Queen's Algebraic Geometry — Seminar —

EMBEDDINGS OF SEMISIMPLE GROUPS AND COHOMOLOGY MAPS

VALDEMAR TSANOV Queen's University

Abstract

Let G, \widetilde{G} be two semisimple complex algebraic groups and X, \widetilde{X} be their flag varieties. Suppose $\iota: G \hookrightarrow \widetilde{G}$ is an embedding, \widetilde{B} is a Borel subgroup of \widetilde{G} , and $B = G \cap \widetilde{B}$ is a Borel subgroup of G. This gives an embedding $X \hookrightarrow \widetilde{X}$. An equivariant line bundle on \widetilde{X} is determined by an integral weight $\widetilde{\lambda}$ of \widetilde{G} and denoted $\mathcal{L}_{\widetilde{\lambda}}$. A line bundle $\mathcal{L}_{\widetilde{\lambda}}$ on \widetilde{X} restricts to a line bundle \mathcal{L}_{λ} on X, and we have a map on sheaf cohomology

$$\pi: H(\widetilde{X}, \mathcal{L}_{\widetilde{\lambda}}) \longrightarrow H(X, \mathcal{L}_{\lambda})$$

By the Borel-Weil-Bott theorem these two cohomology spaces are irreducible modules over \widetilde{G} and G respectively. We can consider both as G modules via restriction. The map π is equivariant, and the irreducibility of $H(X, \mathcal{L}_{\lambda})$ implies, via Schur's lemma, that π is either surjective or zero.

Dimitrov and Roth have recently found a necessary and sufficient condition for π to be nonzero, in the case of the diagonal embedding $X \hookrightarrow X \times X$. This condition, expressed in terms of the root systems of G and \tilde{G} suggests a relation to Lie algebra cohomology and the theory developed by Kostant for his alternative proof of the Borel-Weil-Bott theorem.

It turns out that an analogue to π restriction map occurs in Lie algebra cohomology. I will discuss the relation between the two cohomology theories and consider some examples of restriction maps in Lie algebra cohomology, namely those coming from diagonal embeddings and root-embeddings.

 $\begin{array}{l} \mbox{Monday, March 30, 2009} \\ 4:30 \mbox{pm} - 5:30 \mbox{pm} \\ 319 \mbox{ Jeffery Hall} \end{array}$