Binary Theta Series and
CM Modular Forms

1. Introduction

Let | |
ﬁq(2> _ Z €2mq($,y)z _ Zrn<q>€2mnz

x,YEL n>0
be the theta series attached to a positive definite binary quadratic
form q(z,y) = ax* + bxy + cy?, a,b, c € Z.

Weber(1893), Hecke (1926): Let D = A(q) := b* — 4ac
denote the discriminant of ¢ and ¥p = (2) the Legendre-
Kronecker character. Then 9, is a modular form of weight 1,

level | D| and Nebentypus ¢p, i.e. ¥, € Mi(|D|,¢¥p).
Fix: a discriminant D < 0, and let
Op:=(,:q€Qp)c and O(D):=,:q€ Q(D))c
be the C-subspaces generated by the theta-series, where
Q(D) = {q=(a,b,c) €Z*:a>0,3t: A(q) = D/t*},
Qp = {g=(a,b,c) € Q(D) : ged(a,b,c) =1,A(q) = D}.
Thus
©p C O(D) C M(|D|,¥p).
Questions: 1) How large are the spaces ©p and O(D)?

2) How can a binary theta series 9, be expressed in terms of
the (extended) Atkin-Lehner basis of My(|D|,v¥p)?

3) Is there an intrinsic characterization of these spaces?



2. Some Observations

1) The group GLs(Z) acts on the sets Qp and Q(D), and
19(]’ = ﬁq» for all q’ < q GLQ(Z)

By using a result of . one can show that the
set {J,:q € Qp/ GLy(Z)} is a basis of Op. In particular,

dim@p — ED = ‘QD/ GLQ(Z)l

2) By Gauss’s theory of composition of forms, the set

CU(D) = Qp/ SLa(Z)
has the structure of an abelian group. If hp := | CI(D)], then
1

hp = 5(91) + hp), where gp = [Cl(D) : CI(D)?]

denotes the number of genera of forms of discriminant D.

3) For a character X c CI(D)* on CI(D), put

- Z X :Zan<x)62m’nz c @D;

qECl n>0
where wp =2 tfor D < —4 and w_3=6,m_4 = 4.
It is immediate that {¥, },ecip)- generates ©p and hence by
1) forms a basis of ©p (subject to the identification ¥y = ).

Note: It turns out (cf. Theorem 1) that the coefficients a,(y) are
multiplicative in n, and that hence ¢, is a Hecke eigenfunc-
tion w.r.t. to the Hecke algebra T(D) generated by the Hecke
operators 1), with (p, D) = 1.



4) The L-function associated to the form 1, is

Lis,x) = Lis,0) = Y au(xn™

n>1

This function is frequently found in the literature (e.g., in Lang,
Elliptic Functions, 1* ed.), and was recently studied in detail

by Z.-H. Sun and K. S. Williams (2006).

5) If D is a fundamental discriminant, i.e. if D = dg, then it is
well-known that each ¥, is a primitive form (newform) and

hence in this case the ,’s are part of the canonical Atkin-
Lehner basis of My(|D|,vp).

However, in the general case this is no longer true for every
x € CI(D)* because some of the characters x € CI(D)* are
not primitive, i.e. they are lifts

x =X om of characters x' € Cl(D')*

of some “lower level” D'|D (where £, = t> > 1) via the canon-

. D
ical map

T =mpp : Cl(D) — CI(D).



3. Main Results

Theorem 1: The space Op is a T(D)-submodule of M;(| D], 1p)
of multiplicity one, and has a canonical basis {1}, } consisting

of normalized T(D)-eigenforms. Furthermore, ¢, lies in the
Eisenstein space if and only if y is a quadratic character, and
so ¥, is a cusp form if and only if y* # 1.

Theorem 2: We have Op = 05 @ @%, where
0L = OpNE,(|D],vp) denotes the Eisenstein space part and

O, = OpNSi(|D|, 1) denotes the cusp space part of Op, and
(1) dimOf =gp and dimO} = L(hp — gp).

Remarks: 1) For a fundamental discriminant D = dj these
results were essentially known to

2) Theorem 2 is closely related to a general result of
(for which he assumes that the weight &£ > 2).

Theorem 3: Let y € CI(D)*, where D = f3dy.

(a) 3! divisor f,|fp and a unique primitive character x,, €
Cl(D,), where D, = fidK, such that x = x,- o Tpp,.

(b) The form 4, . € Op_isa primitive form (newform) of level
| D, |. Moreover, there exist constants ¢, () € R such that

(2) I(2) = D enlX)Vy, (n2),

nlf3
where f, = fp/f,. Furthermore, the function n — ¢,(x) is
multiplicative and has the following generating function:



8)  Cls.x) = Y elx)n™ = Lls,0,)/L(s.9y,).
n|f3
Remark: While L(s,?, ) is a classical Hecke L-function asso-
ciated to a Hecke character and hence is well-understood, the
L-function L(s,1},) is more complicated and is, in fact, un-
known in general.

Thus, (3) does not help in determining the constants ¢, ().
However, C(s,x) can be computed directly by using facts
about ideals in quadratic orders.

