
doi:10.1006/jsco.1999.0399
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2000) 29, 729–746

Computing Global Extension Modules

GREGORY G. SMITH†
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Let X be a projective scheme and let M and N be two coherent OX -modules. Given
an integer m, we present an algorithm for computing the global extension module

ExtmX (M,N ). As a consequence, one may calculate the sheaf cohomology Hm(X,N )
and construct the sheaf corresponding to an element of the module Ext1

X(M,N ). This
algorithm depends only on the computation of Gröbner bases and syzygies and has been
implemented in the computer algebra system Macaulay2.
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Introduction

Let X be a projective scheme over the field k and let M and N be two coherent OX -
modules. We write ExtmX(M,N ) for the mth global extension module. There are several
equivalent definitions for these modules. Grothendieck (1957) and Hartshorne (1977)
define them as the right derived functors of N 7→ HomX(M,N ), where HomX(M,N )
denotes the group of OX -module morphisms. Griffiths and Harris (1978) define them
via hypercohomology and discuss the correspondence between the equivalence classes of
global extensions ofM byN , also called Yoneda Ext, and ExtmX(M,N ). Global extension
modules play a central role in duality theory—again see Hartshorne (1977) or Griffiths
and Harris (1978) for more details. The purpose of this paper is to provide an algorithm
for computing ExtmX(M,N ).

To achieve this goal, we must determine how to represent the coherent sheavesM and
N . Because we are working over a projective scheme, every coherent sheaf can be repre-
sented by a finitely generated graded R-module, where R is the homogeneous coordinate
ring of X. By embedding X into Pn, we may identify R with a quotient of the polynomial
ring S := k[x0, . . . , xn]. This representation is advantageous since it allows one to use the
algorithms and techniques of computational algebra—see Vasconcelos (1998). However,
there is no canonical choice for the finitely generated module associated to a given coher-
ent sheaf. In particular, the natural candidate

⊕
v∈Z Γ(X,N (v)) may fail to be finitely

generated. With this in mind, our problem is more precisely stated as follows: given two
finitely generated graded R-modules M and N , calculate the module ExtmX(M,N ) where
M and N are the coherent sheaves associated to M and N , respectively.

The answer for m = 0 motivates our general result. In this case, Ext0
X(M,N ), which

equals HomX(M,N ), can be identified with (HomR(M≥r, N))0 for r � 0, that is the set
of degree zero R-linear maps from a truncation M≥r to N , for sufficiently large r. For a
simple example in which truncation arises, we consider M = R and N = md with d > 0;
the second module is the dth power of the irrelevant ideal m in R. Both of these modules
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correspond to the structure sheaf OX . Since a morphism from OX is determined by the
image of the unit global section and Γ(X,OX) ∼= k, it follows that HomX(OX ,OX) ∼= k.
Analogously, when r ≥ d we have (HomR(R≥r,md))0

∼= k. However, for r < d there
are no degree zero maps from R≥r to md. Hence, to evaluate Ext0

X(M,N ) using this
bijection, we must determine an appropriate truncation of M . To provide an algorithm,
we need an effective bound r0 such that Ext0

X(M,N ) is isomorphic to (HomR(M≥r, N))0

for all r ≥ r0.
Our solution to the general question involves relating ExtmX(M,N ) to the R-module

ExtmR (M≥r, N); the second Ext module is calculated in the category of graded R-modules.
This method has the added virtue that it also yields the R-module structure on direct
sum

⊕
v≥0 ExtmX(M,N (v)). To express our main result, we write SN for the S-module

obtained from N by restriction of scalars, ai(SN) for the maximal degree of the minimal
generators of the ith syzygy module of SN , and pdS(SN) for the projective dimension
of SN .

Theorem 1. Let M and N be two finitely generated graded R-modules, let m be an
integer and set ` = min{dim(N),m}. If r is an integer satisfying

r ≥ max{ai(SN)− i : n− ` ≤ i ≤ pdS(SN)} −m+ 1,

then we have an isomorphism of graded R-modules⊕
v≥0

ExtmX(M,N (v)) ∼= (ExtmR (M≥r, N))≥0.

In particular, when pdS(SN) < n − `, we have max{∅} = −∞ and the inequality for
r is vacuously satisfied. Furthermore, observe that, by replacing N with N(e) for some
integer e, one can compute the module

⊕
v≥e ExtmX(M,N (v)). We also point out that the

integer r is closely related to the Castelnuovo–Mumford regularity of SN . This theorem
generalizes the approximation method for computing sheaf cohomology—Theorem 8.3.2
in Eisenbud (1998).

We prove the main result in two steps. First, we examine the spectral sequence relating
a locally free resolution F• of M to the global extension modules, namely

Ep,q2 = Hp(Hq(X,HomOX (F•,N )))
p

=⇒ Extp+qX (M,N ).

Applying vanishing conditions for sheaf cohomology, we obtain conditions for r which
ensure that spectral sequence becomes Em,02

∼= ExtmX(M,N ). The problem therefore
reduces to computing the cochain complex HomX(F•,N ). In the second step, we assume
F• corresponds to a free resolution F• of M≥r and consider the natural homomorphisms
from HomR(Fi, N) to

⊕
v∈ZHomX(Fi,N (v)). The kernel and cokernel of these maps are

both local cohomology modules. By using local duality, we place further restrictions on r
and bound the maximal degree of nonzero elements appearing in the kernel and cokernel.
Combining both parts, we obtain the required isomorphism.

