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UNIFORM BOUNDS
ON MULTIGRADED REGULARITY

DIANE MACLAGAN AND GREGORY G. SMITH

Abstract

We give an effective uniform bound on the multigraded regularity of a
subscheme of a smooth projective toric variety X with a given multi-
graded Hilbert polynomial. To establish this bound, we introduce a new
combinatorial tool, called a Stanley filtration, for studying monomial
ideals in the homogeneous coordinate ring of X. As a special case, we
obtain a new proof of Gotzmann’s regularity theorem. We also discuss
applications of this bound to the construction of multigraded Hilbert
schemes.

1. Introduction

Bounding the degrees of the generators of a module or sheaf is a cen-
tral problem in commutative algebra and algebraic geometry. The modern
approach to this problem concentrates on proving stronger bounds involv-
ing Castelnuovo-Mumford regularity. In fact, Castelnuovo-Mumford regular-
ity was introduced in §14 of [Mum] to bound the family of all projective
subschemes having a given Hilbert polynomial. Following this appearance,
Castelnuovo-Mumford regularity has become a crucial ingredient in bounding
the degrees of syzygies [GLP] [EL] and constructing Hilbert schemes, Picard
schemes and moduli spaces [AK] [Vie].

The goal of this paper is to bound the multigraded Castelnuovo-Mumford
regularity (as defined in [MS]) of all subschemes of a smooth projective toric
variety X that have a given multigraded Hilbert polynomial. To establish
this bound, we work with saturated monomial ideals in the homogeneous co-
ordinate ring of X . We introduce a new combinatorial tool, called a Stanley
filtration, for studying monomial ideals. Using an appropriate Stanley fil-
tration, we produce an effective bound for the multigraded regularity of an
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individual ideal or family of ideals. We also discuss applications of our bound
to the construction of multigraded Hilbert schemes.

Using ideals in the homogeneous coordinate ring S to analyze subschemes of
X has several advantages. The Zr-graded polynomial ring S = k[x1, . . . , xn],
introduced in [Co1], is intrinsic to the variety X . By focusing on X rather
than a projective embedding of X , we reduce both the number of variables and
the total degree of the polynomials needed to describe a subscheme. When
Pic(X) 6= Z, the multigrading allows for stronger bounds on the equations
defining a subscheme. Multigradings also produce a finer stratification of
subschemes of X .

The novel approach required for multigraded polynomial rings leads to
new insights in the standard graded case. Indeed, when X = Pd, we obtain a
new proof of Gotzmann’s optimal bound on the regularity of all subschemes
having a given Hilbert polynomial. Gotzmann’s original proof [Got] relies on
Macaulay’s characterization of the Hilbert function of an ideal in a standard
graded polynomial ring. Since there is no version of Macaulay’s theorem for
nonstandard gradings, the methods used in [Got] do not apply in our situation.
In fact, there is typically no lexicographic ideal in the homogeneous coordinate
ring of X (see [ACN]) so we cannot expect a direct analogy of Macaulay’s
result. The alternative proof of Gotzmann’s result given in [Gr1] (also see
[Gr2] and §4.3 in [BH]) uses an induction on a general hyperplane section.
Because a general hypersurface is rarely a toric variety, this approach does
not extend to toric varieties.

The main combinatorial tool used in this paper is based on a Stanley de-
composition. Given a monomial ideal I in S, a Stanley decomposition for S/I
is a set S of pairs (xu, σ) such that S/I ∼=

⊕
(xu,σ)∈S

Sσ
(
− deg(xu)

)
, where

xu is a monomial in S, σ ⊆ {1, . . . , n} and Sσ = k[xi : i ∈ σ]. In other words,
if we identify the pair (xu, σ) with the set {xu+v ∈ S : xv ∈ Sσ}, then each
monomial of S not in I belongs to a unique pair (xu, σ). It follows that a
Stanley decomposition expresses the multigraded Hilbert polynomial of S/I
as a sum of the Hilbert polynomials for Sσ:

(1.0.1) PS/I(t) =
∑

(xu,σ)∈S
PSσ

(
t− deg(xu)

)
.

Example 1.1. Let S = k[x1, . . . , x4] have the standard grading defined
by deg(xi) = 1 for 1 ≤ i ≤ 4. If I = 〈x1x

2
4, x2x

2
4, x3x

2
4〉 is an ideal in S, then{

(1, {1, 2, 3}), (x4, {1, 2, 3}), (x2
4, {4})

}
and

{
(1, {4}), (x3, {3}), (x3x4, {4}), (x2, {2, 3}), (x2x4, {2, 3}), (x1, {1, 2, 3}), (x1x4, {1, 2, 3})

}
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are both Stanley decompositions for S/I. Since the Hilbert polynomial PSσ (t)
is simply the binomial coefficient

(t+|σ|−1
|σ|+1

)
, these Stanley decompositions yield

PS/I(t) =
(
t+2

2

)
+
(
t+1

2

)
+
(
t−2

0

)
=
(
t
0

)
+
(
t−1

0

)
+
(
t−2

0

)
+
(
t
1

)
+
(
t−1

1

)
+
(
t+1

2

)
+
(
t
2

)
.

We focus on a particular class of Stanley decompositions called Stanley
filtrations. By definition, these are ordered sets {(xui , σi) : 1 ≤ i ≤ m} such
that the modules Mj = S/

(
I + 〈xuj+1 , . . . ,xum〉

)
form a filtration

k = M0 ⊂M1 ⊂ · · · ⊂Mm = S/I with Mi/Mi−1 = Sσi .

The decompositions of Example 1.1 are Stanley filtrations in the order pre-
sented. We provide an algorithm for finding Stanley filtrations.

Our first major theorem uses a Stanley filtration to give an effective bound
on the multigraded regularity. Bounding the multigraded regularity of a mod-
ule M is equivalent to giving a subset of reg(M) =

{
k ∈ Zr : M is k-regular

}
.

For more information on multigraded regularity, we refer to [MS]. Remark-
ably, our major theorems use only the behavior of multigraded regularity in
short exact sequences and hence are independent of the precise definition of
multigraded regularity.

Theorem 4.1. Let I be a monomial ideal in S. If
{

(xui , σi) : 1 ≤ i ≤ m
}

is a Stanley filtration for S/I, then
⋂m
i=1

(
deg(xui) + reg(Sσi)

)
⊆ reg (S/I).

By relating the sets σi to the fan ∆ defining X , we can eliminate certain
pairs from this intersection.

Example 1.2. Since reg(S) = N for any standard graded polynomial ring,
the first Stanley filtration in Example 1.1 implies that

max{deg(1), deg(x4), deg(x2
4)} + N ⊆ reg(S/I) .

The minimal free resolution of S/I establishes that this bound is sharp:
reg(S/I) = 2 + N.

To study all subschemes of X with a given multigraded Hilbert polynomial,
we use the combinatorial structure of ∆ to focus on a finite set of Stanley fil-
trations. We also concentrate on ideals that are saturated with respect to the
irrelevant ideal B; see §2. Given a polynomial P (t), we are most interested
in expressions of the form (1.0.1) arising from our finite set of Stanley filtra-
tions. This leads to an algorithm for finding all B-saturated monomial ideals
with multigraded Hilbert polynomial P (t). We call the maximum number of
summands in such an expression for P (t) the Gotzmann number.

To state our second major result, let σ̂ denote the complement of σ in
{1, . . . , n}. Identifying Pic(X) with Zr, we write K ⊂ Zr for the semigroup
of nef line bundles on X ; see §2 for a combinatorial description of K.
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Theorem 4.11. Let c ∈
⋂n
i=1

(
deg(xi) + K

)
and let I be any B-saturated

ideal in S. If m is the Gotzmann number for PS/I(t), then⋂
σ̂∈∆

(
(m− 1)c+ reg(Sσ)

)
⊆ reg(S/I) .

This theorem implies that for any k ∈
⋂
σ̂∈∆

(
(m − 1)c + reg(Sσ)

)
every

subscheme of X having Hilbert polynomial PS/I(t) is cut out by equations
of multidegree k. Specializing to X = Pd, we recover Gotzmann’s regularity
theorem; see Theorem 5.2.

The structure of the paper is as follows. The next section establishes our
notation for toric varieties, recalls the definition of multigraded regularity
from [MS] and collects the basic properties of multigraded Hilbert polynomi-
als. In §3, we develop the theory of Stanley decompositions and filtrations.
The proofs of our major theorems are in §4. This section also contains the al-
gorithm for finding all B-saturated monomial ideals with a given multigraded
Hilbert polynomial. In §5, we restrict to the case X = Pd and show that
multigraded techniques provide a simple new proof of Gotzmann’s regularity
theorem. The final section discusses the effective construction of multigraded
Hilbert schemes.

Acknowledgments. We thank Ezra Miller for the references on cleanness.
We also thank Kristina Crona and Edwin O’Shea for their helpful comments
on a preliminary version of this paper.

