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Abstract. We study the linear map sending the numerator of the rational

function representing the Hilbert series of a module to that of its r-th Veronese
submodule. We show that the asymptotic behaviour as r tends to infinity de-
pends on the multidegree of the module and the underlying positively multi-
graded polynomial ring. More importantly, we give a polyhedral description
for the asymptotic polynomial and prove that the coefficients are log-concave.

1. Introduction

Although motivated by multigraded Hilbert series, our main result only involves
linear operators on a multivariate power series. To be explicit, let A := [a1 · · · an]
be an integer (d × n)-matrix of rank d such that the only nonnegative vector in
the kernel is the zero vector (i.e. a1, . . . ,an is an acyclic vector configuration; see
[Zie, §6.2]). Equivalently, the rational function 1/

(∏
1�j�n(1 − taj )

)
has a unique

expansion as a multivariate formal power series; cf. Lemma 8.16 in [MS]. For each
positive integer r, consider the linear operator Φr induced by sifting out all terms
with the exponent vector divisible by r in the power series expansion of a rational
function. More precisely, Φr acts on F (t) ∈ Z[t±1] := Z[t1, t

−1
1 , . . . , td, t

−1
d ] as

follows:

if
F (t)∏

1�j�n(1− taj )
=
∑
w

cw tw, then
∑
w

crw tw =
Φr[F (t)]∏

1�j�n(1− taj )
.

The goal of this article is to understand Φr[F (t)] for r � 0.
To state our result, α : Rn → Rd denotes the linear map determined by A.

Let Z be the associated zonotope; it is the image under α of the unit hypercube
[0, 1]n ⊂ Rn. For each u ∈ Zd, set P (u) := α−1(u) ∩ [0, 1]n. We say that the
map α is degenerate if there exists u in the boundary of Z such that dimP (u) =
n − d. By identifying the rational polytope P (u) with a translate P (u) + x lying
in ker(A) = α−1(0), the normalized volume voln−d

(
P (u)

)
equals (n− d)! times

the Euclidean volume of P (u) + x with respect to the lattice α−1(0) ∩ Z
n. Let m

be the greatest common divisor of the maximal minors of A; in other words, the
sublattice ZA ⊆ Zd generated by the columns of A has index m.
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Theorem 1.1. If α is nondegenerate and F (t) =
∑

v∈ZA fv t
v ∈ Z[t±1], then we

have

lim sup
r→∞

Φr[F (t)]

rn−d
=

(
F (1)

(n− d)!

)
KA(t), where KA(t) :=

∑
u∈int(Z)∩Zd

voln−d

(
P (u)

)
tu .

Moreover, the coefficients of KA(t) are log-concave, quasi-concave, and sum to
mn−d (n− d)!.

When A = [1 · · · 1], Theorem 1.1 specializes to Theorem 5.1 in [DF2]. In this
case, KA(t) is the Eulerian polynomial

∑
i�0

〈
n−1
i

〉
ti+1, where

〈
n−1
i

〉
counts the

permutations of {1, . . . , n− 1} with exactly i ascents. If A is a totally unimodular
matrix (i.e. each subdeterminant of A is ±1 or 0), then we have KA(t) ∈ Z[t±1];
see Remark 2.2. Thus, for any appropriate matrix A, one might regard KA(t) as a
generalization of the Eulerian polynomial. However, KA(t) is not obviously related
to the multivariate Eulerian polynomials in [BHVW, §4.3] or the mixed Eulerian
numbers in [Pos, §16]. Nevertheless, the proof of Theorem 1.1 (see Step 1 in §2)
implies that, for any F (t) =

∑
v∈int(mZ) fvt

v ∈ Z[t±1] satisfying F (1) > 0, there

exists r0 ∈ N such that, for all r � r0, Φmr[F (t)] has nonnegative coefficients that
are both log-concave and quasi-concave. Since quasi-concavity is the multivariate
version of unimodality (see Step 2 in §2), Theorem 1.1 generalizes those parts of
Theorem 1.4 in [BW] and Theorem 1.2 in [BS] that do not make explicit reference
to the roots of F (t). It is an open problem to effectively bound r0.

