈Q1

multγ (a)χa ∈ ZQ1 ; f (γ) ∈ Cir (Q) if and
only if γ is a closed walk.

2.3. Representations of quivers. Let Q be a connected quiver. A represen-
tation W = (Wi, wa) of Q consists of a k-vector space Wi for each i ∈ Q0 and a k-
linear map wa: Wtl (a) ✲ Whd (a) for each a ∈ Q1. The dimension vector of W is∑

i∈Q0
dimk (Wi)χi ∈ NQ0 . In this paper, we will assume that dimk (Wi) = 1 for all

i ∈ Q0. A map between representations W = (Wi, wa) and W ′ = (W ′i , w′a) is a fam-
ily ψi: Wi

✲ W ′i for i ∈ Q0 of k-linear maps that are compatible with the struc-
ture maps, that is w′aψtl (a) = ψhd (a)wa for all a ∈ Q1. With composition defined
componentwise, we obtain the abelian category of representations of Q. Each
rational weight θ ∈Wt (Q)⊗ZQ defines a stability notion for representations and
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subquivers of Q. A representation W is θ-stable if, for every proper, nonzero sub-
representation W ′ ⊂ W, we have θ(W ′) :=

∑
i∈supp (W′) θi > 0, where supp (W ′) :=

{i ∈ Q0: W ′i �= 0}. The notion of θ-semistability is obtained by replacing > with
≥. A subquiver Q′ ⊆ Q is θ-stable if it admits a θ-stable representation.

The isomorphism classes of representations are orbits in the representation
space AQ1 = Spec (k[ya: a ∈ Q1]) ∼=

⊕
a∈Q1

Homk (Wtl (a), Whd (a)) by the ac-
tion of the group (k∗)Q0 ∼=

∏
i∈Q0

GL (Wi) induced by the incidence map; in
other words, it acts by (g · w)a = ghd (a)wag−1

tl (a). Hence, the algebraic torus G :=
HomZ ( Wt (Q),k∗) acts faithfully on AQ1 and the polynomial ring SY := k[ya: a ∈
Q1] has the associated Wt (Q)-grading. For θ ∈Wt (Q), let (SY )θ be the θ-graded
piece. Following [21], the GIT-quotientMθ(Q) := AQ1//θ G = Proj (

⊕
k∈N (SY )kθ)

is the categorical quotient (AQ1 )ss
θ /G, where (AQ1 )ss

θ ⊆ AQ1 is the open sub-
scheme parametrizing θ-semistable representations of Q. Since dim (Wi) = 1 for
all i ∈ Q0, Mθ(Q) is also a toric quiver variety as defined in [17]. A weight
θ ∈ Wt (Q) ⊗Z Q is generic if every θ-semistable representation is θ-stable. In
this case,Mθ(Q) is the geometric quotient (AQ1 )sθ/G, where (AQ1 )sθ parametrizes
θ-stable representations of Q. The set of generic weights decomposes into finitely
many open chambers, where Mθ(Q) is unchanged as θ varies in a chamber; see
[12], [28].

For generic θ, Proposition 5.3 in [21] implies that Mθ(Q) is the fine mod-
uli space of θ-stable representations of Q. To describe the universal family on
Mθ(Q), we set Q0 = {0, . . . , r} and identify the group G with {(g0, . . . , gr) ∈
(k∗)Q0 : g0 = 1}. This choice determines a G-equivariant vector bundle⊕

i∈Q0
O
AQ1 which descends to

⊕
i∈Q0

Fi onMθ(Q); see Proposition 5.3 in [21].
The line bundles F0, . . . , Fr are called the tautological line bundles on Mθ(Q).
Since G acts trivially on the 0th component of

⊕
i∈Q0

O
AQ1 , it follows that F0 is

the trivial line bundle.

3. Quivers of sections. The goal of this section is to extend the classical
notion of a linear series from a single line bundle to a list of line bundles.
Let L := (L0, . . . , Lr) be a list of distinct line bundles on the projective toric
variety X. A TX-invariant section s ∈ H0(X, Lj ⊗ L−1

i ) is indecomposable if
the divisor div (s) cannot be expressed as a sum div (s′) + div (s′′) where s′ ∈
H0(X, Lk ⊗ L−1

i ) and s′′ ∈ H0(X, Lj ⊗ L−1
k ) are nonzero TX-invariant sections

and 0 ≤ k ≤ r. A quiver of sections associated to L is a quiver Q in which
the vertices Q0 = {0, . . . , r} correspond to the line bundles in L and the arrows
from i to j correspond to a subset of the indecomposable TX-invariant sections in
H0(X, Lj⊗L−1

i ). If every indecomposable TX-invariant section in H0(X, Lj⊗L−1
i )

for 0 ≤ i, j ≤ r corresponds to an arrow then Q is the complete quiver of sections
for L. Since X is projective, the unique element in H0(X, Li ⊗ L−1

i ) = H0(X, OX)
defines the trivial path ei in Q. Moreover, if Lj �= Li then projectivity implies that
both H0(X, Lj ⊗ L−1

i ) and H0(X, L−1
j ⊗ Li) cannot be nonzero. It follows that Q

is acyclic.
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Conventions 3.1. Let Q be a quiver of sections associated to L = (L0, . . . , Lr).
(a) By definition, Q only depends on the line bundles Lj ⊗ L−1

i where 0 ≤
i, j ≤ r. Consequently, for any line bundle L′ on X, we have Q = Q′ where Q′ is
a quiver of sections associated to L′ = (L0 ⊗ L′, . . . , Lr ⊗ L′). To eliminate this
redundancy, we will assume that L0 = OX . By reordering the elements in L if
necessary, we may also assume that j < i implies H0(X, Lj ⊗ L−1

i ) = 0.
(b) We will assume that H0(X, Li) �= 0 for 0 ≤ i ≤ r. If Q is the complete

quiver of sections for L, then this implies that Q is connected and rooted at
0 ∈ Q0.

Since each a ∈ Q1 corresponds to a TX-invariant section s ∈ H0(X, Lj ⊗
L−1

i ), we simply write div (a) := div (s) ∈ CDiv (X). More generally, for a path
p = a1 · · · a� in Q, we set div (p) := div (a1) + · · · + div (a�). This labelling of
paths induces relations on Q. Specifically, the ideal of relations is the two-sided
ideal R in the path algebra kQ generated by differences p − p′ ∈ kQ such that
tl (p) = tl (p′), hd (p) = hd (p′) and div (p) = div (p′). Since the arrows in Q
correspond to indecomposable sections, R is an admissible ideal. The pair (Q, R)
is called a bound quiver of sections; the phrase “bound quiver” is a synonym for
“quiver with relations”.

Example 3.2. If L1 is a nontrivial line bundle on X, then the complete quiver
of sections for L = (OX , L1) has two vertices and dimkH0(X, L1) arrows. The
ideal of relations R is the zero ideal.

The general correspondence between bound quivers and finite-dimensional
k-algebras has the following useful incarnation for a quiver of sections.

PROPOSITION 3.3. If (Q, R) is the complete bound quiver of sections for the list
L = (L0, . . . , Lr) then the quotient algebra kQ/R is isomorphic to End (

⊕r
i=0 Li).

Proof. The map sending a path p = a1 · · · a� in Q to the product of the
corresponding sections s1 · · · s� ∈ H0(X, Lhd (p) ⊗ L−1

tl (p)) = Hom (Ltl (p), Lhd (p))
determines a homomorphism of k-algebras

η: kQ→ End
(⊕r

i=0 Li
)

=
⊕r

i,j=0 Hom (Li, Lj).