The complexity of the algorithms derived from Theorem 1 depends on computing
Gröbner bases. Because of significant differences between worst case bounds for Gröbner
bases and the complexity of geometric examples, we omit an analysis of the computational
complexity. Instead, we refer the reader to Bayer and Mumford (1993) for a discussion
of the conjectures and results in this area.

Background material is provided in the first section. In the second section, we prove two



Computing ExtmX (M,N ) 731

propositions which determine where to truncate M . A proof of Theorem 1 is presented
in the third section, followed by algorithms for computing global extension modules
and sheaf cohomology. Section 4 contains four sample calculations: an example in which
the bounds in Theorem 1 are sharp, a comparison of two methods for computing the
cohomology of a locally free sheaf, an illustration of Serre–Grothendieck duality and the
construction of the sheaf associated to an element of Ext1

X(M,N ).

1. Preliminaries

We collect here a number of definitions, standard results and notations. References
for the unproved assertions about free resolutions can be found in Eisenbud (1996). The
results from algebraic geometry are in Hartshorne (1977). Local cohomology is presented
in Brodmann and Sharp (1998) and the treatment of spectral sequences and hypercoho-
mology follows Weibel (1994).

free resolutions. Let M and N be finitely generated graded R-modules. If e is an
integer, Me denotes the eth graded component of M . The submodule, M≥e =

⊕
j≥eMj ,

consisting of elements of degree greater than or equal to e, is called a truncation of M . For
an integer v, we write M(v) for the vth twist of M defined by the formula M(v)e = Me+v.
When we write isomorphisms and exact sequences of graded modules, we will always
arrange that the maps have degree zero. However, the set of all homogeneous maps from
M to N of all degrees is denoted HomR(M,N); it is a graded R-module, graded by the
degrees of the maps. Using graded free resolutions, this construction extends to a grading
on the R-modules ExtmR (M,N).

The (unique) minimal graded free resolution of M will be denoted F•(M) and pdR(M)
will be the length of F•(M), in other words the projective dimension of M . In particular,
there is an exact sequence

· · · −→ Fi(M) −→ · · · −→ F1(M) −→ F0(M) −→ 0. (FR)

Here each Fi(M) is a direct sum of twists of R:

Fi(M) =
bi(M)⊕
j=1

R(−ai,j(M))

and hence the maps in (FR) are given by matrices of homogeneous forms. In this setting,
“minimal” means that none of the entries in these matrices are nonzero constants.

We define ai(M) to be the maximal degree of the minimal generators of the ith syzygy
module of M . Similarly, ai(M) is the minimal degree of the minimal generators of the
ith syzygy modules. Rephrasing, we have

ai(M) = max{ai,j(M) : 1 ≤ j ≤ bi(M)}
ai(M) = min{ai,j(M) : 1 ≤ j ≤ bi(M)}.

We consider both ai(M) and ai(M) as functions defined for all integers i by using the
conventions max{∅} = −∞ and min{∅} =∞.

We assume that R is a quotient ring of the polynomial ring S := k[x0, . . . , xn] and
SN denotes the S-module obtained from the R-module N by restriction of scalars. We
emphasize that ai(SN) is determined by a free resolution in the category of S-modules.
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algebraic geometry. By assumption, we have X = Proj(R) and P
n = Proj(S).

Sheaves of OX -modules will usually be denoted by characters in script font, such as
G. The OX -module associated to an R-module M will be writtenM. We point out that
the free resolution F•(M) of the R-module M gives rise to a locally free resolution F•(M)
of the sheaf M. The projective embedding of X is given by the morphism of schemes
f :X → P

n. As f is a closed immersion, the direct image functor f∗ takes coherent
OX -modules to coherent OPn-modules. Moreover, f∗M may be identified with the sheaf
obtained from M by extending by zero.

The global section functor will be written Γ(X,−) and the qth right derived functor,
called sheaf cohomology, will be denoted Hq(X,−). The sheaf of local homomorphisms,
also called sheaf Hom, is denoted HomOX (G,G′) and ExtqOX (G,−) is the qth right derived
functor of HomOX (G,−).

local cohomology. The maximal ideal n of S is generated by the elements x0, . . . , xn.
The image of n under the canonical map gives the maximal ideal m of R. For each module
M , we define Γm(M) =

⋃
k≥0(0 :M mk); the set of element of M which are annihilated by

some power of m. Note that Γm(M) is a submodule of M . The qth right derived functor
of Γm(−) is denoted by Hq

m(−) and is referred to as the qth local cohomology functor
with respect to m. The local cohomology modules Hq

m(M) are naturally graded Artinian
R-modules.

hypercohomology. The pth right hyper-derived functor of Γ(X,−), also called the
pth hypercohomology functor, is denoted Hp(X,−). Let E• be a cochain complex of OX -
modules and let E• be a cochain complex of k-vector spaces. We write Hq(E•) for the qth
cohomology group of the complex of OX -modules and Hq(E•) for qth cohomology group
of the complex of k-vector spaces. In both cases, the cohomology group is the kernel of
the qth differential modulo the image of the (q − 1)th differential. For a given cochain
complex, there are two spectral sequences relating the sheaf cohomology functors to the
hypercohomology functors:

′E
p,q
2 = Hp(Hq(X, E•)) p

=⇒Hp+q(X, E•) (SS.1)
′′E

p,q
2 = Hp(X,Hq(E•)) p

=⇒Hp+q(X, E•). (SS.2)

Both spectral sequences converge when E• consists of only a finite number of nonzero
OX -modules.