2. Castelnuovo-Mumford regularity and Hilbert polynomials

This section relates multigraded Hilbert polynomials to multigraded regu-
larity (as defined in [MS]). Let X be a smooth projective toric variety over a
field k determined by a fan ∆ in Rd. By numbering the rays (one-dimensional
cones), we identify ∆ with a simplicial complex on [n] := {1, . . . , n}. We write
b1, . . . , bn for the unique minimal lattice vectors generating the rays and we
assume that b1, . . . , bn span Rd. Set r := n − d and fix an (r × n)-matrix
A = [a1 · · ·an] such that there is a short exact sequence

(2.0.2) 0 −→ Zd [b1··· bn]T

−−−−−−−→ Zn [a1···an]−−−−−−→ Zr −→ 0 .

Because A is the Gale dual of the (d× n)-matrix [b1 · · · bn], it is uniquely de-
termined up to unimodular (determinant ±1) coordinate transformations of
Zr. Since X is smooth, Pic(X) is isomorphic to Zr . The homogeneous coor-
dinate ring of X , introduced in [Co1], is the polynomial ring S = k[x1, . . . , xn]
with the Zr-grading defined by deg(xi) = ai for 1 ≤ i ≤ n. The combinato-
rial structure of ∆ is encoded in the irrelevant ideal B =

〈∏
i6∈σ xi : σ ∈ ∆

〉
.
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Throughout this paper, M denotes a finitely generated Zr-graded S-module.
We refer to [BS] for background information on local cohomology. The mod-
ule M is B-torsion if M = H0

B(M) =
⋃
j∈N(0 :M Bj). With these definitions,

[Co1] proves that the category of coherent OX -modules is equivalent to the
category of finitely generated Zr-graded S-modules modulo the full subcate-
gory of B-torsion modules.

Example 2.1. When X = Pd, the short exact sequence (2.0.2) is

0 −→ Zd −→ Zd+1 [1 1 ··· 1]−−−−−−→ Z1 −→ 0 .

Since deg(xi) = ai = 1 for 1 ≤ i ≤ n = d + 1, the homogeneous coordinate
ring S = k[x1, . . . , xn] is simply the standard graded polynomial ring. The
irrelevant ideal B is the unique graded maximal ideal 〈x1, . . . , xn〉.

Example 2.2. If X is the Hirzebruch surface F` = P
(
OP1 ⊕OP1(`)

)
, then

the short exact sequence (2.0.2) is

0 −→ Z2

[
1 0 −1 0
0 1 ` −1

]T

−−−−−−−−−−→ Z4

[
1 −` 1 0
0 1 0 1

]
−−−−−−−−→ Z2 −→ 0 .

The homogeneous coordinate ring S = k[x1, x2, x3, x4] has the Z2-grading
induced by deg(x1) = [ 1

0 ], deg(x2) =
[−`

1

]
, deg(x3) = [ 1

0 ], deg(x4) = [ 0
1 ] and

B = 〈x1x2, x2x3, x3x4, x1x4〉 = 〈x1, x3〉 ∩ 〈x2, x4〉.

Figure 1. The fan and grading for F2

The combinatorial structure of ∆ also gives rise to an important subsemi-
group of Zr. We write NAσ := {

∑
i∈σ λiai : λi ∈ N} for the affine semigroup

generated by the set {ai : i ∈ σ}. For σ ⊆ [n], let σ̂ denote the complement
of σ in [n]. The semigroup K is

⋂
σ∈∆NAσ̂. Since X is projective, K is the

set of integral points of an r-dimensional pointed cone in Rr. Geometrically,
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elements in K correspond to numerically effective (nef) line bundles on X .
As [Co2] indicates, K⊗Z R is the closure of the Kähler cone of X . The dual
of the Kähler cone is the Mori cone of effective 1-cycles modulo numerical
equivalence.

Example 2.3. When X = Pd, the semigroup K = N. If X = F` (with A

chosen as in Example 2.2), then K = N2. In general, the structure of K can
be much more complicated; see Example 2.8 in [MS].

The next result illustrates the connection between the irrelevant ideal B
and the semigroup K. For σ ⊆ [n], let Pσ be the prime ideal 〈xi : i 6∈ σ〉 and
let Sσ be the (smaller) polynomial ring k[xi : i ∈ σ] ∼= S/Pσ.

Lemma 2.4. A monomial ideal I in S is B-saturated if and only if every
associated prime Pσ of I satisfies σ̂ ∈ ∆ (or equivalently K ⊆ NAσ).

Proof. Let I =
⋂
σ Qσ be an irredundant primary decomposition for I

where the ideal Qσ is Pσ-primary. It follows that (I : B∞) =
⋂
σ(Qσ : B∞) =⋂

σ

⋂
τ∈∆

(
Qσ : (

∏
i6∈τ xi)

∞). Now
(
Qσ : (

∏
i6∈τ xi)

∞) equals S if σ̂ ∩ τ̂ 6= ∅
and equals Qσ otherwise. Since σ̂ ∩ τ̂ = ∅ is equivalent to σ̂ ⊆ τ , we have
(I : B∞) =

⋂
σ̂∈∆ Qσ. Therefore, (I : B∞) = I if and only if every associated

prime Pσ satisfies σ̂ ∈ ∆. The equivalent condition follows immediately from
the definition of K. �

The module M is B-torsion-free if H0
B(M) = 0. For an ideal I ⊆ S, the

module S/I is B-torsion-free if and only if I is B-saturated; (I : B∞) = I.
Remark 2.5. The semigroup K also has a useful algebraic interpretation.

If k is infinite and M is B-torsion-free, then Proposition 3.1 in [MS] shows
that for any k ∈ K there is a nonzero divisor f ∈ Sk on M .

Let C = {c1, . . . , ce} be the unique minimal Hilbert basis of K. By def-
inition, C is the minimal subset of K such that every element in K is a
nonnegative integral combination of the cj; see §IV.16.4 in [Sch]. We recall
the definition of multigraded Castelnuovo-Mumford regularity introduced in
[MS].

Definition 2.6. For k ∈ Zr , the module M is k-regular if the following
conditions are satisfied:

(1) Hi
B(M)p = 0 for all i ≥ 1 and all p ∈

⋃
(k − λ1c1 − · · · − λece + K)

where the union is over all λ1, . . . , λe ∈ N such that λ1+· · ·+λe = i−1;
(2) H0

B(M)p = 0 for all p ∈
⋃

1≤j≤e(k + cj + K).
The regularity of M , denoted by reg(M), is the set {k ∈ Zr : M is k-regular}.

In this paper, we exploit two properties of multigraded regularity. Firstly,
if I is an ideal in S and k ∈ reg(I), then the subscheme of X defined by I is
cut out by equations of multidegree k; see Theorem 6.9 in [MS]. The second
property allows us to focus on monomial ideals by relating the regularity of an
ideal with its initial ideal. We write in(I) for the initial ideal of I with respect
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to some monomial order. The following proposition, which is well known for
X = Pd, appears as Proposition 6.13 in [MS].

Proposition 2.7. If I is an ideal in S, then reg
(
S/ in(I)

)
⊆ reg(S/I); if

I is B-saturated and J =
(
in(I) : B∞

)
, then reg(S/J) ⊆ reg(S/I). �

Next, we turn our attention to multigraded Hilbert polynomials. The multi-
graded Hilbert function H(M, t) equals the dimension of the degree t homo-
geneous component of a Zr-graded module M . As in the standard graded
case, H(M, t) “eventually” agrees with a polynomial. To prove this, we first
consider the multigraded Hilbert function of the ring S.

Lemma 2.8. If S is the coordinate ring of a smooth toric variety, then the
Hilbert function H(S, t) = dimk St agrees with a polynomial for all t ∈K.

Proof. Since the monomials of degree t form a basis for the k-vector space
St, the Hilbert function H(S, t) is a vector partition function. This means
H(S, t) equals the number of ways a vector t ∈ Zr can be written as a sum of
a1, . . . ,an. The chamber complex of {a1, . . . ,an} is a polyhedral subdivision
of pos{a1, . . . ,an}. It is defined to be the common refinement of the simplicial
cones pos{ai : i 6∈ σ} where σ ∈ ∆. Hence, the cone K ⊗Z R is a chamber
(maximal cell) in the chamber complex. From [St1], we know that vector
partition functions are piecewise quasi-polynomials on the chamber complex.
Therefore, H(S, t) is a quasi-polynomial on K.

To complete the proof, we show that the period of this quasi-polynomial
is one. We write [ai : i 6∈ σ] for the submatrix of A consisting of those
columns indexed by σ. From [St1], we know that the period of the quasi-
polynomial is at most the least common multiple of det[ai : i 6∈ σ] where σ
is a facet in ∆. By renumbering (if necessary) the bi, we may assume that
σ = {1, . . . , d} ∈ ∆. Recall that X is smooth if and only if det[bi : i ∈ σ] = ±1
for all facets σ ∈ ∆; see §2.1 in [Ful]. Hence, there exists a unimodular change
of coordinates such that bi = ei for all i ∈ σ where ei is the ith standard
basis vector. In other words, [b1 · · ·bn] is the block matrix [Id |Vσ] where
Vσ is a (d × r)-matrix. The Gale dual of this configuration is [V T

σ | − Ir].
Because the Gale dual is determined up to unimodular transformation, we
have det[ai : i 6∈ σ] = ± det[Ir] = ±1 for all facets σ ∈ ∆. �

Algorithms for computing PS(t) are part of the software package LattE;
see [Lat].