The map is surjective because Q is a complete quiver. Moreover, η sends paths
p, p′ in Q satisfying tl (p) = tl (p′) and hd (p) = hd (p′) to the same element in
Hom (Ltl (p), Lhd (p)) if and only if div (p) = div (p′). Thus, we have Ker (η) = R.

Remark 3.4. Let (Q, R) be a (not necessarily complete) bound quiver of sec-
tions associated to L = (L0, . . . , Lr). If {e0, . . . , er} is a complete set of primi-
tive orthogonal idempotents in End (

⊕r
i=0 Li) and s0, . . . , sm are the indecompos-

able sections corresponding to the arrows in Q, then kQ/R is the subalgebra of
End (

⊕r
i=0 Li) generated by {e0, . . . , er, s0, . . . , sm}.
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Remark 3.5. [8], [21], [4] work with the opposite quiver. In particular, a
“Bondal quiver” is a complete quiver of sections in which arrows have the op-
posite orientation.

A quiver of sections Q comes equipped with a distinguished lattice. The map
sending a ∈ Q1 to div (a) ∈ CDiv (X) extends to give a Z-linear map

div: ZQ1 ✲ CDiv (X),

where div (v) :=
∑

a∈Q1
va div (a) for v =

∑
a∈Q1

vaχa. The section lattice Z(Q) is
the image of the map π := ( inc, div): ZQ1 ✲ Wt (Q)⊕CDiv (X); by definition,
we have π(χa) = (χhd (a) − χtl (a), div (a)). The projections onto the components
are denoted by π1: Z(Q) ✲ Wt (Q) and π2: Z(Q) ✲ CDiv (X) respectively.
These maps fit in to the commutative diagram

ZQ1

❅
❅
❅❘

❍❍❍❍❍❍❍

inc

❥

❆
❆
❆
❆
❆
❆
❆

div



Z(Q)
π1

✲ Wt (Q)

CDiv (X)

π2

❄
✲ Pic (X),

pic
❄

(3.1)

where pic (θ) :=
⊗

i∈Q0
Lθi

i for θ =
∑

i∈Q0
θiχi and the map CDiv (X) ✲ Pic (X)

is taken from (2.1).

Example 3.6. Let X = F1 = P(OP1 ⊕ OP1 (1)) be the Hirzebruch surface
determined by the fan in Figure 1 (a). For (k, �) ∈ Z2, set OX(k, �) := OX(kD1 +
�D4) ∈ Pic (X). The complete quiver of sections for L = (OX , OX(1, 0), OX(0, 1))
appears in Figure 1 (b). The ideal of relations is R = (0). The section lattice Z(Q)
is generated by the columns of the matrix

−1 0 −1 −1
1 −1 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .(3.2)

1

23

4

(a) Fan

0 1

2

x1
x3

x4

x
2

(b) Quiver of sections

0 1

2

a1
a3

a4

a
2

(c) Listing the arrows

Figure 1. Hirzebruch surface F1.
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1

2

3

4

(a) Fan

0 1

2 3

x1
x3

x4 x4

x

1 x

2

x

2 x

3

x1
x3

(b) Quiver of sections

0 1

2 3

a1
a2

a3 a6
a
4a

5

a7
a8

(c) Listing the arrows

Figure 2. Hirzebruch surface F2.

Example 3.7. Let X = F2 = P(OP1⊕OP1 (2)) be the Hirzebruch surface deter-
mined by the fan in Figure 2 (a). For (k, �) ∈ Z2, we write OX(k, �) := OX(kD1 +
�D4) ∈ Pic (X). The complete quiver of sections for L = (OX , OX(1, 0), OX(0, 1),
OX(1, 1)) appears in Figure 2 (b). If we order the arrows as in Figure 2 (c), then
the ideal of relations is R = (a2a4 − a1a5, a4a8 − a5a7, a2a6 − a3a8, a1a6 − a3a7).
The section lattice Z(Q) is generated by the columns of the following matrix


−1 −1 −1 0 0 0 0 0

1 1 0 −1 −1 −1 0 0
0 0 1 1 1 0 −1 −1
0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0

 ;(3.3)

the ith column corresponds to ai for 1 ≤ i ≤ 8.

Classically, one associates a projective space, called the linear series, to a
nonzero subspace of global sections of a line bundle. Generalizing this con-
struction, we associate a toric variety YQ to an appropriate quiver of sections
Q. Following §1.4 in [17], any connected, rooted, acyclic quiver Q defines a
complete fan ΣQ in the R-vector space HomZ ( Cir (Q),R) with underlying lattice
NY := HomZ ( Cir (Q),Z). Each arrow a ∈ Q1 determines a ray ρa ∈ ΣQ(1) where
the unique generator of ρa∩NY is the evaluation map eva: Cir (Q) ✲ R defined
by eva ( f ) = fa for f ∈ Cir (Q). The rays ρa1 , . . . , ρa� ∈ ΣQ(1) span a cone in
ΣQ if and only if there exists a spanning tree rooted at the source of Q that does
not contain a1, . . . , a�. Hence, maximal cones in ΣQ correspond to spanning trees
rooted at the source, and have dimension |Q1| − |Q0| + 1. Since ΣQ is also the
triangulation associated to the region in the chamber complex corresponding to
our acyclic orientation of the underlying graph of Q (Theorem 3.1 in [7] relates
triangulations with chambers; Lemma 7.1 in [14] defines the chamber complex
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and region associated to an acyclic orientation), it follows that ΣQ is a fan. Let
YQ be the toric variety determined by ΣQ.

The toric variety YQ, which is a toric quiver variety as defined in [17], has
several other characterizations. Following [3], a toric variety Y is unimodular if
MY is a unimodular sublattice of ZΣY (1); see (2.1). This is equivalent to saying
that Y is smooth and any other variety obtained from Y by toric flips and flops
is also smooth.

PROPOSITION 3.8. Let Q be a connected, rooted, acyclic quiver. If Q0 =
{0, . . . , r} where 0 is the unique source then the following varieties coincide:

(a) the toric variety YQ defined by the fan ΣQ;
(b) the geometric quotient ofAQ1 \V(BY ) by the group G = HomZ ( Wt (Q),k∗),

where AQ1 = Spec (SY ), SY := k[ya: a ∈ Q1] and

BY :=

( ∏
a∈Q′1

ya: Q′ is a spanning tree of Q rooted at 0

)
=

r⋂
i=1

(ya: hd (a) = i);

(c) the fine moduli spaceMθ(Q) of θ-stable representations for any rational
weight θ ∈Wt (Q)⊗ZQ lying in the open GIT-chamber containingϑ :=

∑
i∈Q0

(χi−
χ0).
Moreover, this variety is unimodular and projective.

Proof. Let W be a ϑ-semistable representation of Q. If W ′ ⊂ W is a proper
nonzero subrepresentation, then we have ϑ(W ′) =

∑
i∈supp (W′) ϑi ≥ 0. Since

ϑi = 1 for i �= 0 and ϑ0 = −r, it follows that W ′0 = 0 and ϑ(W ′) > 0. There-
fore, ϑ is generic, the open chamber containing ϑ is well-defined, and results
in §4 of [21] show that Mϑ(Q) is a smooth projective variety. Since the map
inc: ZQ1 ✲ Wt (Q) is totally unimodular (e.g. Proposition 5.3 in [6] or Exam-
ple 2 in §19.3 of [26]), it follows that Cir (Q) is a unimodular sublattice of ZQ1

and the toric variety defined by ΣQ is unimodular. Theorem 2.1 in [9] establishes
the equivalence between (a) and (b), and the discussion preceding Theorem 1.7
in [17] establishes the equivalence between (a) and (c).

