Queen's Algebraic Geometry — Seminar —

Resolutions of Rings of Invariants

JOHN C. HARRIS D'Youville College

Abstract

Let G be the cyclic group of order n and suppose \mathbf{F} is a field containing a primitive n^{th} root of unity. We denote by W_b the one dimensional representation of G associated to the character -b where $1 \leq b \leq n$. We consider the ring of invariants $\mathbf{F}[W]^G$ of the three dimensional representation $W = W_b \oplus W_c \oplus W_d$ of G where $G \subset \text{SL}(W)$. We describe minimal generators and relations for this ring of invariants and prove that the lead terms of the relations are quadratic with respect to a carefully chosen term order. With this term order these minimal generators for the relations form a Gröbner basis and the lead terms have a surprisingly simple combinatorial structure. Exploiting this structure, we describe the graded Betti numbers for a minimal free resolution of these rings of invariants. The case where $W = W_b \oplus W_c$ is any two dimensional representation of G is also handled.

> Monday 2 April 2012 15:30 – 16:30 319 Jeffery Hall