Queen's Algebraic Geometry — Seminar —

Invariants for the Modular Cyclic Group of Prime Order via Classical Invariant Theory

DAVID WEHLAU Queen's University

Abstract

Let k be any field of characteristic p. It is well-known that there are exactly p inequivalent indecomposable representations V_1, V_2, \ldots, V_p of C_p defined over k. Thus if V is any finite dimensional C_p -representation, then there are nonnegative integers $0 \le n_1, n_2, \ldots, n_k \le p-1$ such that $V \cong \bigoplus_{i=1}^k V_{n_i+1}$. It is also well-known there is a unique (up to equivalence) (d+1)-dimensional irreducible complex representation of $SL_2(\mathbb{C})$ given by its action on the space R_d of d forms. I'll describe my recent result which reduces the computation of the ring of C_p -invariants $\mathbb{k}[\bigoplus_{i=1}^k V_{n_i+1}]^{C_p}$ to the computation of the classical ring of invariants (or covariants) $\mathbb{C}[R_1 \oplus (\bigoplus_{i=1}^k R_{n_i})]^{SL_2(\mathbb{C})}$. This allows us to compute for the first time the ring of invariants for many representations of C_p .

> Monday, October 5, 2009 3:00pm – 4:00pm 319 Jeffery Hall