Example 2.9. When X = Pd, we have PS(t) =
(
t+d
d

)
. If X = F`, then we

have PS(t1, t2) = t1t2 +
(
`
2

)
t22 + t1 +

(
`+2

2

)
t2 + 1.

Using Lemma 2.8, we show that the multigraded Hilbert function of a
module M agrees with a polynomial for values of t sufficiently far into the
interior of K.
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Proposition 2.10. There exists a unique polynomial PM (t) ∈ Q[t1, . . . , tr]
such that PM (t) = H(M, t) for all t in a finite intersection of translates of
K. In particular, H(M, t) agrees with PM (t) for all t sufficiently far from the
boundary of K.

Proof. If 0 →
⊕

j S(−qp,j) → · · · →
⊕

j S(−q0,j) is the minimal free
resolution of M , then H(M, t) =

∑p
i=0

∑
j(−1)iH(S, t−qi,j). It follows from

Lemma 2.8 that H(M, t) is a polynomial for all t ∈
⋂
i,j(qi,j + K). Since

qi,j ∈ Zr and K corresponds to the lattice points in an r-dimensional cone in
Rr, this intersection is nonempty. �

Definition 2.11. The polynomial PM (t) in Proposition 2.10 is called the
multigraded Hilbert polynomial of M .

[HTr] and [Rob] establish versions of Proposition 2.10 in more restrictive
settings. The multigraded Hilbert polynomial of a B-torsion module is espe-
cially simple.

Lemma 2.12. If M is a B-torsion module, then PM (t) = 0.
Proof. Since M is a finitely generated B-torsion module, there is a j � 0

such that BjM = 0. We first prove that there exists a k ∈ K such that if
p ∈ k + K, then every monomial in Sp belongs to Bj . Choose an element c
which lies in the interior of K. If xu is a monomial in S and deg(xu) ∈ c+K,
then Lemma 2.4 in [MS] shows that xu ∈ B. Suppose that xv ∈ S such that
deg(xv) = nc + c′ for c′ ∈ K. Caratheodory’s Theorem (Proposition 1.15
in [Zie]) implies that v = λ1u1 + · · · + λnun +w for some u1, . . . ,un ∈ Nn
satisfying deg(xui) = c for 1 ≤ i ≤ n, w ∈ Rn≥0 satisfying Aw = c′ and some
λ1, . . . , λn ∈ R≥0 satisfying λ1 + · · · + λn = n. It follows that there is an
i ∈ [n] such that λi ≥ 1 and hence xv is divisible by xui. Therefore, if we set
k := (j + n)c, then deg(xv) ∈ k + K implies that xv ∈ Bj .

To complete the proof, we show that Mt = 0 for all t sufficiently far into the
interior of K. Let f1, . . . , fh be generators of M . Our choice of k guarantees
that Mt = 0 for all t ∈

⋂
1≤i≤h

(
deg(fi) + k + K

)
. Since elements in K

are lattice points in a full-dimensional cone, the elements in this intersection
are the lattice points in a translation of the same cone. We conclude that
PM (t) = 0. �

More generally, the multigraded Hilbert polynomial of a module is inde-
pendent of B-torsion.

Lemma 2.13. If M := M/H0
B(M), then PM (t) = PM (t). In particular, if

I ⊆ S is an ideal, then S/I and S/(I : B∞) have the same Hilbert polynomial.
Proof. Since H0

B(M) is a B-torsion module, Lemma 2.12 shows that its
multigraded Hilbert polynomial equals 0. Hence, the short exact sequence

0 −→ H0
B(M) −→M −→M −→ 0
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implies that PM (t) = PM (t). Because H0
B(S/I) = (I : B∞)/I, the second

assertion is a special case of the first part. �
The following result connects Hilbert functions with local cohomology mod-

ules. The special case in which S has the standard grading can be found in
§4.4 of [BH].

Proposition 2.14. We have

(2.14.3) H(M, t)− PM (t) =
d+1∑
i=0

(−1)i dimkHi
B(M)t for all t ∈ Zr.

Proof. We proceed by induction on dimM . If dimM = 0, then M is
Artinian. Hence, M is a B-torsion module and we have M = H0

B(M) and
H i
B(M) = 0 for all i ≥ 1. Since Lemma 2.12 shows that PM (t) = 0, the

assertion follows.
Assume dimM > 0. Since both sides of (2.14.3) change by dimkH0

B(M)t
when M is replaced by M/H0

B(M), we may assume that M is B-torsion-
free. Because extension of the base field commutes with the formation of
local cohomology, we may also assume that k is infinite. Choose k ∈ K.
Remark 2.5 implies there is a nonzero divisor f on M with f ∈ Sk. Hence,
dimM/fM < dimM and there is a short exact sequence

(2.14.4) 0 −→M(−k)
f−−→M −→M/fM −→ 0 .

Set H ′M (z) =
∑
t∈Zr

(
H(M, t)− PM (t)

)
zt and

H ′′M (z) =
∑
t∈Zr

(
d+1∑
i=0

(−1)i dimkHi
B(M)t

)
zt .

With this notation, it suffices to prove that H ′M (z) = H ′′M (z). From (2.14.4),
it follows that H(M/fM, t) = H(M, t) −H(M, t − k). Combining this with
Proposition 2.10, we deduce that PM/fM (t) = PM (t) − PM (t − k) for all
t sufficiently far into the interior of K and thus for all t. Hence, we have
H ′M/fM (z) = (1 − zk)H ′M (z). On the other hand, the long exact sequence
associated to (2.14.4) shows that
d∑
i=0

(−1)i dimkHi
B(M/fM)t =

d+1∑
i=0

(−1)i
(
dimkHi

B(M)t − dimkHi
B(M)t−k

)
.

Therefore, we have H ′′M/fM (z) = (1−zk)H ′′M (z). Since the induction hypoth-
esis yields H ′M/fM (z) = H ′′M/fM (z), we conclude that H ′M (z) = H ′′M (z). �

Corollary 2.15. If M is k-regular, then the Hilbert function H(M, t)
agrees with the Hilbert polynomial PM (t) for all values t ∈ k+ K with t 6= k.

Proof. If M is k-regular, then Hi
B(M)t = 0 for all i ≥ 0 and all t ∈ k+ K

with t 6= k. Hence, the claim follows from Proposition 2.14. �
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Multigraded Hilbert polynomials also have a geometric description, which
is attributed to Snapper in [Kle]. Let OX(t) be the line bundle on X corre-
sponding to t ∈ Zr and let F be the OX -module associated to the S-module
M . Since equation (6.3.1) in [MS] indicates that

dimkH0
(
X,F ⊗ OX(t)

)
= H(M, t)− dimkH0

B(M)t + dimkH1
B(M)t ,

Proposition 2.14 implies that

PM (t) = χ
(
F ⊗ OX(t)

)
=

d∑
i=0

(−1)i dimHi
(
X,F ⊗ OX(t)

)
.

For a finite set of points, the connection between multigraded regularity
and multigraded Hilbert polynomials is particularly elegant.

Example 2.16. Let I be the B-saturated ideal corresponding to a finite
set of points on X . Proposition 6.7 in [MS] shows that reg(S/I) is exactly
the subset of Zr for which the Hilbert function H(S/I, t) equals the Hilbert
polynomial PS/I(t).

3. Stanley decompositions and filtrations

In this section, we introduce the key combinatorial tool used in this paper.
We restrict our focus to a monomial ideal I in the polynomial ring S, and
introduce the notion of a Stanley decomposition for S/I. This is a partition
of the monomials of S not in I into sets each of which corresponds to the
monomials in a smaller polynomial ring.

Definition 3.1. If xu ∈ S and σ ⊆ [n], the pair (xu, σ) denotes the set of
all monomials in S of the form xv+u where supp(v) := {i : vi 6= 0} ⊆ σ. A
Stanley decomposition for S/I is a set S of pairs (xu, σ) such that

S/I ∼=
⊕

(xu,σ)∈S

Sσ(−Au) ,

where Sσ := k[xi : i ∈ σ]. In other words, each monomial of S not in I belongs
to a unique pair (xu, σ) in the Stanley decomposition.

A Stanley decomposition S for S/I also gives a primary decomposition:

I =
⋂

(xu,σ)∈S

〈xui+1
i : i 6∈ σ〉 .

This is typically not the unique irreducible irredundant primary decomposi-
tion of I. Stanley decompositions are inspired by [Sta] and algorithmically
defined in [SW]; also see [HTh], [Ape]. Both [Sta] and [Ape] require the extra
condition that |σ| should be at least the depth of I.
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Example 3.2. If I = 〈x2
1x2, x1x

2
2〉 ⊂ S = k[x1, x2], then

(1)
{(

1, {1}
)
,
(
x2, {2}

)
,
(
x1x2, ∅

)}
,

(2)
{(

1, {2}
)
,
(
x1, {1}

)
,
(
x1x2, ∅

)}
, and

(3)
{(

1, ∅
)
,
(
x1, {1}

)
,
(
x2, ∅

)
,
(
x2

2, {2}
)
,
(
x1x2, ∅

)}
are three distinct Stanley decompositions for S/I.