Despite sharing most properties of the Eulerian polynomial, the Laurent poly-
nomial KA(t) need not satisfy the multivariate analogues of real-zero univariate
polynomials. For example, if

A =

[
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1

]
,

then we have KA(t1, t2, t3) = t1t3+t2, which does not have the half-plane property;
see Theorem 3.2 in [Bra]. Notably, the polynomialKA(t1, t2, t3) = t1t3+t2 is neither
real stable nor Hurwitz stable.

In contrast with [BW], [BS] or [DF2], we provide a new proof that the Eulerian
numbers

〈
n
i

〉
are log-concave and unimodal. We use polyhedral geometry and the

Prékopa-Leindler inequality (a.k.a. the functional form of the Brunn-Minkowski
inequality) to establish the log-concavity for the coefficients of KA(t); see Proposi-
tion 2.1. Since this method does not appear in the survey articles [Sta2,Bre], our
approach to log-concavity appears to be novel within algebraic combinatorics.

Motivation. Our primary motivation for Theorem 1.1 comes from commutative
algebra and algebraic geometry. The matrix A defines a positive Z

d-grading on
the polynomial ring S := C[x1, . . . , xn] by setting deg(xj) := aj for all 1 � j � n;
see Definition 8.7 in [MS]. For any finitely generated Zd-graded S-module M =⊕

w∈Zd Mw, the Hilbert series of M can be expressed uniquely as a rational func-

tion of the form F (t)/
(∏

1�j�n(1−taj )
)
; see Theorem 8.20 in [MS]. The numerator

F (t) is the Poincaré polynomial or K-polynomial of M — it records the al-
ternating sum of the multigraded Betti numbers for M ; see Definition 8.21 and
Theorem 8.23 in [MS]. Applying the operator Φr to the numerator of Hilbert se-
ries for M yields the numerator of Hilbert series for the r-th Veronese submodule⊕

w∈Zd Mrw. Theorem 1.1 shows that there is a unique asymptotic K-polynomial
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for each M ; see §3 for the important case in which F (1) = 0. Therefore, The-
orem 1.1 gives some information about the solution to Problem 5.3 in [EL]. The
results in both [EL] and this paper suggest that the asymptotic structure is sur-
prisingly insensitive to the specific module.

Geometrically, the Zd-grading on S corresponds to the action of the torus (C∗)d

on An, and a multigraded S-module M corresponds to a torus-equivariant sheaf on
A

n. In this setting, the numerator F (t) is the class in the equivariant K-theory
of An represented by the corresponding sheaf; see Theorem 8.34 in [MS]. Hence,
Theorem 1.1 implies that the Veronese operator Φr distinguishes the class KA(t)
within equivariant K-theory. By taking a GIT quotient (e.g [MS, §10.4]), we see
that the (n−d)-dimensional toric variety A

n//(C∗)d is equipped with a distinguished
K-theory class KA(t). A geometric explanation for this distinguished K-theory
class would be interesting.

Our secondary motivation comes from the theory of lattice point enumeration.
Given lattice polytopes P1, . . . , Pd in Rn and nonnegative integers w1, . . . , wd, the
number of lattice points in the Minkowski sum of the wi-dilates of the Pi is de-
noted

∣∣(w1P1 + · · · + wdPd) ∩ Zd
∣∣. Ehrhart theory implies that the generating

series
∑

(w1,...,wd)

∣∣(w1P1+ · · ·+wdPd)∩Zd
∣∣ tw1

1 · · · twd

d can be expressed in the form

F (t)/
(∏

1�j�n(1 − taj )
)
. The numerator F (t) is a multivariate h∗-vector (a.k.a.

Ehrhart h-vector or δ-polynomial) for the collection P1, . . . , Pd. Thus, Theorem 1.1
also yields a multivariate analogue of Corollary 1.3 in [BS].

Multivariate formal power series of the form F (t)/
(∏

1�j�n(1− taj )
)
also arise

naturally in many other areas of mathematics. Perhaps the most ubiquitous source
is the vector partition function ψA : Nd → N associated to A; ψA(u) counts the
number of nonnegative integer vectors x ∈ N

n such that Ax = u. The generating
series

∑
u ψA(u) t

u equals 1/
(∏

1�j�n(1−taj )
)
. As [Stu] indicates, vector partition

functions appear in representation theory, approximation theory, and statistics.
Reinterpreting Φr in each of these areas will yield new insights into KA(t).