2. Bounds for Approximating Global Extension Modules

We begin by giving vanishing conditions for the mth cohomology group of a coherent
sheaf. This lemma can be viewed as refinement of Serre’s finiteness theorem (Theo-
rem III.5.2 in Hartshorne, 1977) or Cartan’s theorem B (see Section 5.3 in Griffiths and
Harris, 1978).

Lemma 2.1. Let N be a finitely generated graded R-module and let m be a positive
integer. If the inequality v ≥ an−m(SN) − n is satisfied, then the cohomology group
Hm(X,N (v)) vanishes.
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As hypercohomology will be required in the proof of Proposition 2.4, we provide a proof
of the lemma using this machinery. One could also prove this assertion by induction on
the projective dimension of SN .

Proof. Given the closed immersion f :X → P
n, there exists an isomorphism of coho-

mology groups Hm(X,N (v)) ∼= Hm(Pn, f∗N (v)) (see Lemma III.2.10 in Hartshorne,
1977). As f∗N (v) is the sheaf associated to the S-module SN(v) (see Proposition II.5.12
in Hartshorne, 1977), it suffices to prove the assertion for projective space.

Without loss of generality we may assume X = P
n, that is R = S. Consider the

cochain complex given by E−i := (Fi(N))(v). As F•(N) is a resolution of N , the second
hypercohomology spectral sequence (SS.2) collapses and the first spectral sequence (SS.1)
becomes ′Ep,q2 = Hp(Hq(X, E•)) p

=⇒ Hp+q(X,N (v)). Recall that, for projective n-space,
one has the following equivalence (see Theorem III.5.1 in Hartshorne, 1977):

Hq(X,OX(v)) = 0⇐⇒

v < 0 ; q = 0
v > −n− 1 ; q = n
v > −∞ ; q 6= 0, n

 . (VC)

Because F•(N) is a free resolution of N , we have

E−i =
bi(N)⊕
j=1

OX(v − ai,j(N))

for 0 ≤ i ≤ pdR(N); otherwise E−i = 0. It follows that the relation ′Ep,q2 6= 0 implies q
equals 0 or n and −pdR(N) ≤ p ≤ 0. From this, we see that, for p + q > 0, either the
target or source of the differential dp,qr : ′Ep,qr −→ ′E

p+r,q−r+1
r is zero. We conclude that

Hm(X,N (v)) = Hm−n(Hn(X, E•)). By making use of the vanishing conditions (VC)
for a second time, we observe that, when −pdR(N) ≤ m − n ≤ 0, the inequality v ≥
an−m(N) − n implies that we have Hn(X, En−m) = 0. Otherwise we have En−m = 0
and the vanishing is immediate. Finally, our convention implies that an−m(N) = −∞ for
m− n < −pdR(N) or m− n > 0 and the assertion follows.2

Remark 2.2. We may give a sharper version of the preceding lemma by placing con-
ditions on the integer m. In fact, Grothendieck’s vanishing theorem (Theorem III.2.7 in
Hartshorne, 1977) shows that the cohomology group Hm(X,N (v)) is zero when m is
greater than the dimension of the support of N (v), that is m ≥ dim(N).

Example 2.3. We recall that, for a complete intersectionX in Pn of dimension d, one has
Hm(X,OX(v)) = 0 for 0 < m < d and all integers v (see Exercise III.5.5 in Hartshorne,
1977). This illustrates that the converse of Lemma 2.1 is false.

Applying the above lemma, we provide bounds which guarantee that the first hyper-
cohomology spectral sequences (SS.1) collapses. In these circumstances, we are able to
compute ExtmX(M,N (v)) as the cohomology of a given cochain complex. More explicitly,
we have:

Proposition 2.4. Let M and N be two finitely generated graded R-modules, let m be
an integer and set ` = min{dim(N),m}. For any integer v satisfying the inequalities

v ≥max{an−u(SN)− am−u(M) : 1 ≤ u ≤ `} − n, and
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v ≥max{an−u+1(SN)− am−u(M) : 2 ≤ u ≤ `} − n,

we have the following isomorphism of graded R-modules:

ExtmX(M,N (v)) ∼= Hm(HomX(F•(M),N (v))).

Proof. For m < 0, both the global extension module and the cohomology group vanish.
Thus, we may confine our attention to m ≥ 0. Consider the cochain complex defined by
E i := HomOX (Fi(M),N (v)). Because F•(M) is a locally free resolution of M, we have
(see Proposition III.6.5 in Hartshorne, 1977):

Hq(E•) = Hq(HomOX (F•(M),N (v))) = ExtqOX (M,N (v)).