When Q is a connected, rooted, acyclic quiver of sections on X, the toric
variety YQ is called the multilinear series of Q. When the quiver of sections is
unambiguous, we simply write Y for the multilinear series. If Q is the complete
quiver of sections for a list a of line bundles L, then we write |L| := Y for the
complete multilinear series.

Remark 3.9. Proposition 3.8 implies that the diagram (2.1) becomes

0 ✲ MY ✲ CDiv (Y) ✲ Pic (Y) ✲ 0

0 ✲ Cir (Q)
❄

✲ ZQ1

❄
inc✲ Wt (Q)

❄
✲ 0,
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where the vertical maps are isomorphisms. The open chamber containing ϑ is the
ample cone AmpQ (Y) of Q-divisor classes on Y and the closure of this chamber
is

NefQ (Y) =
⋂

Q′⊆Q

{∑
a∈Q′1

λa[Da]: λa ∈ Q≥0

}
,

where the intersection runs over all spanning trees Q′ of Q rooted at 0 and Da is
the irreducible TY -invariant Weil divisor associated to a ∈ Q1. Since Y is smooth,
the ample line bundle OY (ϑ) determined by ϑ ∈Wt (Q) is very ample.

Example 3.10. Let Q be a quiver with Q0 = {0, 1} and Q1 = {a0, . . . , am}
such that tl (ak) = 0 and hd (ak) = 1 for all 0 ≤ k ≤ m. Since every arrow forms a
spanning tree rooted at 0, the irrelevant ideal of Y is BY = (ya0 , . . . , yam). Hence,
Y is the geometric quotient of AQ1 \ {0} by G := HomZ ( Wt (Q),k∗). Choosing
χ1 − χ0 as a basis for Wt (Q), we see that G ∼= k∗ and the G-action is induced
by the matrix is

[
1 · · · 1

]
. Therefore, we have Y ∼= Pm. In particular, if Q

is the complete quiver of sections for L = (OX , L1) described in Example 3.2,
then the complete multilinear series |L| is canonically isomorphic to the linear
series |L1|.

Example 3.11. Let X = F1 and L = (OX , OX(1, 0), OX(0, 1)) as in Exam-
ple 3.6. If we identify Cir (Q) with Z2 by choosing the circuits (a1a−1

3 , a3a2a−1
4 )

as an ordered basis, then the unique generator of ρk ∩NY , where ρk ∈ ΣQ(1) cor-
responds to ak ∈ Q1, is the kth column of the matrix

[ 1 0 −1 0
0 1 1 −1

]
. Figure 1 (c)

gives SY = k[y1, y2, y3, y4] and BY = (y1, y3) ∩ (y2, y4). Hence, the quotient con-
struction of Y from Proposition 3.8 (b) coincides with the quotient construction
of X encoded by the pair (SX , BX); see §2.1. Therefore, the multilinear series Y
equals X.

Example 3.12. Let X = F2 and L = (OX , OX(1, 0), OX(0, 1), OX(1, 1)) as in
Example 3.7. If we identify Cir (Q) with Z5 by choosing the circuits

(a1a−1
2 , a1a4a−1

3 , a1a5a−1
3 , a1a6a−1

7 a−1
3 , a1a6a−1

8 a−1
3 )

as an ordered basis, then the unique generator of ρk ∩ NY , where ρk ∈ ΣQ(1)
corresponds to ak ∈ Q1, is the kth column of the matrix 1 −1 0 0 0 0 0 0

1 0 −1 1 0 0 0 0
1 0 −1 0 1 0 0 0
1 0 −1 0 0 1 −1 0
1 0 −1 0 0 1 0 −1

 .

Figure 2 (c) implies that SY = k[y1, . . . , y8] and BY = (y1, y2) ∩ (y3, y4, y5) ∩
(y6, y7, y8). Hence, the multilinear series Y is a smooth 5-dimensional toric variety



1520 ALASTAIR CRAW AND GREGORY G. SMITH

with 8 irreducible TY -invariant Weil divisors and 18 TY -fixed points. The ample
cone of Y is

AmpQ (Y) = {θ = (θ0, θ1, θ2, θ3) ∈Wt (Q)⊗Z Q: θ1 > 0, θ2 > 0, θ3 > 0} .

Since (− 3,−1, 1, 3) �∈ AmpQ (Y), the dualizing line bundle on Y is not ample.

4. Multilinear series. In this section, we study morphisms from the toric
variety X to the multilinear series Y induced by a quiver of sections. To begin,
we give necessary and sufficient conditions for a quiver of sections Q on X to
define a morphism from X to the multilinear series Y . The divisors labelling the
arrows in Q define a ring homomorphism ΦQ: SY ✲ SX between the total

coordinate rings of X and Y given by ΦQ(ya) = xdiv (a). The base ideal of Q is
the ideal BQ in SX generated by the image ΦQ(BY ).

PROPOSITION 4.1. Let Q be a connected, rooted, acyclic quiver of sections on
X. If Y is the multilinear series of Q, then the following are equivalent:

(a) the map ΦQ determines a morphism ϕQ: X ✲ Y;
(b) the irrelevant ideal BX is contained in the radical rad (BQ);
(c) for all σ ∈ ΣX, there exists a spanning tree Q′ ⊆ Q rooted at the unique

source in Q such that supp ( div (a)) ⊆ σ̂ for all a ∈ Q′1.

Proof. The toric variety X is a categorical quotient of AΣX (1) \ V(BX) under
the action of the group HomZ ( Cl (X),k∗); see §2.1. Similarly, Proposition 3.8
shows that Y is the geometric quotient of AQ1 \ V(BY ) under the action of the
group G. The ring map ΦQ: SY ✲ SX is induced by div: ZQ1 ✲ ZΣX (1),
so it defines a morphism AΣX (1) ✲ AQ1 which is equivariant with respect to
the action of the dense tori on AΣX (1) and AQ1 . Since combining (2.1) and (3.1)
yields the commutative diagram

ZQ1 inc✲ Wt (Q)

ZΣX (1)
❄

✲ Cl (X),

[ pic]
❄

it follows that this morphism is also equivariant with respect to the actions of
the groups HomZ ( Cl (X),k∗) and G = HomZ ( Wt (Q),k∗) on AΣX (1) and AQ1

respectively. Thus, ΦQ induces the morphism ϕQ: X ✲ Y if and only if the
preimage of the irrelevant set V(BY ) is contained in the irrelevant set V(BX); see
Theorem 3.2 in [10]. Since the preimage of V(BY ) is cut out by the base ideal BQ,
this is equivalent to BX being contained in rad (BQ). In other words, conditions
(a) and (b) are equivalent. The definition of BX and the explicit description of BY

from Proposition 3.8 (b) gives the equivalence between (b) and (c).
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A quiver of sections Q is basepoint-free if it is connected, rooted, acyclic,
and satisfies any of the equivalent conditions in Proposition 4.1. If the complete
quiver of sections for L is basepoint-free, then ϕ|L|: X ✲ |L| denotes the
associated morphism to the complete multilinear series.

COROLLARY 4.2. If Q is a basepoint-free quiver of sections then each line bundle
Li on X is basepoint-free. Conversely, if each Li is basepoint-free and Q is a complete
quiver of sections for L = (OX , L1, . . . , Lr) then Q is basepoint-free.