Basic examples. We end this section with two examples illustrating Theorem 1.1.

Example 1.2. Let A = [ 2 1 0
0 1 2 ], so that d = 2, n = 3, and m = gcd(2, 4, 2) = 2. For

all r > 2, we have Φ2r[1] = (r−1)t21t
2
2+(r−1)t21t2+(r−1)t1t

2
2+ rt1t2+ t1+ t2+1,

which implies that lim
r→∞

Φ2r[1]
2r = 1

2 t
2
1t

2
2 +

1
2 t

2
1t2 +

1
2 t1t

2
2 +

1
2 t1t2. However, we also

have Φ2r+1[1] = rt21t
2
2 + rt1t2 + 1, which shows that lim

r→∞
Φr [1]

r does not exist.

Nevertheless, we obtain lim sup
r→∞

Φr[1]
r = 1

2 t
2
1t

2
2 +

1
2 t

2
1t2 +

1
2 t1t

2
2 +

1
2 t1t2.

The zonotope Z associated to A is conv
{
(0, 0), (2, 0), (0, 2), (3, 1), (1, 3), (3, 3)

}
.

Its interior lattice points are (1, 1), (2, 1), (1, 2), (2, 2) and the associated polytopes
are the line segments:

P (1, 1) = conv
{
(0, 1, 0), ( 12 , 0,

1
2 )
}
, P (2, 1) = conv

{
( 12 , 1, 0), (1, 0,

1
2 )
}
,

P (1, 2) = conv
{
(0, 1, 12 ), (

1
2 , 0, 1)

}
, P (2, 2) = conv

{
(1, 0, 1), ( 12 , 0, 1)

}
.

Since α−1(0) ∩ Z
3 = {(i,−2i, i) : i ∈ Z} and the coefficient of tu in KA(t) is the

normalized volume of P (u), we have KA(t1, t2) = 1
2 t

2
1t

2
2 + 1

2 t
2
1t2 + 1

2 t1t
2
2 + 1

2 t1t2.
The coefficients sum to 2. �
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Example 1.3. Let A = [ 1 1 0
0 0 1 ], so that d = 2, n = 3, and m = 1. It follows that

lim sup
r→∞

Φr [1]
r = lim

r→∞
(r−1)t1+1

r = t1 , lim sup
r→∞

Φr [t1]
r = lim

r→∞
(r−1)t1

r = t1 ,

lim sup
r→∞

Φr[t2]

r
= lim

r→∞
(r−1)t1t2+t2

r = t1t2 , lim sup
r→∞

Φr [t1t2]
r = lim

r→∞
rt1t2
r = t1t2 .

Although each of the limits exists, they do not simply depend up to a scalar on
the matrix A. The zonotope Z = conv

{
(0, 0), (2, 0), (0, 1), (2, 1)

}
has no interior

lattice points, but both of the polytopes P (1, 0) = conv
{
(1, 0, 0), (0, 1, 0)

}
and

P (1, 1) = conv
{
(1, 0, 1), (0, 1, 1)

}
have dimension n− d = 1. In particular, the map

α is degenerate. �

Further examples, open problems, and other connections are discussed in §3.
The proof of Theorem 1.1 is given in §2.

2. The proof of the main theorem

We divide the proof of Theorem 1.1 into three steps: Step 1 establishes that the
limit exists and provides a polyhedral interpretation for KA(t), Step 2 uses the
polyhedral interpretation to prove the log-concavity of the coefficients, and Step 3
gives a geometric explanation for the sum of the coefficients. For brevity, we write∏

j :=
∏

1�j�n and
∑

j :=
∑

1�j�n.

Step 1. To begin, we describe the matrix associated to the linear operator Φr.
Despite being defined via multivariate formal power series, Φr may be under-
stood in terms of a linear operator on Laurent polynomials. Specifically, let Ψr ∈
End

(
Z[t±1]

)
be the linear operator that discards the terms with exponent vec-

tors that are not componentwise divisible by r and divides each of the remaining
exponent vectors by r. Consider a Laurent polynomial F (t) ∈ Z[t±1] such that
F (t)/

(∏
j(1− taj )

)
=
∑

w cw tw. The linear operator Ψr lifts to an endomorphism
on multivariate formal power series. Applying Ψr to this rational function yields

Φr[F (t)]∏
j(1− taj )

=
∑
w

crw tw = Ψr

[
F (t)∏

j(1− taj )

]

= Ψr

(
F (t)

∏
j(1 + taj + t2aj + · · ·+ t(r−1)aj )∏

j(1− traj )

)

=
Ψr[F (t)

∏
j(1 + taj + t2aj + · · ·+ t(r−1)aj )]∏

j(1− taj )
.