Furthermore, for any two OX -modules G, G′, Théorème 4.2.1 in Grothendieck (1957)
provides the spectral sequence Hp(X, ExtqOX (G,G′)) p

=⇒ Extp+qX (G,G′). Hence, the second
hypercohomology spectral sequence (SS.2) becomes

′′E
p,q
2 = Hp(X, ExtqOX (M,N (v)))

p
=⇒ Extp+qX (M,N (v)) = Hp+q(X, E•),

and consequently, the first hypercohomology spectral sequence (SS.1) is
′E

p,q
2 = Hp(Hq(X,HomOX (F•(M),N (v))))

p
=⇒ Extp+qX (M,N (v)).

We point out that H0(X,HomOX (F•(M),N (v))) = HomX(F•(M),N (v)), whence the
formula ′Ep,02 = Hp(HomX(F•(M),N (v))) follows.

The proof therefore reduces to showing that the bounds on v imply that the first
hypercohomology spectral sequence (SS.1) degenerates. More precisely, we will prove⊕

p+q=m

′E
p,q
∞ = ′Em,02 .

Observe that the differential dp,qr :Ep,qr −→ Ep+r,q−r+1
r has bidegree (r, 1−r) and ′Ep,q2 =

0 when q < 0 or p < 0. Thus, it suffices to demonstrate that ′Em−u,u2 vanishes for
1 ≤ u ≤ m and ′Em−u,u−1

2 vanishes for 2 ≤ u ≤ m. Now, each Fp(M) is locally free of
finite rank, so

HomOX (Fp(M),N (v)) ∼=
bp(M)⊕
j=1

N (v + ap,j(M)),

and we obtain

′E
p,q
2 = Hp

(
b•(M)⊕
j=1

Hq(X,N (v + a•,j(M)))

)
.

From Remark 2.2 we immediately see that q ≥ dim(N) implies ′Ep,q2 = 0. Moreover,
applying Lemma 2.1, we see that if the inequality v ≥ an−q(SN)−ap(M)−n is satisfied,
then ′Ep,q2 is zero. Combining these observations, the claim follows.2

Next, we relate the mth global extension module to the graded R-module ExtmR (M,N).

Proposition 2.5. Let M and N be two finitely generated graded R-modules and let m
be an integer. For any integer e satisfying the inequality

e ≥ max{an+1(SN), an(SN)} − am(M)− n,



Computing ExtmX (M,N ) 735

there is a natural isomorphism of graded R-modules⊕
v≥e

Hm(HomX(F•(M),N (v))) ∼= (ExtmR (M,N))≥e.

Proof. Again, for m < 0, both the global extension module and the cohomology group
vanish, so we may assume that m ≥ 0. Now, the graded R-module ExtmR (M,N) can be
computed from a free resolution of M , that is ExtmR (M,N) ∼= Hm(HomR(F•(M), N)).
Relating local cohomology to the sheaf cohomology, we have the following natural exact
sequence (see Subsection 20.4.4 in Brodmann and Sharp, 1998):

0−→ H0
m(HomR(Fi(M), N)) −→ HomR(Fi(M), N) −→

−→
⊕
v∈Z

HomX(Fi(M),N (v))−→H1
m(HomR(Fi(M), N))−→ 0,

for each i; in other words, we have a chain map

HomR(F•(M), N) −→
⊕
v∈Z

HomX(F•(M),N (v)).

Thus, it suffices to show that this chain map is an isomorphism for degrees greater than
or equal to e.

Using the properties of the bifunctor HomR(−,−), we have

HomR(Fm(M), N) = HomR

(
bm(M)⊕
j=1

R(−am,j(M)), N

)
=
bm(M)⊕
j=1

N(am,j(M)).

Moreover, as nR = m, the tth local cohomology module of the R-module N , Ht
m(N), is

isomorphic to the tth local cohomology module of the S-module SN , Ht
n(SN) (see Sub-

section 13.1.6 in Brodmann and Sharp, 1998). It therefore suffices to prove that, for
0 ≤ t ≤ 1, the maximal degree of an element in Ht

n(SN) is less than e + am(M). With
this in mind, define ct to be the maximal degree of an element in Ht

n(SN). Note that
the local cohomology modules Ht

n(SN) are Artinian, so ct is well defined. Applying the
graded form of local duality (see Subsection 13.4.6 in Brodmann and Sharp, 1998), we
have

Ht
n(SN) ∼= (Homk(Extn+1−t

S (SN,S), k))(n+ 1).
Setting ct to be the minimal degree of an element in Extn+1−t

S (SN,S), we obtain the
formula ct = −ct − n − 1. To compute a lower bound for ct, we use the free resolu-
tion F•(SN) of SN ; in particular, ExtkS(SN,S) ∼= Hk(HomS(F•(SN), S)). As above, the
properties of HomS(−,−) give

HomS(Fi(SN), S) ∼=
bi(SN)⊕
j=1

S(ai,j(SN)).

Consequently, we have ct ≥ −an+1−t(SN) which yields the inequality

max{c0, c1} ≤ max{an(SN), an+1(SN)} − n− 1.