Proof. Since Q is basepoint-free, it satisfies condition (c) from Proposition 4.1.
Hence, for i ∈ Q0 and σ ∈ ΣX(d), there exists a path p = a1 . . . a� in Q such that
tl (p) = 0, hd (p) = i, and supp ( div (ak)) ⊆ σ̂ for all 1 ≤ k ≤ �. In other words, Li

admits a TX-invariant section that does not vanish at the TX-fixed point indexed
by σ for all σ ∈ ΣX(d). Therefore, for each i ∈ Q0, Li is basepoint-free. When Q
is complete, we can reverse the argument for the first part.

Given a basepoint-free quiver of sections Q, the image of ϕQ can be described
explicitly. Let N(Q) be the image of NQ1 under the map π: ZQ1 ✲ Wt (Q)⊕
CDiv (X). Observe that N(Q) is a subsemigroup of the section lattice Z(Q). Since
SY is the semigroup algebra of NQ1 , the map π induces a surjective k-algebra
homomorphism from SY to k[N(Q)] where k[N(Q)] is the semigroup algebra of
N(Q). The kernel of this induced map is the toric ideal

IQ := (yu − yv ∈ SY : u, v ∈ NQ1 , u− v ∈ Ker (π)).

Since G = HomZ ( Wt (Q),k∗), the affine toric variety V(IQ) ⊆ AQ1 cut out by the
ideal IQ is G-invariant, however it need not be normal. The ideal IQ is analogous
to the toric ideal defined by the augmented vertex-edge incidence matrix of the
McKay quiver in [11]. With this notation, we obtain the following:

PROPOSITION 4.3. Let Q be a basepoint-free quiver of sections. IfϕQ: X ✲ Y
is the induced morphism, then the image of ϕQ is:

(a) the subscheme of Y corresponding to the Wt (Q)-graded BY-saturated
ideal IQ;

(b) the geometric quotient of V(IQ) \ V(BY ) by G = HomZ ( Wt (Q),k∗);
(c) the GIT-quotient V(IQ)//θ G for any θ ∈ AmpQ (Y).

Proof. Proposition 3.8 (b) implies that the closed subsets of Y are in bijection
with the G-invariant closed subsets of AQ1 \ V(BY ), and hence with the BY -
saturated ideals of SY . The image of the map from AΣX (1) to AQ1 induced by the
homomorphism of semigroups div: NQ1 ✲ CDiv (X) is cut out by the toric
ideal Ker (ΦQ). Since the action of G = HomZ ( Wt (Q),k∗) on AQ1 is induced
by the map inc: ZQ1 ✲ Wt (Q), the toric ideal IQ associated to the map
π = ( inc, div): NQ1 ✲ Wt (Q)⊕CDiv (X) is clearly Wt (Q)-homogeneous and
contained in Ker (ΦQ). Moreover, because IQ is also maximal among Wt (Q)-
homogeneous ideals contained in Ker (ΦQ), it cuts out the Wt (Q)-homogeneous
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part of Ker (ΦQ). As IQ is prime and hence BY -saturated, (a) and (b) follow. The
equivalence of (b) and (c) follows directly from the equivalence between (b) and
(c) in Proposition 3.8.

Remark 4.4. Proposition 4.3 (c) holds for rational weights in a cone that
may strictly contain AmpQ (Y) because the GIT-chamber decomposition for the
G-action on V(IQ) is a coarsening of that for the G-action on AQ1 .

Proof of Theorem 1.1. The complete quiver of sections for L = (OX , L1, . . . , Lr)
is basepoint-free by Corollary 4.2, so ϕ|L| is a morphism. The explicit description
of the image as a geometric quotient is presented in Proposition 4.3 (b).

Example 4.5. Corollary 4.2 shows that the complete quiver of sections for
the list L = (OX , L1) is basepoint-free if and only if L1 is basepoint-free. Since
the semigroup N(Q) is generated by (( − 1, 1), div (s)) ∈ Z2 ⊕ CDiv (X) for TX-
invariant sections s ∈ H0(X, L1), it is isomorphic to the semigroup generated by
the effective divisors div (s) in CDiv (X). Hence, the ideal IQ defines the image of
X in the projective space |L1| := P(H0(X, L1)). It follows that V(IQ) is the affine
cone over ϕ|L1|(X), and ϕ|L| = ϕ|L1|.

Example 4.6. Let X = F1 and L = (OX , OX(1, 0), OX(0, 1)) as in Example 3.6.
Example 3.11 shows that the multilinear series is Y = |L| = X. By examining Fig-
ure 1 (b), we see that the complete quiver of sections for L satisfies condition (c)
in Proposition 4.1. By definition, N(Q) is generated by the columns of the matrix
in (3.2) so the toric ideal is IQ = (0) ⊂ SY . Thus, ϕ|L| is an isomorphism.

Example 4.7. Let X = F2 and L = (OX , OX(1, 0), OX(0, 1), OX(1, 1)) as in
Example 3.7. The multilinear series Y = |L| is described in Example 3.12. By
examining Figure 2 (b), we see that the complete quiver of sections for L satisfies
condition (c) in Proposition 4.1. By definition, N(Q) is generated by the columns
of the matrix in (3.3), so

IQ = (y2y4 − y1y5, y1y6 − y3y7, y2y6 − y3y8, y2y7 − y1y8, y5y7 − y4y8) ⊂ SY .

In this case, we have ϕ|L|(X) = V(IQ)//θ G for all rational weights θ in the GIT-
chamber

Θ :=
{

(θ0, θ1, θ2, θ3) ∈Wt (Q)⊗Z Q: θ3 > 0, θ1 + θ3 > 0
θ2 + θ3 > 0, θ1 + θ2 + θ3 > 0

}
;

see Remark 4.4.

With additional hypotheses, we can enlarge the commutative diagram (3.1).
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COROLLARY 4.8. If Q is basepoint-free and dimϕQ(X) = dim X, then

0 ✲ MX ✲ Z(Q)
π1✲ Wt (Q) ✲ 0

0 ✲ MX

������
✲ CDiv (X)

π2

❄
✲ Pic (X)

pic
❄

✲ 0

is a commutative diagram with exact rows. In particular, the projection π2 induces
an isomorphism between Ker (π1) and MX.

Proof. Combining (3.1) with the top row of (2.1), it is enough to prove that π2

yields an isomorphism between Ker (π1) and MX . The morphism ϕQ: X ✲ ϕQ(X)
corresponds to the map of semigroup algebras SY/IQ = k[N(Q)] ✲ k[NΣX (1)] =
SX induced by π2. Since dimϕQ(X) = dim X, it identifies the dense tori in X and
ϕQ(X). Therefore, π2 identifies the character lattices MX and Ker (π1).

Next, we give a criterion for ϕQ: X ✲ Y to be a closed embedding. For

σ ∈ ΣX(d), let yσ̂ :=
∏

supp ( div (a))⊆σ̂ ya be the associated monomial in SY . The

localization of an SY -module F at the element y−σ̂ is denoted by F[y−σ̂]. The
weight ϑ :=

∑
i∈Q0

(χi − χ0) appearing below is defined in Proposition 3.8 (c).

PROPOSITION 4.9. Let Q be a basepoint-free quiver of sections on X. The map
ϕQ: X ✲ Y is a closed embedding if and only if the line bundle

L := Lϑ0
0 ⊗ · · · ⊗ Lϑr

r =
⊗
i∈Q0

Li

is ample and ((SY/IQ)[y−σ̂])[0]
∼= (SX[x−σ̂])[0] for all σ ∈ ΣX(d).