Hence, we have Φr[F (t)] = Ψr[F (t)
∏

j(1 + taj + t2aj + · · · + t(r−1)aj )]; this is a

multivariate version of Lemma 3.2 in [BS]. To express Φr as a matrix with respect
to the monomial basis, set

Cr(u,v) :=
∣∣{x = (x1, . . . , xn) ∈ Z

n ∩ [0, r − 1]n :
∑

j xj aj = ru− v}
∣∣.

Since F (t) :=
∑

v∈ZA fv t
v, we have Φr[F (t)] =

∑
u

(∑
v∈ZA Cr(u,v) fv

)
tu. As

v ∈ ZA, we also have Cr(u,v) = 0 for all u 	∈ ZA. However, the sublattice
ZA ⊆ Zd has index m, so mu ∈ ZA. Hence, it is enough to consider

Φmr[F (t)] =
∑

u

(∑
v∈ZA Cmr(u,v) fv

)
tu .
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We next relate the integer coefficients Cmr(u,v) to the normalized volume of the
rational polytope P (u) := {x ∈ [0, 1]n :

∑
j xj aj = u} = α−1(u) ∩ [0, 1]n ⊆ Rn.

For any u ∈ Zd and any v ∈ ZA, there exists y and z ∈ Zn such that mu = α(y)
and v = α(z). It follows that

Cmr(u,v) =
∣∣((mr − 1)P (u) + 1

my − z
)
∩ Z

n
∣∣ = ∣∣((mr − 1)P (u) + 1

my
)
∩ Z

n
∣∣ .

The enumerative theory for systems of linear diophantine equations establishes that
the function

r 
→
∣∣((mr− 1)P (u)+ 1

my
)
∩Z

n
∣∣ = ∣∣((r− 1)

(
mP (u)

)
+ (m− 1)P (u)+ 1

my
)
∩Z

n
∣∣

is a quasi-polynomial; see Theorem 6.50 in [BG] or Theorem 4.6.11 in [Sta3]. More-
over, the leading coefficient of this quasi-polynomial is the relative volume ofmP (u)
with respect to the lattice α−1(rmu)∩Zn; see Theorem 6.55 in [BG]. Sincemu ∈ ZA
and (mr− 1)P (u)+ 1

my ⊂ α−1(rmu), the normalized volume voln−d(P (u)) equals

(n−d)!/mn−d times the coefficient of the degree n−d term in this quasi-polynomial,
so

lim
r→∞

Cmr(u,v)

(mr)n−d
= lim

r→∞

∣∣((mr − 1)P (u) + 1
my

)
∩ Zn

∣∣
(mr)n−d

=
voln−d

(
P (u)

)
(n− d)!

.

By hypothesis, α is nondegenerate, so P (u) has dimension n − d if and only if u
lies in the interior of Z. Therefore, we have

lim
r→∞

Φmr[F (t)]

(mr)n−d
=
∑
u

(∑
v∈ZA

(
lim
r→∞

Cmr(u,v)

(mr)n−d

)
fv

)
tu

=
F (1)

(n− d)!

( ∑
u∈int(Z)∩Zd

voln−d

(
P (u)

)
tu

)
.

It follows immediately from this polyhedral description that KA(t) inherits the
symmetries of the zonotope Z. �

Step 2. The second step takes advantage of a well-known theorem from convex
geometric analysis. To isolate the applicable result, recall that g : Rd → R is log-
concave if g(u) > 0 and log(g) is concave. Equivalently, for s ∈ [0, 1] and u,v ∈ Z

d,
we have the inequality g

(
su+ (1− s)v

)
� g(u)sg(v)1−s.

Proposition 2.1. Let X ⊂ Rn be a closed convex set and let π : Rn → Rd be a
surjective linear map. Consider the function g : Rd → R that assigns to u ∈ Rd the
volume of the fibre π−1(u) ∩X. It follows that g is log-concave.