The conditions on e clearly imply that e ≥ max{c0, c1} − am(M) which completes the
proof.2

We end this section by summarizing our results.
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Corollary 2.6. Let M and N be two finitely generated graded R-modules, let m be an
integer and set ` = min{dim(N),m}. If the integer e satisfies the following inequalities:

e ≥max{an−u(SN)− am−u(M) : 0 ≤ u ≤ `} − n;
e ≥max{an−u+1(SN)− am−u(M) : 0 ≤ u ≤ `, u 6= 1} − n,

then we have an isomorphism of graded R-modules⊕
v≥e

ExtmX(M,N (v)) ∼= (ExtmR (M,N))≥e.

Proof. This follows immediately by combining Proposition 2.4 and Proposition 2.5.2

3. A Method for Computing Global Extension Modules

Using the bounds developed in the preceding section, we present a proof of the main
theorem.

Proof of Theorem 1. Fix an integer r satisfying the inequality

r ≥ max{ai(SN)− i : n− ` ≤ i ≤ pdS(SN)} −m+ 1.

To simplify notation, set M ′ = M≥r. We remind the reader that the OX -module asso-
ciated to the R-module M is equal to the one associated to M ′ (see Exercise II.5.9 in
Hartshorne, 1977). Applying Corollary 2.6, it suffices to show that the following inequal-
ities are satisfied:{

am−u(M ′) + n− an−u(SN) ≥ 0 for 0 ≤ u ≤ `;
am−u(M ′) + n− an−u+1(SN) ≥ 0 for 0 ≤ u ≤ `, u 6= 1. (I)

By convention, am−u(M ′) = ∞ for m − u < 0 or m − u > pdR(M), so we may confine
our attention to m − pdR(M) ≤ u ≤ m. As F0(M ′) maps onto M ′ and the maps
Fi(M ′) −→ Fi−1(M ′) are given by matrices of homogeneous forms of positive degree, we
have the inequality ai(M

′) ≥ r + i for all integers i. By making substitutions for u, we
transform the inequalities (I) into the following:{

r ≥ ai(SN)− i−m for n− ` ≤ i ≤ n;
r ≥ ai(SN)− i−m+ 1 for n− `+ 1 ≤ i ≤ n+ 1, i 6= n.

Again, our conventions imply that ai(SN) = −∞ for i < 0 or i > pdS(SN), so we
need only consider 0 ≤ i ≤ pdS(SN). The choice of r therefore guarantees that these
inequalities hold. 2

Remark 3.1. For dim(M) = 0, it is necessary and sufficient that M have finite length
(see Corollary 2.17 in Eisenbud, 1996). In particular, if dim(M) = 0, then M has only
finitely many nonzero graded components and we have M≥r = 0 for r � 0. It follows
from Theorem 1 that ExtmX(M,N ) = 0 when dim(M) = 0.

For the special case X = P
n, we have the following additional vanishing result:

Corollary 3.2. Let M and N be two coherent OX-modules and assume X = P
n. If

m > n, then the global extension module ExtmX(M,N ) vanishes.
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Proof. By hypothesis, S = k[x0, . . . , xn] is the homogeneous coordinate ring of X.
Let M and N be two finitely generated graded S-modules which correspond to M and
N , respectively. By Theorem 1, we are required to show that, for m > n, the mod-
ule (ExtmS (M≥r, N))0 vanishes for r sufficiently large. It therefore suffices to prove that
pdS(M≥r) ≤ n for r � 0. Applying Remark 3.1, we may assume dim(M) > 0. Now, since
we are working over the polynomial ring, the Hilbert syzygy theorem (Theorem 1.13 in
Eisenbud, 1996) provides the inequality pdS(M≥r) ≤ n+ 1. Moreover, as S is a Cohen–
Macaulay ring, we have pdS(M≥r) = dim(S) = n + 1 iff the maximal ideal n of S is
associated to M≥r (see Corollary 19.10 in Eisenbud, 1996). With this in mind, recall
that H0

n(M) is the set of elements of M which are annihilated by some power of n. Since
the module H0

n(M) is Artinian, there exists a maximal degree c0 of an element in H0
n(M).

Hence, if r > c0, then the maximal ideal n is not associated to M≥r which completes the
argument.2

Using Gröbner bases, one can compute the minimal free resolution of a finitely gener-
ated graded S-module (see Chapter 15 in Eisenbud, 1996). This allows one to calculate
the projective dimension of a finitely generated graded S-module and the degrees of the
minimal generators of the syzygy modules. Furthermore, using the free resolutions one
can construct the Ext modules for a pair of finitely generated graded R-modules (again
see Chapter 15 in Eisenbud, 1996). Grayson and Stillman (1993) have implemented these
functions in their software system, Macaulay2. With this in mind, Theorem 1 yields Al-
gorithm 3.3. By extracting the appropriate graded part, we have Algorithm 3.4 which
returns the mth global extension module. For the special case M = R, we have the
equality (see Proposition III.6.4 in Hartshorne, 1977):

ExtmX(OX ,N (v)) ∼= Hm(X,N (v)). (EH)

In particular, we obtain the following techniques for computing sheaf cohomology: Algo-
rithms 3.5 and 3.6. These algorithms have been implemented in Macaulay2; the routines
may be found at http://www.math.berkeley.edu/˜ggsmith.