Proof. The very ample line bundle OY (ϑ) from Remark 3.9 provides a closed
embedding Y → Pm := P(H0(Y , OY (ϑ))). Hence, ϕQ: X → Y is a closed em-
bedding if and only if the composition X → Pm, determined by ϕ∗Q(OY (ϑ)) =
pic (ϑ) = L and the subspace (SY/IQ)ϑ ∼= ΦQ((SY )ϑ) ⊆ (SX)[L]

∼= H0(X, L) of
global sections, is a closed embedding. The morphism ϕQ: X → Y corresponds
to the map of semigroup algebras SY/IQ = k[N(Q)] → k[NΣX (1)] = SX induced
by π2: Z(Q) → CDiv (X) which implies that (SY/IQ)ϑ ∼= ΦQ((SY )ϑ). More-
over, the map π2 identifies the monomial basis of (SY/IQ)ϑ indexed by the set
V := N(Q) ∩ π−1

1 (ϑ) with a subset of lattice points in the polytope associated
to L. Since Q is basepoint-free, Proposition 4.1 (c) implies that for each cone
σ ∈ ΣX(d), there exists a monomial yσ̂ ∈ (SY )ϑ such that xvσ := ΦQ(yσ̂) satisfies
supp (xvσ ) ⊆ σ̂. By Theorem 2.13 in [25], we deduce that X → Pm is a closed
embedding if and only if vσ �= vτ holds for each pair σ �= τ ∈ ΣX(d), and the
semigroup MX ∩ σ∨ is generated by V − vσ for all σ ∈ ΣX(d). Corollary 2.14 in
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[25] proves that the first condition is equivalent to L being ample. Lemma 2.2 in
[9] shows that the semigroup algebra of MX ∩σ∨ is isomorphic to the coordinate
ring (SX[x−σ̂])[0] of the affine chart on X determined by vσ ∈ V . Similarly, the
semigroup algebra of V−vσ is isomorphic to the coordinate ring ((SY/IQ)[y−σ̂])[0]

of the affine chart on V(IQ)//ϑ G determined by vσ ∈ V . Therefore, the second

condition is equivalent to ((SY/IQ)[y−σ̂])[0]
∼= (SX[x−σ̂])[0] for all σ ∈ ΣX(d).

A quiver of sections Q is very ample if it is complete, basepoint-free, and
ϕQ: X ✲ Y is a closed embedding. For convenience, we record an instance
of Proposition 4.9.

COROLLARY 4.10. Let L = (OX , L1, . . . , Lr) be a list of basepoint-free line bun-
dles and set L :=

⊗
i∈Q0

Li. Assume that the map

H0(X, L1)⊗k · · · ⊗k H0(X, Lr) ✲ H0(X, L)

is surjective. The morphism ϕ|L|: X ✲ Y is a closed embedding if and only if L
is very ample.

Proof. Since each Li is basepoint-free, Corollary 4.2 implies that the complete
quiver of sections Q for L is basepoint-free. From the proof of Proposition 4.9, we
know that ϕQ: X ✲ Y is a closed embedding if and only if the map to projective
space, determined by the line bundle L and the subspace (SY/IQ)ϑ ⊆ H0(X, L),
is a closed embedding. For 1 ≤ i ≤ r, identify the set Vi := N(Q)∩ π−1

1 (χi−χ0)
with a monomial basis of (SY/IQ)χi−χ0 . The map π2: N(Q) ✲ NΣX (1) identifies
Vi with the lattice points in the polytope associated to Li, so

(SY/IQ)χi−χ0
∼= (SX)[Li]

∼= H0(X, Li) .

Since L0 = OX and ϑ =
∑r

i=1 (χi − χ0), we may identify the image of the map

H0(X, Lϑ0
0 )⊗k · · · ⊗k H0(X, Lϑr

r ) = H0(X, L1)⊗k · · · ⊗k H0(X, Lr) ✲ H0(X, L)

with a subspace of (SY/IQ)ϑ ∼= H0(X, L). Surjectivity implies that this subspace
equals H0(X, L). Lastly, we observe that the complete linear series |L| determines
a closed embedding if and only L is very ample.

Example 4.11. Corollary 4.10 shows that the complete quiver of sections for
the list L = (OX , L1) is very ample if and only the line bundle L1 is very ample.

Example 4.12. Let X = F2 and L = (OX , OX(1, 0), OX(0, 1)) as in Exam-
ple 3.6. Since L1 ⊗ L2 = OX(1, 1) is very ample and the map

H0(X, L1)⊗k H0(X, L2) ✲ H0(X, OX(2, 2))
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is surjective, the complete quiver of sections for L is very ample by Corol-
lary 4.10.

Example 4.13. Let X = F2 and L = (OX , OX(1, 0), OX(0, 1), OX(1, 1)) as in
Example 3.7. Since the line bundle L1⊗L2⊗L3 = OX(2, 2) is very ample on X and
the map H0(X, L1)⊗k H0(X, L2)⊗k H0(X, L3) ✲ H0(X, OX(2, 2)) is surjective,
Corollary 4.10 implies that the complete quiver of sections for L is very ample.

To see that every list of basepoint-free line bundles belongs to some very
ample quiver of sections, we prove:

PROPOSITION 4.14. Let L1, . . . , Lr−1 be basepoint-free line bundles on X. If the
subsemigroup of Pic (X) generate by L1, . . . , Lr−1 contains an ample line bundle,
then there exists a line bundle Lr such that the complete quiver of sections for
L = (OX , L1, . . . , Lr) is very ample.

Proof. By choosing b1, . . . , br−1 ∈ N sufficiently large, we may assume that
the line bundle Lr := Lb1

1 ⊗· · ·⊗Lbr−1
r−1 is very ample and OX-regular with respect to

L1, . . . , Lr−1; for the multigraded definition of regularity see [23], [16]. Let Q be
the complete quiver of sections for L = (OX , L1, . . . , Lr). Since Lr is very ample
and L0, . . . , Lr−1 are basepoint-free, it follows that L :=

⊗
i∈Q0

Li is very ample.
Since Theorem 2.1 in [16] proves that H0(X, L0)⊗k· · ·⊗kH0(X, Lr) ✲ H0(X, L)
is surjective, Corollary 4.10 completes the proof.

THEOREM 4.15. If Q is a very ample quiver of sections, then we can recover the
line bundles L0, . . . , Lr as the restriction of the tautological line bundles on Y = |L|.

Proof. If we identify Wt (Q) with Zr by choosing the weights (χ1 − χ0, . . . ,
χr − χ0) as an ordered basis, then the projection map ZQ0 ✲ Zr induces an
isomorphism between G and the subgroup {(g0, . . . , gr) ∈ (k∗)r+1: g0 = 1} of
(k∗)Q0 . This isomorphism determines a G-equivariant vector bundle

⊕
i∈Q0

O
AQ1 ;

specifically, the ith component corresponds to the SY -module SY (χi−χ0), where
we have (SY (θ′))θ := (SY )θ′+θ. If follows that the tautological line bundles on
Y are OY , OY (χ1 − χ0), . . . , OY (χr − χ0). Restricting to V(IQ), we obtain a G-
equivariant vector bundle

⊕
i∈Q0

OV(IQ) where the ith component corresponds to
(SY/IQ)(χi − χ0). Since ϕQ: X ✲ Y is a closed embedding, Proposition 4.9

implies that ((SY/IQ)[y−σ̂])[0]
∼= (SX[x−σ̂])[0] for all σ ∈ ΣX(d). Hence, the SY -

module (SY/IQ)(χi − χ0) corresponds to pic (χi − χ0) = Li on X ∼= ϕQ(X).