Proof. Choosing a basis for ker(π) defines an injective linear map ϕ : Rn−d → Rn

such that π ◦ ϕ is the zero map. We may also choose an injective linear map
η : Rd → Rn such that π ◦ η is the identity map, because π is surjective. For any
u ∈ Rd, we set X(u) := {p ∈ Rn−d : ϕ(p) + η(u) ∈ X} ∼= π−1(u) ∩ X, so that
g(u) = vol

(
X(u)

)
. Since X is convex, we have

sX(u) + (1− s)X(v) ⊆ X
(
su+ (1− s)v

)
for all s ∈ [0, 1] and u,v ∈ Rd. If 1Y : Rn−d → R denotes the indicator function for

Y ⊆ Rn−d, i.e. 1Y (y) =
{

1 if y ∈ Y
0 if y �∈ Y , then we obtain

1X(su+(1−s)v)

(
sp+ (1− s)q

)
�
(
1X(u)(p)

)s(
1X(v)(q)

)1−s
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for all p, q ∈ Rn−d. There exists a positive k ∈ R such that

g(u) = k

∫
Rn−d

1X(u)(p)dp ,

so the Prékopa-Leindler inequality (Theorem 7.1 in [Gar] or Theorem 6.4 in [Vil])
yields

g
(
su+ (1− s)v

)
= k

∫
Rn−d

1X(su+(1−s)v)(p) dp

� k

(∫
Rn−d

1X(u)(p) dp

)s(∫
Rn−d

1X(v)(p) dp

)1−s

=
(
g(u)

)s(
g(v)

)1−s
. �

To establish that the coefficient function of KA(t) is log-concave, we simply
apply Proposition 2.1 when X = [0, 1]n and π = α, because Step 1 shows that
the coefficients of KA(t) equal the normalized volume of the fibres of the map
α : [0, 1]n → Z.

We finish this step by showing that the coefficient function of KA(t) is quasi-
concave. A function g : Rd → R is quasi-concave if, for all e ∈ R, its superlevel
set {u ∈ Rd : g(u) � e} is convex. Equivalently, for s ∈ [0, 1] and u,v ∈ Rd, we
have g

(
su+ (1− s)v

)
� min

(
g(u), g(v)

)
. In particular, every positive log-concave

function is quasi-concave. �

Step 3. Lastly, we reinterpret the coefficients of KA(t) as the normalized volumes
of certain regions in the hypercube [0,m]n−d. This perspective is inspired by the
well-known interpretation for the Eulerian numbers as the normalized volume of
“slabs” in the hypercube; see [Sta1]. In fact, when A = [1 · · · 1], we recover this
interpretation.

By reordering the columns and making a unimodular change of basis on Z
d, it

suffices to consider the case in which A = [H |B′ ], where H is a (d× d)-matrix in
Hermite normal form, det(H) = m, and B′ = [b1 · · · bd]

t is a
(
d× (n− d)

)
-matrix;

see [Sch, §4.1]. Let B be the integer block (n×d)-matrix
[
mH−1B′

−mIn−d

]
, so that AB = 0.

If m = 1, then H = Id and B is the Gale dual of A; see [Zie, §6.4]. Thus, we may
assume that A has this block structure.

For u ∈ Z
d, consider regions

R(u) := {p ∈ [0,m]n−d : m(ui − 1) � bi · p � mui for all 1 � i � d} ⊂ R
n−d .

By definition, each region R(u) is a rational polytope and, combined together,
these regions partition the hypercube [0,m]n−d. Hence, the union

⋃
u R(u) has

normalized volume equal to mn−d(n− d)!.
To complete the proof, it is enough to show that the coefficients of KA(t) also

correspond to the normalized volumes of the regions R(u). If J is the integer

(n × d)-matrix
[
mH−1

0

]
, then we obtain AJ = mId. Moreover, the inequalities

m(ui − 1) � bi · p � mui hold if and only if the inequalities 1 � ui − 1
mbi · p � 0

hold. It follows that the affine map p 
→ 1
m (Ju − Bp) sends the region R(u) into

the rational polytope P (u) = {x ∈ [0, 1]n :
∑

j xj aj = u} = α−1(u) ∩ [0, 1]n.