The complexity of Algorithm 3.3 will depend on computing F•(SN) and F•(M≥r); the
second resolution is used to determine ExtmR (M≥r, N). To find these resolutions involves
several Gröbner bases calculations. As noted in the introduction, there is a significant
difference between worst case bounds for Gröbner bases and the complexity of geometric
examples. With this in mind, we omit an analysis of complexity and refer the reader to
Bayer and Mumford (1993) for a discussion of the conjectures and results in this area.

Remark 3.7. Algorithm 3.5 is equivalent to the approximation method for computing
sheaf cohomology described in Theorem C.3.1 in Eisenbud et al. (1998).

4. Some Examples

All computations in this section were made on an Intel Pentium 166 MHz machine
running Macaulay2 (version 0.8.49) for the Linux platform.

We begin by giving an example in which the bounds in Theorem 1 are sharp.

Example 4.1. Let X = P
3, let M = OX , let N be the structure sheaf of the smooth

rational quartic curve in P
3 and set m = 1. Following Eisenbud et al. (1998) these

constructions in Macaulay2 are:
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Algorithm 3.3. globalExtSum(m, e,M,N)
input: two integers m, e and two finitely generated graded R-modules M , N .
assumption: the graded ring R is a quotient of a polynomial ring S.
output: the graded R-module

⊕
v≥e ExtmX(M,N (v)), where X = Proj(R)

and M, N are the coherent OX -modules associated to M , N .
begin

if dim(M) = 0 or m < 0 then E := 0
else

n := the number of generators of S minus 1;
` := min{dim(N),m};
SN := the S-module obtained from N by restriction of scalars;
F•(SN) := the minimal free resolution of SN ;
pd(SN) := the length of F•(SN);
if pd(SN) < n− ` then E := ExtmR (M,N)
else

for i from n− ` to pd(SN) do
ai(N) := the maximal degree of the minimal generators of Fi(SN);

r := max{ai(SN) : n− ` ≤ i ≤ pd(SN)} − e−m+ 1;
E := ExtmR (M≥r, N);

e′ := minimal degree of the generators of E;
if e′ < e then E := E≥e;
return E;

end.

Algorithm 3.4. globalExt(m,M,N)
input: an integer m and two finitely generated graded R-modules M , N .
assumption: the graded ring R is a quotient of a polynomial ring S.
output: the k-vector space ExtmX(M,N ), where X = Proj(R) and M, N are the

coherent OX -modules associated to M , N .
begin

E := globalExtSum(m, 0,M,N);
V := the k-vector space isomorphic to E0;
return V ;

end.

Algorithm 3.5. sheafCohomologySum(m, e,N)
input: two integers m, e and a finitely generated graded R-module N .
assumption: the graded ring R is a quotient of a polynomial ring S.
output: the graded R-module

⊕
v≥eH

m(X,N (v)), where X = Proj(R) and N is
the coherent OX -module associated to N .

begin
E := globalExtSum(m, e,R,N);
return E;

end.
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Algorithm 3.6. sheafCohomology(m,N)
input: an integer m and a finitely generated graded R-module N .
assumption: the graded ring R is a quotient of a polynomial ring S.
output: the k-vector space Hm(X,N (v)), where X = Proj(R) and N is

the coherent OX -module associated to N .
begin

E := globalExt(m,R,N);
return E;

end.

i1 : k = ZZ/32003; S = k[w,x,y,z];

i3 : I = monomialCurve(S,{1,3,4})

3 2 2 2 3 2
o3 = ideal (x*y-w*z, y -x*z , w*y -x z, x -w y)

o3 : Ideal of S

i4 : N = S^1/I;

Next, we determine max{ai(SN) − i : n − ` ≤ i ≤ pdS(SN)}. Recall the minimal free
resolution of N (see 8.1 in Eisenbud, 1998):

0 −→ S(−5) −→
4⊕
j=1

S(−4) −→ S(−2)⊕

(
3⊕
j=1

S(−3)

)
−→ S.

As n = 3 and ` = 1, we obtain r ≥ 2. We verify that
⊕

v≥0 Ext1
X(OX ,N (v)) agrees with

(Ext1
S(S≥2, N))≥0.

i5 : globalExtSum((1,0),S,N) == prune truncate(0,Ext^1(truncate(2,S^1),N))

o5 = true

Lastly, we show that (Ext1
S(S≥1, N))≥0 is not equal to

⊕
v≥0 Ext1

X(OX ,N (v)).

i5 : globalExtSum((1,0),S,N) == prune truncate(0,Ext^1(truncate(1,S^1),N))

o5 = false

We conclude that the restrictions on r in Theorem 1 are optimal.

cohomology of locally free sheaves. Recall that, for a locally free sheaf L on X,
there is an isomorphism (see Proposition III.6.7 in Hartshorne, 1977):

ExtmX(L∨,OX) ∼= ExtmX(OX ,L), (LF)

where L∨ = HomOX (L,OX). It follows from the equation (EH) that both of these global
extension modules are isomorphic to Hm(X,L). In particular, this gives two different
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methods for computing the cohomology of a locally free sheaf. In the next example, we
compute the cohomology of a specific locally free sheaf by these two different approaches
and compare the CPU time used.