Remark 4.16. If we identify Wt (Q) with Zr by choosing (χ0−χ1, . . . ,χ0−
χr) as an ordered basis then the restriction of the tautological line bundles would
yield the inverse line bundles OX , L−1

1 , . . . , L−1
r .

5. Representations of bound quivers. This section connects the ideal of
relations on a quiver of sections to the geometry of its multilinear series. Through-
out this section, let (Q, R) be a complete, bound quiver of sections for L =



1526 ALASTAIR CRAW AND GREGORY G. SMITH

(OX , L1, . . . , Lr) of line bundles on X and let Y = |L| be the multilinear
of Q.

The ideal of relations defines an algebraic subset of AQ1 . More precisely,
the map sending the path p = a1 · · · a� in Q to the monomial ya1 · · · ya� ∈ SY

extends to give a k-linear map from kQ into SY . Let IR be the ideal in SY

generated by the image of R under this map; it is a binomial ideal because R is
spanned by differences p−p′ ∈ kQ. Since these differences satisfy tl (p) = tl (p′),
hd (p) = hd (p′), and div (p) = div (p′), IR is homogeneous with respect to the
Wt (Q)-grading on SY and is contained in IQ.

The following examples illustrate various possible relations between IR

and IQ.

Example 5.1. Let X = P1 and let L = (OX , OX(2)); Example 3.10 describes
|L|. There are no paths of length greater than 1 in Q, so R and IR are both the
zero ideal. Since IQ is the toric ideal associated to the matrix −1 −1 −1

1 1 1
2 1 0
0 1 2

 ,

we have IQ = (y0y2−y2
1). Thus, V(IQ) is a closed subvariety of V(IR) = A3 = AQ1 .

Example 5.2. Let X = F1 and L = (OX , OX(1, 0), OX(0, 1)). Since Exam-
ple 3.6 shows R = (0) and Example 4.7 shows IQ = (0), it follows that IR = IQ =
(0); in other words, V(IQ) = V(IR) = A4 = AQ1 .

Example 5.3. Let X = F2 and L = (OX , OX(1, 0), OX(0, 1), OX(1, 1)). Using
the description of R in Example 3.7, we see that

IR = (y2y4 − y1y5, y4y8 − y5y7, y2y6 − y3y8, y1y6 − y3y7)

= (y2y4 − y1y5, y1y6 − y3y7, y2y6 − y3y8, y2y7 − y1y8, y5y7 − y4y8)

∩(y3, y4, y5, y6).

The description of IQ given in Example 4.7 implies that IQ is a primary component
of IR. Geometrically, V(IQ) is the unique component of V(IR) not lying in a linear
subspace.

Let W = (Wi, wa) be a representation of Q. For any nontrivial path p =
a1 · · · a�, the evaluation of W on p is the k-linear map wp: Wtl (p) ✲ Whd (p)

defined by the composition wp = wa1 · · ·wa� . This definition extends to k-linear
combinations of paths with a common head and a common tail. A representation
of the bound quiver (Q, R) is a representation W of Q such that wp = wp′ for all p−
p′ ∈ R. Consequently, a point in the representation space AQ1 for Q corresponds
to a representation for (Q, R) if and only it lies in the subscheme V(IR). By
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Theorem III.1.6 in [2], the category of representations of (Q, R) with dimension
vector

∑
i∈Q0

χi ∈ NQ0 is equivalent to the category of (kQ/R)-modules that are
isomorphic as (

⊕
i∈Q0

kei)-modules to
⊕

i∈Q0
kei.

The ideal IR is homogeneous with respect to the Wt (Q)-grading on SY , so the
subscheme V(IR) is G-invariant where G = HomZ ( Wt (Q),k∗). The GIT-chamber
decomposition of Wt (Q)⊗Z Q arising from the G-action on V(IR) coarsens that
for the G-action on AQ1 ; see Remark 4.4. Let Θ denote the GIT-chamber arising
from the G-action on V(IR) containing ϑ =

∑
i∈Q0

(χi − χ0). Proposition 5.3 in
[21] shows that, for θ ∈ Θ, the GIT-quotient

Mθ(Q, R) := V(IR)//θ G = Proj
(⊕

k∈N
( SY

IR
)kθ

)
is the fine moduli space for θ-stable representations of (Q, R). Equivalently, if⊕

i∈Q0
kei denotes the subalgebra of End (

⊕
i∈Q0

Li) generated by the primitive
orthogonal idempotents ei for i ∈ Q0, then Proposition 3.3 implies thatMθ(Q, R)
is the fine moduli space of θ-stable End (

⊕
i∈Q0

Li)-modules that are isomorphic
as (

⊕
i∈Q0

kei)-modules to
⊕

i∈Q0
kei.

THEOREM 5.4. If Q is a very ample quiver of sections, then the following are
equivalent:

(a) the ideal IQ equals ideal quotient (IR: B∞Y );
(b) for all θ ∈ Θ, the map ϕQ induces an isomorphism from X toMθ(Q, R).

Proof. The equivalence of (b) and (c) in Proposition 3.8 implies that the
moduli space Mθ(Q, R) = V(IR)//θ G is the geometric quotient of V(IR) \ V(BY )
by the group G. Since Q is a very ample quiver of sections, Proposition 4.9 proves
that the map ϕQ induces an isomorphism from X to ϕQ(X) and Proposition 4.3
establishes that ϕQ(X) is the geometric quotient of V(IQ) \V(BY ) by G. Since IQ

is prime, the locally closed subscheme V(IQ) \V(BY ) equals V(IR) \V(BY ) if and
only if we have IQ = IR: B∞Y .

A list L = (OX , L1, . . . , Lr) of line bundles on X is fine if the complete
bound quiver of sections for L is very ample and satisfies either of the equivalent
conditions in Theorem 5.4. The next result shows that every projective toric
variety has many fine lists.

THEOREM 5.5. Let L1, . . . , Lr−2 be basepoint-free line bundles on X. If the sub-
semigroup of Pic (X) generated by L1, . . . , Lr−2 contains an ample line bundle, then
there exist line bundles Lr−1 and Lr such that the list L = (OX , L1, . . . , Lr) is fine.

Proof. We divide the proof into three parts.

(1) Choosing the line bundles Lr−1 and Lr. This part is similar to Proposi-
tion 4.9. By choosing sufficiently large positive integers b1, . . . , br−2, we may
assume that the line bundle Lr−1 := Lb1

1 ⊗ · · · ⊗ Lbr−1
r−2 is OX-regular with re-

spect to L1, . . . , Lr−2. Set Lr := L2
r−1. By increasing the bi if necessary, we may
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also assume that Lr is very ample. Let Q be the complete quiver of sections for
L = (OX , L1, . . . , Lr). Since Lr is very ample and L1, . . . , Lr−1 are basepoint-
free, L :=

⊗
i∈Q0

Li is very ample. Since Theorem 2.1 in [16] implies that
H0(X, L1) ⊗k · · · ⊗k H0(X, Lr) ✲ H0(X, L) is surjective, Corollary 4.10 im-
plies that Q is very ample.