Figure 2. Stanley decompositions for 〈x2
1x2, x1x

2
2〉

Stanley decompositions are closely related to standard pairs; see [STV]
for the origin of the notation (xu, σ) and more details. Standard pairs en-
joy the following property: if (xu, σ) is a standard pair of I, then Pσ =
〈xi : i 6∈ σ〉 is an associated prime of I. In contrast, not all ideals have a
Stanley decomposition where every σ corresponds to an associated prime.

Example 3.3. If I = 〈x1, x2〉 ∩ 〈x3, x4〉 is a monomial ideal in the ring
S = k[x1, x2, x3, x4], then

{(
1, {1, 2}

)
,
(
x4, {4}

)
,
(
x3, {3, 4}

)}
is a Stanley de-

composition for S/I where {4} does not correspond to an associated prime of
I. One easily verifies for this ideal that every Stanley decomposition for S/I
has a pair (xu, σ) for which σ does not correspond to an associated prime.

The paper [Sim] studies the special case when S/I has a Stanley decom-
position in which each σ corresponds to a minimal associated prime of I.
Decompositions with this property are called clean.

One way to construct a Stanley decomposition is to make repeated use of
the short exact sequence

(3.3.5) 0 −→ S(−ai)/(I : xi)
xi−−−→ S/I −→ S/(I + 〈xi〉) −→ 0 ,

where xi is any variable. More explicitly, we have the following algorithm. A
special case of this algorithm is implicit in the proof of Lemma 2.4 in [SW].
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Algorithm 3.4. Given a monomial ideal I in the polynomial ring S with
I 6= S, the following algorithm computes a Stanley decomposition for S/I.

1. (Base case.) If I is a prime ideal, then let σ correspond to the set of
variables not in I and output

{
(1, σ)

}
.

2. (Choose variable.) If I is not prime, then choose a variable x` ∈ S
that is a proper divisor of a minimal generator of I.

3. (Recursion.) Compute a Stanley decomposition
{

(xu, τ)
}

for
S/(I + 〈x`〉) and a Stanley decomposition

{
(xv, σ)

}
for S/(I : x`).

Output
{

(xu, τ)
}
∪
{

(xvx`, σ)
}

.

Proof of correctness. A monomial ideal is prime if and only if it is generated
by a subset of the variables. Hence, when I is prime and σ corresponds to
the set of variables not in I, the set

{
(1, σ)

}
is a Stanley decomposition

for S/I. If I is not prime, then there exists a variable x` that is a proper
divisor of a minimal generator of I. From (3.3.5), we see that a monomial
not in I corresponds to either a monomial not in S/(I + 〈x`〉) or x` times a
monomial not in S/(I : x`). Thus, if

{
(xu, τ)

}
is a Stanley decomposition

for S/(I + 〈x`〉) and
{

(xv, σ)
}

is a Stanley decomposition for S/(I : xi),
then

{
(xu, τ)

}
∪
{

(xvx`, σ)
}

is a Stanley decomposition for S/I. Finally, the
algorithm terminates because S is a Noetherian ring. Indeed, both I + 〈x`〉
and (I : x`) are strictly larger ideals than I, so non-termination would give
an infinite chain of strictly increasing ideals. �

Remark 3.5. Running Algorithm 3.4 generates a rooted binary tree. The
nodes are monomial ideals and the root is the input ideal. At each node, Step 2
chooses a variable x`. The left-hand child of a node J is the ideal J + 〈x`〉
and the right-hand child is (J : x`). The corresponding branches are labeled
with the monomials 1 and x` respectively. The leaves of this tree are prime
ideals and each leaf corresponds to an element in the Stanley decomposition.
Specifically, a leaf corresponds to the pair (xu, σ) where xu is the product of
labels in the path from the root to the leaf and σ corresponds to the variables
not in the prime ideal. We will call such a tree the associated binary tree for
the Stanley decomposition. These trees also appear in [Sim].

Example 3.6. If I = 〈x2
1x2, x1x2x3, x

2
2x3, x

2
1x4, x1x2x4, x

2
2x4〉 is an ideal

in S = k[x1, x2, x3, x4], then the Stanley decomposition

{(
1, {3, 4}

)
,
(
x2, {3, 4}

)
,
(
x2

2, {2}
)
,
(
x1, {3, 4}

)
,
(
x1x2, {2}

)
,
(
x2

1, {1, 3}
)}

for S/I produced by Algorithm 3.4 corresponds to the following binary tree.
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I
1

jjjjjjjjjjjjjj
x1

VVVVVVVVVVVVVVVV

〈x1, x2
2x3, x2

2x4〉
1

vvvvvv x2

NNNNNNN
〈x1x2, x2x3, x1x4, x2x4〉
1

lllllllll x1

NNNNNNNN

〈x1, x2〉 〈x1, x2x3, x2x4〉
1

ooooooo
x2

〈x1, x2x3, x2x4〉

1
x2

RRRRRRRRR
〈x2, x4〉

〈x1, x2〉 〈x1, x3, x4〉 〈x1, x2〉 〈x1, x3, x4〉

These binary trees equip the Stanley decompositions produced by Algo-
rithm 3.4 with an additional structure. To describe this structure, we intro-
duce the following concept.

Definition 3.7. A Stanley filtration is a Stanley decomposition with an or-
dering of the pairs

{
(xui , σi) : 1 ≤ i ≤ m

}
such that for all 1 ≤ j ≤ m the set{

(xui , σi) : 1 ≤ i ≤ j
}

is a Stanley decomposition for
S/
(
I+ 〈xuj+1 , . . . ,xum〉

)
. Equivalently, the ordered set is a Stanley filtration

provided the modules Mj = S/
(
I + 〈xuj+1 , . . . ,xum〉

)
form a filtration

k = M0 ⊂M1 ⊂ . . . ⊂Mm = S/I with Mj/Mj−1
∼= Sσj .

Example 3.8. Not every Stanley decomposition has an ordering that
makes it a Stanley filtration. Indeed, no ordering of the pairs in the Stan-
ley decomposition

{(
1, ∅
)
,
(
x1, {1, 2}

)
,
(
x2, {2, 3}

)
,
(
x3, {1, 3}

)}
is a Stanley

filtration for k[x1, x2, x3]/〈x1x2x3〉.
If S/I has a Stanley filtration in which each σi corresponds to a minimal

prime of the ideal I, then Corollary 2.2.4 in [Sim] implies that S/I is Cohen-
Macaulay.

A standard way to traverse the leaves of a rooted tree is via depth-first
search where all left-hand descendants of a node are listed before any right-
hand descendants. This corresponds to listing the leaves from left to right in
the diagram of Example 3.6.

Corollary 3.9. Let I ⊆ S be a monomial ideal and let S be a Stanley
decomposition for S/I obtained by applying Algorithm 3.4. If the pairs have
the order induced by a depth-first search (starting with left-hand children) of
the associated binary tree, then S is a Stanley filtration.

Proof. Let S =
{

(xui , σi) : 1 ≤ i ≤ m
}

and let T be the binary tree
associated to S. We write Li for the leaf corresponding to the pair (xui , σi).
We assume that i < j implies that a depth-first search of T arrives at Li
before reaching Lj. It suffices to show that the set

{
(xui , σi) : 1 ≤ i ≤ m−1

}
can be obtained by applying Algorithm 3.4 to I + 〈xum〉. To accomplish
this, we describe the binary tree T ′ generated by applying Algorithm 3.4 to
I + 〈xum〉. The tree T ′ is obtained from T by deleting Lm and contracting
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the branch joining the parent of Lm with its left-hand child. The only nodes
in T ′ that differ from T are the first |um| nodes on the extreme right-hand
branch. These ideals are obtained from those in T by adding a proper divisor
of xum . �

Example 3.10. The converse of Corollary 3.9 is false, as there are Stanley
filtrations that do not arise from Algorithm 3.4. For example, the third Stan-
ley decomposition in Example 3.2 is a Stanley filtration with respect to the
given ordering that cannot be obtained from Algorithm 3.4. Indeed, any de-
composition obtained from Algorithm 3.4 must have a term (1, {1}) or (1, {2})
because I + 〈xi〉 = 〈xi〉 for i = 1, 2.

4. Bounds on regularity

This section contains the main results of this paper. We first show how a
Stanley filtration for S/I leads to a bound on its multigraded regularity.

Theorem 4.1. Let I be a monomial ideal in S. If
{

(xui , σi) : 1 ≤ i ≤ m
}

is a Stanley filtration for S/I, then
⋂m
i=1

(
Aui + reg(Sσi)

)
⊆ reg (S/I). In

addition, if I is B-saturated, then the intersection can be taken over those
pairs (xui , σi) such that σ̂i ∈ ∆.

Proof. Let R0(M) := {k ∈ Zr : H0
B(M)k+c = 0 for all 0 6= c ∈K} and for

j > 0 set

Rj(M) :=
{
k ∈ Zr :

Hj
B(M)k−λ1c1−···−λece = 0

for all λi ∈ N with
∑
λi = j − 1

}
.

With this notation, we have reg(S/I) =
⋂
j≥0 Rj(S/I). We claim that

(4.1.6) Rj(S/I) ⊇
m⋂
i=1

(
Aui + Rj(Sσi)

)
.