Example 4.2. Consider the Veronese surface X embedded in P5. Following Example 2.6
in Harris (1995), X is defined by the 2× 2 minors of a generic 3× 3 symmetric matrix.
In Macaulay2, we construct the homogeneous coordinate ring R of X as follows:

i1 : k = ZZ/32003; S = k[u,v,w,x,y,z];

i3 : I = minors(2,genericSymmetricMatrix(S,u,3))

2 2
o3 = ideal (-v +u*x, -v*w+u*y, -w*x+v*y, -v*w+u*y, -w +u*z,

2
-w*y+v*z, -w*x+v*y, -w*y+v*z, -y +x*z)

o3 : Ideal of S

i4 : R = S/I;

Because X is smooth (see Exercise 14.13 in Harris, 1995), the cotangent bundle Ω is a
locally free sheaf (see Theorem II.8.15 in Hartshorne, 1977). Moreover, Eisenbud et al.
(1998) provide an algorithm called cotangentBundle which returns the module repre-
senting the cotangent bundle. Using this, we create Ω and Ω∨:

i5 : Omega = cotangentBundle R;

i6 : OmegaDual = dual Omega;

We establish the identity
⊕

v≥0 Ext1
X(Ω∨,OX(v)) ∼=

⊕
v≥0 Ext1

X(OX ,Ω(v)). Evaluating
the left-hand side of (LF), we have:

i7 : LHS = globalExtSum((1,0),OmegaDual,R)

o7 = cokernel {0} | z y x w v u |

1
o7 : R - module, quotient of R

The Macaulay2 output for the right-hand side of (LF) takes the form:

i8 : RHS = globalExtSum((1,0),R,Omega)

o8 = cokernel {0} | z y x w v u |

1
o8 : R - module, quotient of R

Next, we use the benchmark function to produce an accurate timing for these techniques.
The output is the number of seconds used by the CPU.

i9 : benchmark("globalExtSum((1,0),OmegaDual,R)")
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o9 = 0.51

o9 : RR

i10 : benchmark("globalExtSum((1,0),R,Omega)")

o10 = 516.18

o10 : RR

One immediately sees the significant difference in the length of two calculations. For this
particular example, we can explain the difference by examining where the first module is
truncated. For the left-hand side of (LF), no truncation is required since pdS(SR) = 3 <
4 = n − `. Hence, evaluating globalExtSum((1,0),OmegaDual,R) involves finding the
minimal free resolution of the R-module Ω and the S-module SR. However, for the right-
hand side of (LF), we truncate at r = 2. Thus calculating globalExtSum((1,0),R,Omega)
requires the minimal free resolution of R-module R≥2 and the S-module SΩ. Now, the
number of minimal generators of R≥2 is significantly larger than the number for SR and
this leads to the difference in the amount of time used. From this example, we conclude
that, at least for locally free sheaves, Algorithms 3.5 and 3.6 are not the most efficient
methods.

duality theory. For the third application, we illustrate Serre–Grothendieck duality.
Recall that if X is Cohen–Macaulay, closed subscheme of Pn of pure dimension d, then
there exists isomorphisms

Extd−jX (G, ωX) ∼= Hj(X,G)∗ for 0 ≤ j ≤ d, (SD)

where G is a coherent sheaf on X, ωX is the dualizing sheaf and ∗ denotes the dual vector
space (see Theorem III.7.6 in Hartshorne, 1977).

Example 4.3. Let X be the Del Pezzo surface of degree 4 in P
4; X is a complete

intersection of two quadratic hypersurfaces in P4 (see Exercise III.4.13 in Hartshorne,
1977). We define the homogeneous coordinate ring R of X as follows:

i1 : k = ZZ/32003; S = k[v,w,x,y,z];

i3 : I = ideal(w*x+y*z,w*y+x*z);

o3 : Ideal of S

i4 : R = S/I;

By definition, we know that the dualizing sheaf ωX is isomorphic to OX(−1) (see Re-
mark III.4.7 in Hartshorne, 1977). For simplicity, we let G be the sheaf corresponding to
the cokernel of a generic symmetric matrix. In Macaulay2 this appears as:

i5 : omega = R^{-1};

i6 : G = coker genericSymmetricMatrix(R,v,2)

o6 = cokernel {0} | v w |
{0} | w x |
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2
o6 : R - module, quotient of R

Finally, we verify the equation (SD). For j = 0, we have

i7 : globalExt(2,G,omega) == Hom(sheafCohomology(0,G),k)

o7 = true

i8 : Hom(sheafCohomology(0,G),k)

2
o8 = k

o8 : k - module, free

In the case j = 1, we obtain

i9 : globalExt(1,G,omega) == Hom(sheafCohomology(1,G),k)

o9 = true

i10 : Hom(sheafCohomology(1,G),k)

2
o10 = k

o10 : k - module, free

and, when j = 2, it is

i11 : globalExt(0,G,omega) == Hom(sheafCohomology(2,G),k)

o11 = true

i12 : Hom(sheafCohomology(2,G),k)

o12 = 0

o12 : k - module

This completes the example.

global extensions. As a final example, we compute a nontrivial global extension. We
remind the reader that a global extension ofM byN is an exact sequence ofOX -modules:
0 −→ N −→ E −→ M −→ 0; two extension are equivalent if there is a commutative
diagram

0−→N −→ E −→M−→ 0yidN y∼= yidM
0−→N −→E ′ −→M−→ 0.