(2) Proof that IQ = (IR: (
∏

a∈Q1
ya)∞). By definition, IQ is the toric ideal

associated to the map π: NQ1 ✲ Wt (Q)⊕CDiv (X). It suffices by Lemma 12.2
in [27] to construct a subset C that generates the kernel of π as an abelian group
and satisfies (yv+ − yv− : v+ − v− = v ∈ C) ⊆ IR. Since Lr−1 is OX-regular and
the bi are positive, Theorem 2.1 in [16] shows that

H0(X, Lr−1 ⊗ L−1
i )⊗k H0(X, Lr−1) ✲ H0(X, Lr ⊗ L−1

i )

is surjective for all 1 ≤ i ≤ r − 1. Hence, every path in Q from 0 to r passes
through r − 1 ∈ Q0. Moreover, because Q is complete, the set A of the arrows
from r − 1 to r in Q corresponds to the set of nonzero TX-invariant elements in
H0(X, Lr−1). Since the set P of paths from 0 to r−1 in Q are labelled by nonzero
TX-invariant elements in H0(X, Lr−1), there is a surjective function Ψ: P → A
such that div (p) = div (Ψ(p)) for all p ∈ P . For (a, a′, p, p′) ∈ A2×P2, we have
div (p) + div (a) = div (p′) + div (a) if and only if pa− p′a′ ∈ R; set

C := {f (p) + f (a)− f (p′)− f (a′): pa− p′a′ ∈ R} ⊆ Cir (Q),

where f (γ) is the element in ZQ1 associated to a walk γ in Q defined in §2.2.
To analyze C, we use an “elongation” operation on circuits in Q. Because Q is

acyclic, we may assume every circuit γ = α1α
−1
2 α3 · · ·α2�−1α

−1
2� is an alternating

sequence of forward paths α1,α3, . . . ,α2�−1 and backward paths α−1
2 ,α−1

4 , . . . ,
α−1

2� . Since Q is connected, there exists at least one path from the unique source
0 to each i ∈ Q0. Similarly, the choice of Lr implies that there is at least one path
from each i ∈ Q0 to r. Let γ̂ denote a closed walk obtained from the circuit γ via
the following procedure: for i = 1, 3, . . . , 2�− 1, choose a path βi from hd (αi) to
r; for i = 2, 4, . . . , 2�, choose a path βi from 0 to tl (αi); let β0 = β2� and set

γ̂ := β0α1β1β
−1
1 α−1

2 β−1
2 β2α3β3β

−1
3 · · ·α−1

2� β
−1
2� .

Observe that γ̂ = p̂1p̂−1
2 p̂3 · · · p̂2�−1p̂−1

2� is an alternating sequence of forward
and backward paths between 0 and r, where p̂i = βi−1αiβi for odd i, p̂−1

i =
β−1

i−1α
−1
i β−1

i for even i. Thus, we have div (γ) = div (γ̂) ∈ CDiv (X) and

f (γ) = f (γ̂) =
�∑

i=0

(f (p̂2i−1))−
�∑

i=0

(f (p̂2i)) ∈ Cir (Q),

where f (p̂i) ∈ NQ1 .
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To see that C spans the lattice Ker (π), fix u ∈ Ker (π). Since π = ( inc, div),
the exact sequence (2.2) implies that u ∈ Cir (Q). Theorem 5.2 in [6] shows that
the circulation lattice is generated by the circuits, so u =

∑
i f (γi) where γi is a

circuit in Q. To establish that u ∈ C, it is enough to show that f (γ) ∈ C for any
circuit γ in Q. By using the elongation operation and regrouping the sum, we
have f (γ) =

∑
i (f (p̂2i−1)− f (p̂2i)) where each p̂i is a path from 0 to r. Since each

path in Q from 0 to r passes through r− 1, it follows that p̂i = piai where pi ∈ P
and ai ∈ A. Hence, we have f (γ) =

∑
i (f (p2i−1) + f (a2i−1)− f (p2i)− f (a2i)). We

decompose this expression into a sum of elements in C by exploiting properties
of the sets A and P arising from our choice of Lr−1. To be specific, let I′ be the
toric ideal associated to the map NA ✲ CDiv (X) given by χa �→ div (a). The
identification of A with the nonzero TX-invariant elements in H0(X, Lr−1) implies
that I′ is the ideal of ϕ|Lr−1|(X). Since Lr−1 is OX-regular, Theorem 1.1 in [16]
establishes that I′ is generated by quadrics. Hence, if k[za: a ∈ A] = k[NA] and

R := {(a0, a1, a2, a3) ∈ A4: div (a0) + div (a1) = div (a2) + div (a3)},

then we have I′ =
(
za0za1 − za2za3 : (a0, a1, a2, a3) ∈ R). For 0 ≤ i ≤ �, we define

ci := f (p2i−1) + f (Ψ(p2i))− f (p2i)− f (Ψ(p2i−1)). Since div (pi) = div (Ψ(pi)) for
1 ≤ i ≤ �, each ci belongs to C and we have

f (γ) =
�∑

i=0

(f (Ψ(p2i−1)) + f (a2i−1)− f (Ψ(p2i))− f (a2i)) +
�∑

i=0

ci.

Given v ∈ ZA satisfying div (v) = 0, Theorem 5.3 in [27] applied to the generators
of the toric ideal I′ yields

v =
∑

(a0,a1,a2,a3)∈R′
(χa0 + χa1 − χa2 − χa3 )

=
∑

(a0,a1,a2,a3)∈R′
(f (a0) + f (a1)− f (a2)− f (a3)),

where R′ is a multiset of elements from R. Taking this decomposition of the
element v :=

∑�
i=0 (f (Ψ(p2i−1)) + f (a2i−1)− f (Ψ(p2i))− f (a2i)) ∈ ZA that satisfies

div (v) = 0, then substituting into the right-hand side of the expression for f (γ)
above gives

f (γ) =
∑

(a0,a1,a2,a3)∈R′
(f (a0) + f (a1)− f (a2)− f (a3)) +

∑
i

ci,

where R′ is some multiset of elements from R. For any α := (a0, a1, a2, a3) ∈ R′,
set c′α := f (ã0)+ f (a2)− f (ã2)− f (a0) where ãj ∈ P satisfies Ψ(ãj) = aj for j = 0, 2.
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Hence, we obtain

f (γ) =
∑

(a0,a1,a2,a3)∈R′
(f (ã0) + f (a1)− f (ã2)− f (a3))−

∑
α

c′α +
∑

i

ci,

where R′ is a multiset of elements from R. Since each summand belongs to
C, we see that f (γ) and hence u lies in the lattice spanned by C and IQ =
(IR: (

∏
a∈Q1

ya)∞).

(3) Proof that (IR: B∞Y ) = (IR: (
∏

a∈Q1
ya)∞). For u ∈ ZQ1 , set yu :=∏

a∈Q1
yua

a . For any subset Q′1 ⊆ Q1, let f (Q′1) :=
∑

a∈Q′1
χa so that yf (Q′1) :=∏

a∈Q′1
ya. The definition of BY given in Proposition 3.8 (b) implies that

(IR: B∞Y ) =
⋂

Q′
(IR : (yf (Q′1))∞),

where the intersection is over all spanning tree Q′ ⊆ Q rooted at 0. Because
(IR: (yf (Q′1))∞) is a subset of (IR: (

∏
a∈Q1

ya)∞), it is enough to show that each

spanning tree Q′ ⊆ Q rooted at 0 satisfies (IR: (yf (Q′1))∞) = (IR: (
∏

a∈Q1
ya)∞).