This implies the first part of the theorem. Additionally, if I is B-saturated,
then R0(S/I) = Zr and reg(S/I) =

⋂
j>0 Rj(S/I). When σ̂ 6∈ ∆, Lemma 2.4

implies that Sσ = S/Pσ is a B-torsion module, so Hj
B(Sσ) = 0 for j > 0. It

follows that Rj(Sσ) = Zr for j > 0 and hence
m⋂
i=1

(
Aui + Rj(Sσi)

)
=
⋂
σ̂i∈∆

(
Aui + Rj(Sσi)

)
.

Therefore, the claim also establishes the second part of the theorem.
We prove (4.1.6) by induction on m. When m = 1, the unique pair has the

form (1, σ) which implies that I = Pσ = 〈xi : i 6∈ σ〉 and Rj(S/I) = Rj(Sσ).
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Suppose that the claim holds for all Stanley filtrations with fewer than m

pairs. The short exact sequence

0 −→ S(−Aum)/(I : xum) xum−−−−→ S/I −→ S/(I + 〈xum〉) −→ 0

yields the exact sequence

(4.1.7) Hj
B

(
S/(I : xum)

)
p−Aum −→ Hj

B

(
S/I

)
p
−→ Hj

B

(
S/(I + 〈xum〉)

)
p
.

We deduce that Rj(S/(I + 〈xum〉)
)
∩
(
Aum + Rj(S/(I : xum)

))
⊆ Rj(S/I).

Since
{

(xui , σi) : 1 ≤ i ≤ m−1
}

is a Stanley filtration for S/(I+ 〈xum〉), the
induction hypothesis implies that

Rj
(
S/(I + 〈xum〉)

)
⊇
m−1⋂
i=1

(
Aui + Rj(Sσi)

)
.

The ordering also implies that no monomial in S divisible by xum belongs to
the set

⋃m−1
i=1 (xui , σi). It follows that a monomial xum+v ∈ S is not contained

in I if and only if supp(v) ⊆ σm. Therefore, we have (I : xum) = Pσm and
Rj
(
S/(I : xum)

)
= Rj(Sσm) which completes the induction. �

Remark 4.2. If S has the standard grading (equivalently X = Pd), then
Theorem 4.1 says that the Castelnuovo-Mumford regularity of a monomial
ideal is bounded by the maximum of |ui| :=

∑n
i=1 ui for a Stanley filtration{

(xui , σi)
}

.
We next examine the relationship between Stanley filtrations and Hilbert

polynomials. If
{

(xui , σi) : 1 ≤ i ≤ m
}

is a Stanley filtration for S/I, then

H(S/I, t) =
m∑
i=1

H(Sσi , t−Aui) .

Since K ⊆ NAσ if and only if σ̂ ∈ ∆, the Hilbert polynomial of S/I has an
expression with potentially fewer summands: PS/I(t) =

∑
σ̂∈∆ PSσ (t − Au).

To place further restrictions on the summands, we need an ordering on the
σ̂ ∈ ∆.

We endow the polynomial ring Q[t1, . . . , tr] with the Z-grading defined by
deg(ti) = 1 for all i. Let < be a monomial order on Q[t1, . . . , tr] which refines
the order by total degree. This graded monomial order induces a partial
order, also denoted <, on the simplices of ∆. Specifically, σ̂ < τ̂ if and only if
in<
(
PSτ (t)

)
< in<

(
PSσ(t)

)
. Since the total degree of PSσ(t) equals |σ| − d,

the induced order on ∆ refines inclusion: σ̂ ⊆ τ̂ implies σ̂ ≤ τ̂ .
Definition 4.3. A total order ≺ on ∆ is called graded if it refines the

partial order induced by a graded monomial order < on Q[t1, . . . , tr].
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Proposition 4.4. If ≺ is a graded total order on ∆ and I ⊂ S is a
monomial ideal, then S/I has a Stanley filtration

{
(xui , σi) : 1 ≤ i ≤ m

}
satisfying the following condition:

• if there is an index i with σ̂i ∈ ∆ and xui 6= 1, then there exists an
index j < i such that σ̂j ∈ ∆, σ̂j � σ̂i and xui = xujx` for some
` 6∈ σj .

Proof. We refine Step 2 of Algorithm 3.4 to produce a Stanley filtration
that satisfies the given condition. Specifically, Step 2 becomes:

2′. (Choose variable.) If I is not contained in Pτ for some τ̂ ∈ ∆, then
choose a variable x` ∈ S that is a proper divisor of a minimal generator
of I. Otherwise, let σ̂ ∈ ∆ be the smallest simplex with respect to ≺
for which I ( Pσ = 〈xi : i ∈ σ̂〉 and choose a variable x` ∈ Pσ that is
a proper divisor of a minimal generator of I.

To prove that the resulting Stanley filtration has the desired form, we analyze
the associated binary tree. Let (xui , σi) be a pair in the Stanley filtration
with σ̂i ∈ ∆ and let Li be the corresponding leaf. The leaf Li is either a
left-hand or right-hand child of its parent.

Suppose Li is a right-hand child. We write J for the parent of Li and x`
for the variable labeling the branch connecting J and Li, so (J : x`) = Li.
Let Lj be the descendant of J obtained by repeatedly taking the left-hand
child of J . The leaf Lj corresponds to a pair (xuj , σj). Since the left-hand
branches are always labeled with 1, we see that xujx` = xui . Moreover, the
depth-first search ordering (see Corollary 3.9) chooses left-hand children first,
so we have j < i. Because all the left-hand descendants of J contain x`, we
must also have ` 6∈ σj .

It remains to show that σ̂j ∈ ∆ and σ̂j � σ̂i. Because Li = Pσi , we have
J ⊂ Pσi . Hence the set of all σ̂ ∈ ∆ with J ⊂ Pσ is nonempty, so we may take
τ̂ ∈ ∆ to be one which is minimal with respect to ≺. Step 2′ guarantees that
every left-hand child of J is also contained in Pτ . This containment must be
proper until the leaf Lj is reached. This means that Pσj ⊆ Pτ which implies
σ̂j ⊆ τ̂ and σ̂j ∈ ∆. Since J ⊂ Pσi , the minimality of τ̂ implies that τ̂ � σ̂i.
Hence, we have σ̂j ∈ ∆ and σ̂j � σ̂i as required.

On the other hand, suppose that Li is a left-hand child. Let J ′ be the
closest ancestor of Li that is a right-hand child. Such an ancestor exists
if and only if xui 6= 1. Since J ′ ⊂ Pσi , the argument given when Li is a
right-hand child applies to the parent of J ′ and this completes the proof. �

Using Proposition 4.4, we can give an algorithm for finding all B-saturated
monomial ideals with a given Hilbert polynomial P (t). Roughly speaking,
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the algorithm works by “peeling off” smaller Hilbert polynomials PSσ (t) from
P (t). To accomplish this, we need the following result about the leading
coefficients of the Hilbert polynomial. This lemma generalizes techniques
used in the proof of Theorem 3.2 of [HTr].

Lemma 4.5. Let e1 := [1 0 · · · 0]T ∈ Zr be the first standard basis vector
and let P (t) be the multigraded Hilbert polynomial of M . If e1 ∈ int K, then
the leading coefficient of P (t) with respect to the graded lexicographic order
with t1 > t2 > · · · > tr is positive.

Proof. Using Proposition 1.11 in [St2], we may choose a weight vector
w ∈ Nr such that inw(P ) = inglex(P ) and w1 > wi for 1 < i ≤ r. Let
ϕw : N → Nr be the map defined by ϕw(z) = (zw1 , . . . , zwr). Since w1 is the
largest component of w, we have limz→∞ ϕw(z)/‖ϕw(z)‖ = e1. By hypothe-
sis, we also have e1 ∈ int K which implies that ϕw(z) ∈ K for z � 0. For a
fixed z, consider Qz(y) = P

(
y ϕw(z)

)
∈ Q[y]. If P (t) =

∑
u bu t

u has total
degree `, then the highest degree term in Qz(y) is

(∑
|u|=` buz

w·u)y`. When
ϕw(z) ∈ K and y � 0, Qz(y) agrees with the Hilbert function H

(
M, y ϕw(z)

)
which implies that Qz(y) > 0. Thus, the leading coefficient of the polynomial
Qz(y) is positive. Because this is true for all sufficiently large z, the leading
coefficient of

∑
|u|=` buz

w·u considered as a polynomial in Q[z] is also positive.
Finally, our choice of w implies that the leading coefficient of

∑
|u|=` buz

w·u

equals the leading coefficient of P (t) with respect to the graded lexicographic
order. �

Remark 4.6. Lemma 4.5 is more applicable than is obvious at first glance.
Clearly e1 can be replaced by any other standard basis vector ei, with the
corresponding change of lexicographic order. More generally, there is always a
unimodular coordinate change on Zr that takes the configuration {a1, . . . ,an}
to a new configuration {a′1, . . . ,a′n} with e1 ∈ int K. Indeed, any vector
v ∈ Zr with gcd(vi) = 1 can be the first column of a matrix in SLr(Z). In
fact, there is an unimodular transformation of Zr such that the entire positive
orthant lies inside K. In this case, the leading term of the Hilbert polynomial
P (t) with respect to any graded monomial order (not just graded lexicographic
ones) on k[t1, . . . , tr] is positive. This conclusion also holds provided the
sequence ϕw(z) approaches ‖ϕw(z)‖ei from within K. In particular, it applies
when K equals the positive orthant as in Examples 2.3 and 2.9.