As a consequence, we thus obtain an explicit expression for the
L-function L(s, x) = L(s, ) :

Corollary: If y € CI(D)*, then L(s, x) has the Euler product
(4) Lis,x) = ][ Lo(s: x)
where for p{ f, the p-Euler factir L,(s,x) is given by
Ly(s,x) = (1= ap(x)p~" + ¢pp)p™>) " 1

= (1= ay(xp)p "+, (D)p™™)
whereas for p | f, (and p|| f,), it is given by

L5 ) 1 — pll=29)% ( - %¢Dx(p>) plt =2
5, X) = + -
! L=p2 1 —ay(Xp)p~* +p, (p)p~*
Remark: This generalizes the work of Sun and Williams (2006)
(for D < 0), who obtained a formula for the p-Euler factors of
L(s, x) in the case that the class group CI(D) is cyclic.

1




4. An Intrinsic Characterization of O(D)

Definition: Let f € M (N,) be a T(N)-eigenfunction with
eigencharacter Ay : T(D) — C. We say that f has CM (com-
plex multiplication) by a Dirichlet character 6 if

A (T,)0(p) = A¢(T),), for all p1 Ncond(6),
or, equivalently, if
Ai(T,) =0 for all p1 Ncond(f) with 6(p) # 1.

We let MM (N, 4p; 0) denote the space generated by all T'(IV)-
eigenfunctions f € M (N, ) which have CM by 6.

Theorem 4: For every discriminant D < 0 we have that
(5)  ©(D) = M{™(ID[,¢p) = M{IM(|D|, ¢p;¥p).
Corollary:
(6)  dim©(D) = dim M{™(|D|,¢p) = > 2°Vhp) .
flfp

where w(f) denotes the number of distinct prime divisors of
f. Moreover, the dimensions of the Eisenstein part and of the

cuspidal part of MM (| D], 4p) are given by

dim EY(ID],vp) = > 2°Vgp o,
flfp

dim ST(]DJ, ¢p) ZQ (fpse2 = 9pyg2)-
flfp

Remark: There is no (known) formula for dim M;(| D], ¥p).



5. Ingredients
1) Dedekind’s Isomorphism:

)\D : Cl(D) :> PiC(DD),

where Op = Z + Z% C Oy 1s the order of discriminant
D (and/or of conductor fp in K).
2) A classification of the invertible ideals of O p:
= the multiplicativity of a, (),
the value of ¢,(x) for n|D, etc.

3) A study of the conductor of x € CI(D)* : via the isomorphism

I (fpOK)/Prz(fp) = Pic(Op),

one can identify each x € CI(D)* with a Hecke character x
on the group Ix(fpO ) of fractional ideals prime to the ideal
fpO K. A key fact is:

X is primitive on Cl(D) < x is primitive mod fpO .

4) Genus theory (Gauss/Kronecker /Weber): this identifies quadratic
characters y € CI(D)* with certain Dirichlet characters.
5) Extended Atkin-Lehner theory: this describes:

1) the characters A\ € T(N)* = Hom(T(/N), C) of the Hecke
algebra T(N) C End(My(N,1))) in terms of primitive eigen-
functions (newforms);

2) the structure of the T(/V)-eigenspace associated to A:
Mp(N, )N ={f € Mp(N, ) : flxT, = X1, f,¥Y(n,N) =1}



For Theorem 4, we also need:

6) (a) The Deligne/Serre theory of Galois representations

o7+ Gy = Gal(Q/Q) — CLs(C)
attached to T(NV)-eigenfunctions f € Mi(N, ).

(b) A characterization of characters of ring class fields via
(strongly) dihedral Galois representations of Gg (= reinter-
pretation of a result of Bruckner (1966)).

(¢) A characterization of CM forms via their associated Galois
representations (— Theorem 5 below).



6. (zalois representations

Deligne/Serre (1974): If f € My(N, ) is anormalized T(N)-
eigenfunction, then 3! Galois representation

pr: Gg — GLy(C)
such that for all primes p 1 N

tr(pr(Fryp)) = Ap(Tp) = ap(f),
det(py(Pry)) = ¥i(p).

Furthermore, py is irreducible < f is a cusp form.
Definition: An Galois representation p : Gg — GlLo(C) is called
strongly dihedral if Im(p) ~ D, is a dihedral group (n > 3).
Moreover, p is said to be of dihedral type if Im(p)/Z(Im(p)) =~
D,, is a dihedral group (n > 2).
Theorem 5: Let f € Si(N, 1) be a newform.
(a) f has CM by some character 6 < p; is of dihedral type.
(b) f has CM by ¢ < py is strongly dihedral.

Theorem 6: Let p : G — GLy(C) be Galois representation.

(a) (Hecke) (cf. Deligne/Serre) If p is of dihedral type and is
odd, then p = p; for some f € S1(N, ).

(b) (Bruckner, 1966) p is strongly dihedral if and only if the
field Fix(Ker(p)) is contained in some ring class field.

Remark: Theorems 3, 5, 6 = Theorem 4.