The technique of proof follows Example 2.3 in [5]. By increasing the bi from
part 1 if necessary, we may assume that there exists s ∈ H0(X, Lr−1) such that the
corresponding lattice point in the polytope P associated Lr−1 lies in the interior.
Fix a spanning tree Q′ rooted at 0. Let as be the unique arrow as ∈ A ∩ Q′1
and let ps be a path in Q satisfying div (ps) = div (s) = div (as). Observe that yas

is invertible in SY [y−f (Q′1)]. For any path p ∈ P , we have pas − psΨ(p) ∈ R,
so yf (p) − yf (ps)yΨ(p)y−1

as belongs to IRSY [y−f (Q′1)]. Hence, for any p, p′ ∈ P and
a, a′ ∈ A,

yf (p)ya − yf (p′)ya′ = yf (ps)yΨ(p)yay−1
as − yf (ps)yΨ(p′)ya′y

−1
as

= yf (ps)y−1
as (yΨ(p)ya − yΨ(p′)ya′)

in SY [y−f (Q′1)]/IRSY [y−f (Q′1)]. Thus, if

J := IR + (ya0ya1 − ya2ya3 : (a0, a1, a2, a4) ∈ R),

then we have JSY [y−f (Q′1)] = IRSY [y−f (Q′1)].
By assumption, Lr−1 is ample, so the vertices of the polytope P are lattice

points. Since the lattice point corresponding to s lies in the interior of P, we
can express s in the form 1

k

∑
j cjsj where k, cj are positive integers and the sj

correspond to the vertices of P. It follows that zk
as −

∏
j z

cj
asj

lies in the toric ideal

I′ = (za0za1 − za2za3 : (a0, a1, a2, a3) ∈ R
)
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introduced in part 2. Changing variables from z’s to y’s implies yk
as −

∏
j y

cj
asj
∈ J.

Since yas is invertible in SY [y−f (Q′1)], it now follows that all the yasj
are invertible

in the quotient ring SY [y−f (Q′1)]/IRSY [y−f (Q′1)]. Moreover, we see that ya is invert-
ible in SY [y−f (Q′1)]/IRSY [y−f (Q′1)] for all a ∈ A because the lattice point of P cor-
responding to a ∈ A is a positive rational combination of some vertices and each
variable yasj

that corresponds to a vertex is invertible in SY [y−f (Q′1)]/IRSY [y−f (Q′1)].

If p′ ∈ P is the unique path supported on the set Q′1, then yf (p′) is in-
vertible in SY [y−f (Q′1)]/IRSY [y−f (Q′1)]. Let a′ ∈ A is the unique arrow satisfying
div (p′) = div (a′). The previous paragraph shows that ya′ in invertible in the ring
SY [y−f (Q′1)]/IRSY [y−f (Q′1)]. For any path p ∈ P , we have pa′−p′Ψ(p) ∈ R and the
identity yf (p) = yf (p′)yΨ(p)y

−1
a′ in IRSY [y−f (Q′1)]. Each monomial on the right side

of this identity is invertible in SY [y−f (Q′1)]/IRSY [y−f (Q′1)] which implies that every
variable that divides yf (p) is also invertible. Since the path p ∈ P was arbitrary,
we conclude that, for all a ∈ Q1, ya is invertible in SY [y−f (Q′1)]/IRSY [y−f (Q′1)].
Therefore, Corollary 2.6 in [5] implies that (IR: (yf (Q′1))∞) = (IR: (

∏
a∈Q1

ya)∞).
Since part (1) shows that Q is very ample, and combining parts (2) and

(3) proves that Q satisfies condition (a) in Theorem 5.4, we conclude that L is
fine.

Proof of Theorem 1.2. By combining Theorem 5.5 and Theorem 5.4, it fol-
lows that there are many list L = (OX , L1, . . . , Lr) of line bundles on X such that
the induced morphism ϕ|L|: X ✲ |L| identifies X with the fine moduli space
Mϑ(Q, R). Theorem 4.15 implies that the tautological bundles on Mϑ(Q, R) co-
incide with the line bundles OX , L1, . . . , Lr.

Remark 5.6. A priori, IQ depends on the divisors labelling the arrows in Q.
However, if L is fine then IQ depends only on IR and hence only the bound quiver
(Q, R).

Example 5.7. For X = P1, Example 5.1 shows that L = (OX , OX(2)) is not
fine. To obtain a fine list, we add an appropriate line bundle: L′ := (OX , OX(2),
OX(4)). The complete quiver of sections for L′ appears in Figure 3. Corollary 4.10
implies that |L′| is very ample. Since

IQ = (y2
2 − y1y3, y2

5 − y4y6, y3y5 − y2y6, y2y5 − y1y6, y3y4 − y1y6, y2y4 − y1y5)

0 1 2
x2

1
x1x2

x2
2

x2
1

x1x2

x2
2

(a) Quiver of sections

0 1 2
a1

a2

a3

a4

a5

a6

(b) Listing the arrows

Figure 3. A fine collection on P1
k
.
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(b) Quiver of sections

0

1

2
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a
1

a
2

a3

a6

a
4a

5

a
8

a
9

a7

a12

a
10a

11

a
1
3

a
1
4

(c) Listing the arrows

Figure 4. Projective threefold admitting a flop.

and

IR = (y3y5 − y2y6, y3y4 − y2y5, y2y5 − y1y6, y2y4 − y1y5)

= IQ ∩ (y1, y2, y3) ∩ (y4, y5, y6),

it follows that L is fine.

Example 5.8. Let X be the smooth toric threefold determined by the following
fan ΣX in R3: the rays ΣX(1) are generated by the vectors v1 := (1, 0, 0), v2 :=
(0, 1, 0), v3 := ( − 1,−1,−1), v4 := (0, 1, 1), v5 := (1, 0, 1) and the minimal
nonfaces correspond to {v1, v3, v4} and {v2, v5}. The induced triangulation of the
2-sphere is given in Figure 4 (a). There is a flop X ✲ X′ where the toric variety
X′ is the determined by the triangulation of ΣX(1) with minimal nonfaces {v1, v4}
and {v2, v3, v5}. For (k, �) ∈ Z2, write OX(k, �) := OX(kD3 + �D2) ∈ Pic (X). The
complete quiver of sections for L = (OX , OX(0, 1), OX(1, 0), OX(1, 1), OX(2, 0),
OX(2, 1)) appears in Figure 4 (b).

Since we have

IQ =


y9y13 − y8y14, y2y13 − y1y14, y9y12 − y7y14, y8y12 − y7y13,

y5y10 − y4y11, y2y8 − y1y9, y5y7 − y6y11, y4y7 − y6y10,
y2y6 − y3y9, y1y6 − y3y8, y2y5y12 − y3y11y14,

y1y5y12 − y3y11y13, y2y4y12 − y3y10y14, y1y4y12 − y3y10y13



IR =

 y9y12 − y7y14, y8y12 − y7y13, y5y7 − y6y11, y4y7 − y6y10, y2y6 − y3y9,
y1y6 − y3y8, y9y11y13 − y8y11y14, y9y10y13 − y8y10y14,

y5y9y10 − y4y9y11, y5y8y10 − y4y8y11, y2y5y8 − y1y5y9, y2y4y8 − y1y4y9


= IQ ∩ (y12, y11, y10, y7, y2y8 − y1y9, y2y6 − y3y9, y1y6 − y3y8)

∩ (y6, y5, y4, y3, y9y13 − y8y14, y9y12 − y7y14, y8y12 − y7y13)

∩ (y12, y11, y10, y7, y6, y5, y4, y3) ∩ (y9, y8, y7, y6),

it follows that L fine. Observe that V(IQ) has four components contained in coor-
dinate hyperplanes of AQ1 = A14 and the points in these components correspond
to representations of disconnected subquivers of Q.
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