We now use Proposition 4.4 and Lemma 4.5 to give an algorithm for listing
all B-saturated monomial ideals with a given multigraded Hilbert polynomial.

Algorithm 4.7. Let ≺ be a graded total order on ∆ and let < be the
corresponding graded monomial order on Q[t1, . . . , tr]. Given a polynomial
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P (t) ∈ Q[t1, . . . , tr], this algorithm returns all B-saturated monomial ideals
with the multigraded Hilbert polynomial P (t).

1. (Coordinate change.) Make a unimodular coordinate change φ on Zr
such that the positive orthant lies inside K and replace the polynomial
P (t) with P

(
φ−1(t)

)
.

2. (Initialize.) Set Reps = ∅, PartialReps =
{(
∅, P (t)

)}
and Ideals = ∅.

3. (Enlarge representation.) Select and remove an element
(
S, Q(t)

)
from PartialReps. For each τ̂ ∈ ∆ satisfying
(a) if S 6= ∅, then there exists a pair (xu, σ) ∈ S with σ̂ � τ̂ ;
(b) in<

(
Q(t)

)
= in<

(
PSτ (t)

)
;

(c) the leading coefficient with respect to < of Q(t)− PSτ (t) is pos-
itive;

and for each monomial xv ∈ S satisfying
(d) if S = ∅, then xv = 1;
(e) if S 6= ∅, then for (xu, σ) from (a) we have xv = xux` for some

` 6∈ σ;
do as follows. If Q(t)−PSτ (t) = 0, then append the set S∪{(xv, τ)}
to Reps. Otherwise, append the pair

(
S ∪ {(xv, τ)}, Q(t) − PSτ (t)

)
to PartialReps.

4. (Finished?) If PartialReps 6= ∅, then go to Step 3.
5. (Check Hilbert polynomial.) For each S ∈ Reps compute the multi-

graded Hilbert polynomial of the ideal I =
⋂

(xv ,τ)∈S
〈xvi+1
i : i 6∈ τ〉.

If the multigraded Hilbert polynomial of I is P (t), then append I to
Ideals. Output the list Ideals.

Proof of correctness. By construction, the output is a list of monomial
ideals with multigraded Hilbert polynomial P (t) that are B-saturated by
Lemma 2.4. Conversely, given any B-saturated monomial ideal I, Propo-
sition 4.4 provides a Stanley filtration {(xui , σi) : 1 ≤ i ≤ m} for S/I such
that for all i > 1 there is a j < i with σ̂j ∈ ∆, σ̂j ≤ σ̂i and xui = xujx` for
some ` 6∈ σj . Thus, the conditions (a), (d) and (e) in Step 3 do not eliminate
any B-saturated monomial ideals with Hilbert polynomial P (t).

For 1 ≤ j ≤ m, the polynomial P (t) −
∑j

i=1 PSσi (t) is the Hilbert poly-
nomial of the Zr-graded S-module

⊕m
i=j+1 Sσi(−Aui) and Lemma 4.5 (com-

bined with Step 1) ensures that its leading coefficient is positive. Since ≺ is
a graded total order on ∆, we have in

(
PSσi (t)

)
≥ in

(
PSσj (t)

)
for i < j, so

the leading term of the subtracted polynomial will be in(PSσj+1
). This means

that conditions (b) and (c) in Step 3 do not exclude any of the relevant ideals.
We conclude that every B-saturated monomial ideal with multigraded Hilbert
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polynomial P (t) has a Stanley filtration of the form created by this procedure
which implies every such ideal is part of the output.

It remains to show that this procedure terminates. To accomplish this,
observe that Step 3 replaces the pair (S, Q) with pairs in which either the
leading coefficient of the second entry, or its leading term, is strictly less than
that of Q(t). Since there are only a finite number of choices for PSτ (t), there
is a lower bound on how much the leading coefficient can decrease which
guarantees that the process cannot continue indefinitely. �

This corollary also follows, albeit non-constructively, from [Mac].
Corollary 4.8. For any polynomial P (t), there are only finitely many

B-saturated monomial ideals with multigraded Hilbert polynomial P (t). �
We illustrate Algorithm 4.7 by constructing all B-saturated monomial

ideals in the standard graded polynomial ring S = k[x1, x2, x3] having Hilbert
polynomial 3t+ 1.

Example 4.9. Since the lead term of the Hilbert polynomial is 3t, there
must be three pairs of the form (xu, τ) with |τ | = 2. Fix the ordering:
{1} ≺ {2} ≺ {3}. Since the pairs correspond to disjoint sets of monomials,
the first three pairs are (1, {i1, i2}), (xi3 , {j1, j2}) and (xi3xj3 , {k1, k2}) where
{i1, i2, i3} = {j1, j2, j3} = {1, 2, 3}. These pairs contribute

(
t+1

1

)
+
(
t
1

)
+(

t−1
1

)
= 3t to the Hilbert polynomial. Hence, the Stanley filtrations also

contain the pair (xi3xj3xk3 , {`1}) where {k1, k2, k3} = {1, 2, 3}. Constructing
all these sets which satisfy the order condition gives:

1.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {2, 3}), (x3

1, {3})
}

2.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {2, 3}), (x3

1, {2})
}

3.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {2, 3}), (x3

1, {1})
}

4.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {2, 3}), (x2

1x2, {3})
}

5.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {1, 3}), (x2

1x2, {2})
}

6.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {2, 3}), (x2

1x2, {1})
}

7.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {1, 2}), (x2

1x3, {2})
}

8.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {1, 2}), (x2

1x3, {1})
}

9.
{

(1, {2, 3}), (x1, {2, 3}), (x2
1, {1, 2}), (x2

1x3, {3})
}

10.
{

(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 3}), (x1x
2
2, {3})

}
11.

{
(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 3}), (x1x

2
2, {2})

}
12.

{
(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 3}), (x1x

2
2, {1})

}
13.

{
(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 2}), (x1x2x3, {3})

}
14.

{
(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 2}), (x1x2x3, {2})

}
15.

{
(1, {2, 3}), (x1, {1, 3}), (x1x2, {1, 2}), (x1x2x3, {1})

}
16.

{
(1, {2, 3}), (x1, {1, 2}), (x1x3, {1, 2}), (x1x

2
3, {2})

}
17.

{
(1, {2, 3}), (x1, {1, 2}), (x1x3, {1, 2}), (x1x

2
3, {1})

}
18.

{
(1, {1, 3}), (x2, {1, 3}), (x2

2, {1, 3}), (x3
2, {3})

}
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19.
{

(1, {1, 3}), (x2, {1, 3}), (x2
2, {1, 3}), (x3

2, {2})
}

20.
{

(1, {1, 3}), (x2, {1, 3}), (x2
2, {1, 3}), (x3

2, {1})
}

21.
{

(1, {1, 3}), (x2, {1, 3}), (x2
2, {1, 2}), (x2

2x3, {2})
}

22.
{

(1, {1, 3}), (x2, {1, 3}), (x2
2, {1, 2}), (x2

2x3, {1})
}

23.
{

(1, {1, 3}), (x2, {1, 2}), (x2x3, {1, 2}), (x2x
2
3, {2})

}
24.

{
(1, {1, 3}), (x2, {1, 2}), (x2x3, {1, 2}), (x2x

2
3, {1})

}
25.

{
(1, {1, 2}), (x3, {1, 2}), (x2

3, {2, 3}), (x1x
2
3, {3})

}
26.

{
(1, {1, 2}), (x3, {1, 2}), (x2

3, {1, 3}), (x2x
2
3, {3})

}
27.

{
(1, {1, 2}), (x3, {1, 2}), (x2

3, {1, 2}), (x3
3, {3})

}
28.

{
(1, {1, 2}), (x3, {1, 3}), (x2x3, {1, 3}), (x2

2x3, {3})
}

29.
{

(1, {1, 2}), (x3, {1, 2}), (x2
3, {1, 2}), (x3

3, {2})
}

30.
{

(1, {1, 2}), (x3, {1, 2}), (x2x3, {1, 2}), (x3
3, {1})

}
In particular, there are 30 B-saturated monomial ideals in S with Hilbert
function 3t+ 1.

We can verify this calculation as follows. Since

3t+ 1 =
(
t+ 1

1

)
+
(
t

1

)
+
(
t− 1

1

)
+
(
t− 2

0

)
,

Gotzmann’s regularity theorem implies that every saturated ideal with the
required Hilbert polynomial has regularity 4 which means the generators have
degree at most 4. Because dimk S4 = 15 and 3(4) + 1 = 13, the list consists
of all ideals generated by two monomials of degree 4. Eliminating those that
do not have the correct Hilbert polynomial produces the same 30 monomial
ideals.