The inverse map is associated to the
(
(n − d) × n)-matrix L := [ 0 | In−d ] which

satisfies LJ = 0 and LB = −mIn−d. Since Step 1 establishes that the coefficients
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of KA(t) equal the normalized volumes of the polytopes P (u), we conclude that
KA(1) = mn−d(n− d)!, as required. �
Remark 2.2. Suppose that A is a totally unimodular matrix which implies that
m = 1. If u ∈ Zd, then P (u) is a lattice polytope (see Theorem 19.1 in [Sch]) and
Cr(u,v) =

∣∣((r − 1)P (u)
)
∩ Z

n
∣∣. Thus, the normalized volume voln−d

(
P (u)

)
is

a nonnegative integer, which implies that KA(1) = (n − d)! and KA(t) ∈ Z[t±1].
Finding a combinatorial description for these coefficients remains an open prob-
lem. One tantalizing possibility is that the coefficients naturally enumerate some
partition of the symmetric group on n− d letters.

3. Other connections

This section uses two additional examples to highlight some potential applications
for Theorem 1.1. To help orient future research, we also state a few open problems.

Asymptotic equalities. When F (1) 	= 0, Theorem 1.1 shows that some of the
coefficients of Φr[F (t)], regarded as functions of r, are asymptotically equal to an
explicit multiple of rn−d. In many situations, Theorem 1.1 yields an asymptotic
equality even though F (1) = 0. Roughly speaking, the Taylor expansion of F (t)
about t = 1 allows one to cancel factors from the denominator and, thereby, apply
Theorem 1.1 to a submatrix of A. We demonstrate this approach in the following
prototypical example.

Example 3.1. Let S = C[x1, . . . , x6] be the polynomial ring with the positive Z
2-

grading induced by A = [ 2 1 2 0 1 2
0 1 1 2 2 2 ]. Observe thatm = 1. Fix the finitely generated

Z2-graded S-module M = S/I where I = 〈x2
5−x4x6, x3x5−x2x6, x3x4−x2x5, x

2
3−

x1x6, x2x3−x1x5, x
2
2−x1x6〉. Under the standard grading (i.e. when A = [ 1 · · · 1 ]),

the module M would be the homogeneous coordinate ring of the Veronese surface
in P5. As a rational function, the Hilbert series of M is

F (t)∏
j(1− taj )

=
(1− t1t2)(1− t21t2)(1− t1t

2
2)(1 + t1t2 + t21t2 + t1t

2)

(1− t21)(1− t1t2)(1− t21t2)(1− t22)(1− t1t22)(1− t21t
2
2)

.

Since � := codim(M) = 3 > 0, it follows that F (1) = 0.
In this context, an appropriate expansion of F (t) comes from a choice of initial

module. Each monomial initial module of M is homogeneous with respect to the
Z
n-grading arising from the identity matrix In; see [MS, §2.2]. Since M and any

initial module have the same Hilbert series, the Taylor expansion for the numerator
of the Zn-graded Hilbert series produces an expression for F (t) as a polynomial
in the variables (1 − ta1), . . . , (1 − tan); see Exercise 8.15 in [MS]. Moreover, the
lowest terms in each such expression have degree �, are square-free, and have non-
negative coefficients; see Exercise 8.8 in [MS]. For instance, the monomial initial
ideals 〈x2, x3, x5〉2 and 〈x1, x2, x

2
5〉 ∩ 〈x2

2, x5, x6〉 of I (chosen from among the 29
possibilities) yield the following expansions:

F (t) = 4(1−ta2)(1−ta3)(1−ta5)− (1−ta2)2(1−ta3)(1−ta5)

−(1−ta2)(1−ta3)2(1−ta5)− (1−ta2)(1−ta3)(1−ta5)2

= 2(1−ta1)(1−ta2)(1−ta5) + 2(1−ta2)(1−ta5)(1−ta6)

−(1−ta1)(1−ta2)(1−ta5)2 − (1−ta1)(1−ta2)(1−ta5)(1−ta6)

−(1−ta2)2(1−ta5)(1−ta6) .
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Observe that the coefficient of the term (1 − tas1 )(1 − tas2 )(1 − tas3 ) equals the
multiplicity μs of the minimal prime 〈xs1 , xs2 , xs3〉 for the initial ideal; cf. Defini-
tion 8.43 in [MS]. Since we have Φr[(1− tai)F (t)] = (1− tai)Φr[F (t)], Theorem 1.1
gives

lim
r→∞

Φr[F (t)]

rn−�−d
=

1

(n− �− d)!