The global extension modules derive their name from the following: the equivalence
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classes of global extensions are in bijective correspondence with Ext1
X(M,N ) (see Sec-

tion 5.3 in Griffiths and Harris, 1978).
Applying Theorem 1, there is a bijection between equivalence classes of global exten-

sions and (Ext1
R(M≥r, N))0 for r sufficiently large. Moreover, the functor which takes a

module to its associated sheaf is exact, so each extension 0 −→ N −→ E −→ M −→ 0
corresponds to an exact sequence of R-modules 0 −→ N −→ E −→ M≥r −→ 0, again
for r � 0.

Example 4.4. Let X be the plane elliptic curve defined by x3 + y3 = z3. We will
construct the unique nontrivial extension of OX by OX . We divide this computation into
seven parts.

(i) We create the homogeneous coordinate ring R of X.

i1 : k = ZZ/32003; S = k[x,y,z];

i3 : I = ideal (x^3+y^3-z^3);

o3 : Ideal of S

i4 : R = S/I;

(ii) We calculate the k-vector space Ext1(X,OX ,OX):

i5 : globalExt(1,R,R)

1
o5 = k

o5 : k - module, free

As Ext1
X(OX ,OX) is one dimensional, there exists only one nontrivial global ex-

tension up to equivalence.
(iii) We determine where to truncate the first module. Following Algorithm 3.3, we first

calculate n and `.

i6 : n = (numgens S)-1, l = min(dim(R),1)

o6 = (2, 1)

o6 : Sequence

We see that one must choose r ≥ max{ai(SN) − i : 1 ≤ i ≤ pdS(SN)}. After
computing F•(SN), we simply set r equal to the maximum:

i7 : sN = S^1/I;

i8 : FF = res sN

1 1
o8 = S <-- S
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0 1

o8 : ChainComplex

i9 : r = (max degrees FF_1)#0-1

o9 = 2

We introduce the modules M ′ and N to help avoid confusing notation.

i10 : M’ = prune truncate(2,R^1);

i11 : N = R^1;

(iv) We fix an exact sequence 0 −→ K
α−→ P

β−→ M ′ −→ 0 where P a free R-module.
This sequence is constructed from a free presentation of the R-module M ′, that is
F1

µ−→ F0 −→M ′ −→ 0.

i12 : mu = presentation M’;

6 9
o12 : Matrix R <--- R

i13 : P = target mu;

i14 : beta = map(M’, P, id_P);

o14 : Matrix

i15 : K = image mu;

i16 : alpha = map(P,K,mu);

o16 : Matrix

We verify that we have an short exact sequence.

i17 : {ker alpha == 0, image alpha == ker beta, image beta == M’}

o17 = {true, true, true}

o17 : List

Now, this short exact sequence yields an exact sequence

HomR(P,N) −→ HomR(K,N) −→ Ext1
R(M ′, N) −→ 0.

Thus, an element in Ext1
R(M,N) gives rise to an element θ in HomR(K,N).

(v) We choose a homomorphism θ:K → N directly.

i18 : choice = (basis(-1, Hom(K,N)) ** R)_{0};

9 1
o18 : Matrix R <--- R

i19 : theta = homomorphism map(Hom(K,N), R^1, choice)



Computing ExtmX (M,N ) 745

o19 = {0} | 0 xy 0 -xz 0 0 0 0 x2 |

o19 : Matrix

The module E is then the pushout of θ and α; more explicitly the cokernel of the
map ψ:K → P ⊕N where ψ(x) = (α(x),−θ(x)).

(vi) We construct the module E.

i20 : D = P ++ N;

i21 : psi = map(D, K, alpha || -theta)

o21 = {2} | 0 y 0 -z 0 0 0 0 x |
{2} | y -z 0 0 0 0 0 x 0 |
{2} | -z 0 0 y 0 x 0 0 0 |
{2} | 0 0 y 0 0 0 x 0 -z |
{2} | 0 0 -z 0 x -y 0 -z 0 |
{2} | 0 0 0 x -y 0 -z 0 0 |
{0} | 0 -xy 0 xz 0 0 0 0 -x2 |

o21 : Matrix

i22 : E = coker psi;

(vii) We check that we have the short exact sequence 0 −→ N
ι−→ E

φ−→M ′ −→ 0.

i23 : iota = map(E, N, map(P,N,0) || id_N);

i24 : phi = map(M’, E, id_P | map(P,N,0));

i25 : {ker iota == 0, image iota == ker phi, image phi == M’}

o25 = {true, true, true}

o25 : List

Therefore, the R-module E represents the unique nontrivial global extension. For com-
pleteness, we calculate the global sections of the sheaf associated to E.

i26 : sheafCohomology(0,E)

1
o26 = k

o26 : k - module, free

As the space of global sections has dimension one, it follows that E represents an inde-
composable rank 2 vector bundle (see Theorem V.2.15 in Hartshorne, 1977).
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