To state our next theorem, we make the following definition.
Definition 4.10. Let m be the largest number of pairs in a decomposition

S constructed in Algorithm 4.7. We call this the Gotzmann number of P (t).
To calculate an upper bound for the Gotzmann number of P (t), we can use

a simplified version of Algorithm 4.7. Specifically, the Gotzmann number is
bounded by the maximum k among all the expressions P (t) =

∑k
i=1 Pi(t−qi)

that satisfy the following conditions:

(1) Pi(t) = PSσi (t) for some σ̂i ∈ ∆;
(2) q1 = 0;
(3) for all i > 1, there is a j < i with σ̂j � σ̂i and qi = qj + a` for some

` 6∈ σj .
When S has the standard grading (or equivalently when X = Pd), the re-
sults of §5 show that this upper bound is the exact Gotzmann number. The
analogous question for general smooth projective toric varieties is not known.

We now establish our multigraded generalization of Gotzmann’s regularity
theorem.
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Theorem 4.11. Let c ∈
⋂n
i=1

(
ai + K

)
and let I be any B-saturated ideal

in S. If m is the Gotzmann number of the Hilbert polynomial PS/I(t), then⋂
σ̂∈∆

(
(m− 1)c+ reg(Sσ)

)
⊆ reg(S/I) .

Proof. Applying Proposition 2.7 and Lemma 2.13, we may assume without
loss of generality that I is a B-saturated monomial ideal. Algorithm 4.7 yields
a partial Stanley filtration

{
(xui , σi)

}
with at most m pairs. Moreover, we

have |ui| < i. Since the hypothesis on c guarantees that

(m− 1)c+ reg(Sσi) ⊆ Aui + reg(Sσi)

and Theorem 4.1 implies that
⋂
σ̂i∈∆

(
Aui + reg(Sσi )

)
⊆ reg (S/I), the theo-

rem follows. �
We end this section with two examples.
Example 4.12. Let I be a B-saturated ideal corresponding to the set of

` points on a smooth projective toric variety X . Hence, PS/I(t) = ` and the
Gotzmann number of PS/I(t) is also `. If c ∈

⋂n
i=1(ai + K), then S/I is

(`−1)c-regular. This bound is independent of the configuration of the points.
In contrast, Proposition 6.7 in [MS] shows that reg(S/I) does depend on the
arrangement of the points on X .

Example 4.13. If X = P2×P1, then S = k[x1, . . . , x5] has the Z2-grading
defined by deg(x1) = deg(x2) = deg(x3) = [ 1

0 ] and deg(x4) = deg(x5) = [ 0
1 ].

We consider those multigraded Hilbert polynomials which map to 3t+1 under
the embedding of X into P5 given by [ 1

1 ] ∈ Z2 = Pic(X).

• P (t1, t2) = 3t1 + 1: In this case, we need only consider two decompo-
sitions of the multigraded Hilbert polynomial P (t), namely

(t1 + 1) + (t1) + (t1 − 1) + 1 and (t1 + 1) + (t1) + (t1) .

It follows that the Gotzmann number is 4. Since Proposition 6.10 in
[MS] shows that 0 ∈ reg(S), we deduce that every ideal I with the
given multigraded Hilbert polynomial is [ 3

3 ]-regular.
• P (t1, t2) = 2t1 + t2 + 1: The possible decompositions are

(t1 + 1) + (t1) + (t2) and (t1 + 1) + (t1 + 1) + (t2 − 1) ,

so the Gotzmann number is 3.
• P (t1, t2) = t1 +2t2 +1: The only decomposition is (t1 +1)+(t2)+(t2),

so the Gotzmann number is again 3.
• P (t1, t2) = 3t2 + 1: There are no B-saturated ideals with this Hilbert

polynomial. Indeed, the first piece of a decomposition would be t2 +1
corresponding to a pair (1, σ) with 4, 5 ∈ σ. The second pair would
have the form (xi, τ) for some i ∈ {1, 2, 3} which means that the



158 DIANE MACLAGAN AND GREGORY G. SMITH

second piece of the decomposition must again be t2 + 1. However, we
are left with a polynomial of the form t2− 1 which is impossible since
we also have 4, 5 ∈ τ .

5. A new proof of Gotzmann’s regularity theorem

By specializing to a standard graded polynomial ring, we next show that
Theorem 4.11 implies Gotzmann’s regularity theorem. Throughout this sec-
tion, S = k[x1, . . . , xn] has the Z-grading defined by deg(xi) = 1 for all i and
the irrelevant ideal B = 〈x1, . . . , xn〉. Gotzmann’s regularity theorem gives a
bound on the regularity of all B-saturated ideals in S with a given Hilbert
polynomial P (t). We first prove that Gotzmann’s bound is the Gotzmann
number for P (t) (which justifies Definition 4.10).

Lemma 5.1. If the polynomial P (t) ∈ Q[t] can be expressed in the form

(5.1.8) P (t) =
(
t+ q1 − u1

q1

)
+
(
t+ q2 − u2

q2

)
+ · · ·+

(
t+ qm − um

qm

)
,

where q1 ≥ q2 ≥ · · · ≥ qm ≥ 0 and 0 ≤ ui ≤ i− 1 for 1 ≤ i ≤ m, then among
all such expressions the number m is maximized if and only if ui = i− 1 for
all i.

Proof. A modification to Algorithm 4.7 gives a method for finding all ex-
pressions of the form (5.1.8). Hence, there is only a finite number of such de-
compositions, so we may choose P (t) =

(
t+q1−u1

q1

)
+
(
t+q2−u2

q2

)
+· · ·+

(
t+qm−um

qm

)
to be an expression of the desired form with a maximal number of summands.
Suppose there is an i such that ui < i−1 and let k be the smallest such i. Using
Pascal’s identity, we can replace

(
t+qk−uk

qk

)
with

(
t+qk−(uk+1)

qk

)
+
(
t+(qk−1)−uk

qk−1

)
.

We claim that, by reordering (if necessary) the binomial coefficients
(
t+qi−ui

qi

)
with i > k and

(
t+(qk−1)−uk

qk−1

)
, we obtain an expression of the desired form with

m + 1 summands. Indeed, the new expression has the desired form because
uk < k − 1 implies uk+1 ≤ k − 1 and the

(
t+(qk−1)−uk

qk−1

)
term has the same

shift with a larger index. This longer expression contradicts the maximality
of our choice, so we must have ui = i− 1 for all i. �

This lemma allows us to give a new proof of Gotzmann’s regularity theorem.
Theorem 5.2 ([Got]). Let S = k[x1, . . . , xn] be the homogeneous coordi-

nate ring of Pd and let B be the irrelevant ideal 〈x1, . . . , xn〉. If I is an ideal
in S and

(5.2.9) PS/I(t) =
(
t+ q1

q1

)
+
(
t+ q2 − 1

q2

)
+ · · ·+

(
t+ qm − (m− 1)

qm

)
,

where q1 ≥ q2 ≥ · · · ≥ qm ≥ 0, then S/(I : B∞) is (m− 1)-regular.
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Proof. By Proposition 2.7, we may assume that I is a B-saturated mono-
mial ideal. Let

{
(xui , σi) : 1 ≤ i ≤ `

}
be a Stanley filtration for S/I satisfying

the requirements of Proposition 4.4. Since each Sσi is also a standard graded
polynomial ring, we know that each Sσi is 0-regular (see Example 4.2 in [MS]).
Remark 4.2 implies that S/I is k-regular where k = max{|ui| : 1 ≤ i ≤ m}.
We have

PS/I(t) =
(
t+ |σ1| − |u1|

|σ1|

)
+
(
t+ |σ2| − |u2|

|σ2|

)
+ · · ·+

(
t+ |σ`| − |u`|

|σ`|

)
,

where |σ1| ≥ |σ2| ≥ · · · ≥ |σ`| ≥ 0 and 0 ≤ |ui| ≤ i − 1 for 1 ≤ i ≤ `.
Lemma 5.1 shows that k < ` ≤ m, which completes the proof. �

Although not required in our proof of Gotzmann’s regularity theorem, the
expression (5.2.9) corresponds to a Stanley filtration of the saturated lexi-
cographic ideal with Hilbert polynomial P (t). By definition, the tth graded
component of a lexicographic ideal Ilex is the k-vector space spanned by the
largest H(Ilex, t) monomials in lexicographic order. If we fix an ordering on
the variables xi, then Macaulay’s description of Hilbert functions in S (The-
orem 4.2.10 in [BH]) shows that there is a unique B-saturated lexicographic
ideal associated to every Hilbert polynomial.

Proposition 5.3. If P (t) is a Hilbert polynomial, then the expression

(5.3.10) P (t) =
(
t+ q1

q1

)
+
(
t+ q2 − 1

q2

)
+ · · ·+

(
t+ qm − (m− 1)

qm

)
,

with q1 ≥ q2 ≥ · · · ≥ qm ≥ 0 comes from a Stanley filtration for S/Ilex where
Ilex is the unique B-saturated lexicographic ideal satisfying PS/Ilex(t) = P (t).

Proof. From [RS], we know that for every saturated lexicographic ideal Ilex

there is an integer ` between 0 and n−1 and positive integers bj for 1 ≤ j ≤ `
such that

(5.3.11) Ilex = 〈x1, . . . , xn−`−1, x
b1+1
n−` , x

b1
n−`x

b2+1
n−`+1, . . . ,

xb1n−` · · ·x
b`−2
n−3x

b`−1+1
n−2 , xb1n−` · · ·x

b`
n−1〉 .