∑
s

⎛
⎝ μs

mn−�−d
Aŝ

KAŝ
(t)

∏
1�i��

(1− tasi )

⎞
⎠ ,

where Aŝ is the (d × (n − �))-submatrix of A in which the columns indexed by s
are omitted and mAŝ

is the greatest common divisor of the maximal minors of Aŝ.
In particular, we have

lim
r→∞

Φr[F (t)]

r
= 1

2 t1t2(t1 + 1)(t2 + 1)(t1t2 + 1)(1− t1t2)(1− t21t2)(1− t1t
2
2)

= 4
4

(
K[ 2 0 2

0 2 2 ]
(t)
)
(1−ta2)(1−ta3)(1−ta5)

= 2
2

(
K[ 2 0 2

1 2 2 ]
(t)
)
(1−ta1)(1−ta2)(1−ta5)

+ 2
2

(
K[ 2 2 0

0 1 2 ]
(t)
)
(1−ta2)(1−ta5)(1−ta6) .

As the expansions for F (t) vary, these equations lead to nontrivial relations among
asymptotic K-polynomials associated to submatrices of A. �

This approach also suggests a way to understand lower-order asymptotics. Specif-

ically, if lim sup
r→∞

Φr [F (t)]
rn−�−d = G(t)

(n−�−d)! , then (n − � − d)! Φr[F (t)] − G(t) vanishes at

t = 1 and one should analyze lim sup
r→∞

(n−�−d)! Φr [F (t)]−G(t)
rn−�−d−1 . Providing an algebraic

or geometric interpretation for this lower-order asymptotics is an open problem.

Stochastic matrices. By scaling the matrix associated to the linear operator Φr,
we obtain a stochastic matrix. Specifically, the matrix C(r) := r d−n [Cr(u,v) ]
where u and v range over int(Z)∩Zd is a nonnegative square matrix each of whose
columns sum to 1. When A = [ 1 · · · 1 ], [Hol] (also see [DF1]) establishes that C(r)
has the following “amazing” properties:

• for all r, the stationary vector (i.e., the eigenvector with eigenvalue 1)
corresponds to the coefficients of KA(t)/(n− d)!;

• the matrix C(r) has eigenvalues r−i for 0 � i < n − d with explicit eigen-
vectors independent of r;

• we have C(r1)C(r2) = C(r1r2).

The next example illustrates how these properties extend to our more general set-
ting.

Example 3.2. Let A =
[
1 1 0 0 −1
0 0 1 1 1

]
, so that

Z = conv{(0, 0), (2, 0), (−1, 1), (2, 2), (−1, 3), (1, 3)}
and KA(t1, t2) = t1t

2
2 + 2t1t2 + 2t22 + t2. Fixing (1, 2), (1, 1), (2, 0), (1, 0) as the

ordering for the interior lattice points yields the stochastic matrix

C(r) := r−3

⎡
⎢⎢⎢⎣
(
r+2
3

) (
r+1
3

) (
r+1
3

) (
r
3

)
2
(
r+1
3

)
2
(
r+1
3

)
+
(
r+1
2

)
2
(
r
3

)
+
(
r
2

)
2
(
r+1
3

)
2
(
r+1
3

)
2
(
r
3

)
+
(
r
2

)
2
(
r+1
3

)
+
(
r+1
2

)
2
(
r+1
3

)(
r
3

) (
r+1
3

) (
r+1
3

) (
r+2
3

)

⎤
⎥⎥⎥⎦ .
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The eigenvalues of C(r) are 1, r−1, r−1, r−2 and the corresponding eigenvectors are
simply [ 1 2 2 1 ]t, [ 1 0 0 − 1 ]t, [ 0 1 − 1 0 ]t, [ 1 − 1 − 1 1 ]t. �

In the standard graded case, [Hol] and [DF1] relate the matrix C(r) to the process
of “carries” when adding integers and to shuffling cards, respectively. Do our more
general stochastic matrices also correspond to known Markov chains? Regardless,
it would be interesting to bound the rates of convergence for the associated Markov
chains and thereby extend the results in [DF2, §3].
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