We use Algorithm 3.4 to compute a Stanley filtration for S/I where I is
any ideal of the form given on the right-hand side of (5.3.11). In Step 2
of Algorithm 3.4, choose the variable xn−`; the largest variable dividing the
largest minimal generator of I. It follows that I+〈xn−`〉 = 〈x1, . . . , xn−`〉 and(
I : xn−`

)
= 〈x1, . . . , xn−`−1, x

b1
n−`, x

b1−1
n−` x

b2+1
n−`+1, . . . , x

b1−1
n−` · · ·x

b`
n−1〉. Hence,

the left-hand child of I is prime and corresponds to (1, {n − ` + 1, . . . , n}).
On the other hand, the right-hand child is another ideal of the form given on
the right-hand side of (5.3.11). Iterating this process, we obtain a Stanley
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filtration of S/I:

(5.3.12)
⋃̀
j=1

bj⋃
i=0

{
(xb1n−` · · ·xin−`+j−1, {n− `+ j, . . . , n})

}
,

and one verifies that (5.3.12) yields an expression of the form (5.3.10). �
Since the number of pairs in the Stanley filtration (5.3.12) equals the max-

imum total degree of a minimal generator of the saturated lexicographic ideal
Ilex, it follows that Gotzmann’s regularity theorem is sharp. This establishes
the well-known result that the lexicographic ideal has the worst regularity
among all B-saturated ideals with the same Hilbert polynomial.

6. Multigraded Hilbert schemes

The aim of this section is to construct a space HilbPX that parameterizes all
subschemes of X with a given Hilbert polynomial P ∈ Q[t1, . . . , tr]. This gen-
eralizes the original Hilbert scheme, introduced in [Gro], which parameterizes
subschemes of projective space. Like all parameter spaces, HilbPX allows one
to study the natural adjacency relationships between subschemes. This larger
class of Hilbert schemes also includes many more manageably sized examples.
By analyzing these small spaces, we expect to gain new insights into Hilbert
schemes.

Before discussing our construction, we provide a simple example.
Example 6.1. It is well known that the lines on the nonsingular quadratic

surface X ∼= P1 × P1 contained in P3 belong to two families. Each of these
families is precisely a multigraded Hilbert scheme. In fact, the closed sub-
scheme of Hilbt+1

P3 parameterizing subschemes of P3 with Hilbert polynomial
t+ 1 lying on X is the disjoint union Hilbt1+1

X qHilbt2+1
X

∼= P1 q P1.
We construct the space HilbPX by proving that the appropriate functor is

represented by a projective scheme. Define the functor HilbPX that sends the
category of commutative rings over k to the category sets as follows: given
a commutative ring R over k, HilbPX(R) is the set of families of subschemes
Y ⊆ X×kSpec(R) over Spec(R) whose sheaf of ideals has the specified Hilbert
polynomial P . To prove that HilbPX is representable, we build on the methods
used in [HS]; see §6.1 for the explicit reference to our setting.

To begin, we recall the Hilbert functor Hh
SD

from [HS]. For D ⊂ Zr, SD

denotes the graded k-vector space
⊕
p∈D Sp and FD =

⋃
p,k∈D Fp,k denotes a

collection of maps where Fp,k ⊆ Homk(Sp, Sk). More precisely, Fp,k consists
of the multiplication maps arising from the monomials in Sk−p. For a com-
mutative ring R over k, let R ⊗ SD be the graded R-module

⊕
p∈DR⊗k Sp
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with operators FRp,k = (1R ⊗k −)(Fp,k). A homogeneous submodule

L =
⊕
p∈D

Lp ⊆ R⊗ SD

is an F -submodule if it satisfies FRp,k(Lp) ⊆ Lk for all p,k ∈ D. Given a
function h : D −→ N, letHh

SD
(R) be the set of F -submodules L ⊆ R⊗SD such

that (R⊗k Sp)/Lp is a locally free R-module of rank h(p) for each p ∈D. If
ψ : R −→ R′ is a homomorphism, then local freeness implies that L′ = R′⊗RL
is an F -submodule of R′ ⊗ SD and (R′ ⊗k Sp)/L′p is a locally free R′-module
of rank h(p) for each p ∈ D. Defining Hh

SD
(ψ) : Hh

SD
(R) −→ Hh

SD
(R′) to

be the map sending L to L′ makes Hh
SD

into a functor from the category of
commutative rings over k to the category of sets.

When the function h : D −→ N is defined by evaluating a polynomial P at
points in D, we simply write HP

SD
. By relating the functors HilbPX and HP

SD
,

we show that HilbPX is representable.
Theorem 6.2. If P ∈ Q[t1, . . . , tr] is a multigraded Hilbert polynomial,

then the functor HilbPX is represented by a projective scheme over k. In fact,
there is a finite subset D ⊂ Zr which produces a canonical closed embedding
from HilbPX into HP

SD
.

Proof. If R is a commutative ring over k, then [Co1] shows that each ideal
sheaf in HilbPX(R) corresponds to a unique B-saturated ideal I in the ring
S ⊗k R = R[x1, . . . , xn]. Using Theorem 4.11, we can choose a k ∈ K for
which every such I is k-regular. Lemma 6.8 in [MS] states that the truncation
I|k+K := S ·

(⊕
p∈k+K Ip

)
corresponds to the same ideal sheaf on X as I does.

This bijection between sheaves of ideals on X and truncations of ideals in S

gives a natural transformation between HilbPX and HP
Sk+K

.
In §6.1 of [HS], Haiman and Sturmfels claim that there exists a finite set

D ⊂ k + K satisfying

(6.2.13)
for every extension field K of k and every LD ∈ HP

SD
(K), if

L′ denotes the F -submodule of K ⊗ SD generated by LD, then
dim(K ⊗k St)/L′t ≤ P (t) for all t ∈ k + K.

For such a finite set D ⊂ k + K, Theorem 2.3 in [HS] produces a closed
embedding HilbPX = HP

Sk+K
−→ HP

SD
. Since Theorem 2.2 and Remark 2.5 in

[HS] prove that HP
SD

is represented by a closed subscheme of a Grassmann
scheme, this completes the proof. �

To give explicit equations for HilbPX , we need an effective description of
both the set D and the equations defining the closed subscheme of HP

SD
. The

following algorithm, essentially a constructive version of Proposition 3.2 in
[HS], produces the set D.
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Algorithm 6.3. Given a Hilbert polynomial P ∈ Q[t1, . . . , tr], this algo-
rithm returns a finite subset D satisfying (6.2.13).

1. (Initialize.) Set D equal to {k}, where k is a bound on the regularity
of all B-saturated ideals with Hilbert polynomial P obtained from
Theorem 4.11.

2. (Create ideals.) Construct the set Ideals of all monomial ideals I
generated in degree D such that H(S/I, t) = P (t) for all t ∈ D.
Since there are only a finite number of monomials with degrees in D,
this is a finite set.

3. (Finished?) If every ideal I in Ideals satisfies PS/I(t) = P (t), then
return D. Otherwise, for every ideal in Ideals find a t ∈ k + K such
that H(S/I, t) 6= P (t). Add each of these points to D and return
to Step 2. One choice of such points is to use the maximum degree
of a monomial with degree in D to bound the maximum size of any
|ui|, and thus of any Aui, occurring in a Stanley filtration of the
appropriate form. This gives a bound c on the regularity of all ideals
generated in D, and so we can add the point c, together with

(
n
d

)
sufficiently general points in c + K to D. Evaluating H(S/I, t) at
these points also lets us check whether PS/I(t) = P (t).

Proof of correctness. The proof of Proposition 3.2 of [HS] establishes that
this algorithm terminates. It remains to show that the output satisfies (6.2.13).
By construction, every ideal I in Ideals has Hilbert polynomial P . Step 1
guarantees that the saturation I = (I : B∞) has Hilbert polynomial P and
is k-regular. Theorem 5.4 in [MS] implies that I|k+K is generated in de-
gree k. Since H(S/I,k) = H(S/I,k) = P (k), we have Ik = Ik. Because
I ⊆ I, it follows that I|k+K = I|k+K. Applying Corollary 2.15, we see that
H(S/I, t) = P (t) for all t ∈ k + K. We conclude that (6.2.13) holds.

We finish by explaining why in Step 3 it suffices to choose
(
n
d

)
sufficiently

general points in c+ K to add to D. By construction, all ideals generated in
the degrees in D agree with their Hilbert polynomial on c+ K. Since P (t) is
a polynomial of degree at most d in r variables, it has at most

(
d+r
d

)
terms. If

the Hilbert function of an ideal I generated in the degrees in D agrees with
P (t) for

(
n
d

)
sufficiently general points in c + K, then it must have Hilbert

polynomial P . �
Gotzmann’s Persistence Theorem (see [Got] or Theorem 4.3.3 in [BH])

states that once the Hilbert function of an ideal in a standard graded ring
achieves maximal growth it continues to grow maximally. In particular, the
Hilbert function agrees with the Hilbert polynomial beyond that point. A
multigraded version of this theorem would lead to an effective description of
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the equations defining the relevant closed subscheme of HP
SD

. This is the
central open problem in this area.
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