Curves of Genus 2 and
a Conjecture of Gauss

1. Introduction

Let E; and E5 be two elliptic curves over K = K.

Question: s there a (smooth, irreducible) genus 2 curve C' on
the product surface £y x E5?

Equivalent Question: Isthere a curve C'such that its Jacobian
Jo 1s isomorphic to By x E5?

Definition: The pair (E, E») is called irreducible if such a curve
exists, and is called reducible if no such curve exists.

Problem 1: Classify the reducible pairs (Ey, Es).

Remarks: 1) This problem was studied by:
Hayashida(1965), Hayashida/Nishi(1965) — partial results
[bukiyama/Katsura/Oort (1986) If Fy, Es are supersingular,
then (Ey, E») is reducible < char(K) = 2 or 3.

2) If E is not isogenous to Ey, then (E7, Es) is reducible.
Assume henceforth: £ ~ Ey and Ej is not supersingular.

Basic Observation: The irreducibility depends only on the na-
ture of the quadratic form

qp,.5,(f) = deg(f) on Hom(FEy, Ey) ~Z'.
Here r = 2 if E{ has C M and otherwise r = 1.
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Notes: 1) Thus, by choosing a basis of Hom(F1, Es), the map
qr,.B, defines an equivalence class of positive definite quadratic
forms in r < 2 variables.

2) Conversely, it can be shown that every positive definite
quadratic form ¢ in r < 2 variables is equivalent to qg, g,
for some pair (Ey, Es) of elliptic curves.

By using deep results in number theory (due to and
), it is possible to prove:

Theorem 1: There exist only finitely many equivalence classes
of positive definite quadratic forms ¢ in » < 2 variables such
that ¢ ~ qg, p,, for some reducible pair (£, Es).

Problem 1a: Classify the (finitely many) “exceptional” quadratic
forms of Theorem 1.

Problem 1b: For each exceptional quadratic form ¢, classify the
pairs (£, Ey) of elliptic curves with q(g, ) ~ ¢.

Note: While Problem 1D is relatively simple, Problem 1a is quite
difficult, for it is closely connected to a Conjecture of Gauss.



2. A Conjecture of Gauss

Recall: If K = Q(v/—d) is an imaginary quadratic field with
hi =1, then d < 163 (provided that d is squarefree).

— this was “conjectured” by Gauss (1801)
— the fact that d is bounded was proved by Heilbronn (1934)
—the conjecture was proved by Heegner (1952)) Stark (1967),. ..

However: the above conjecture is only a portion of what he ac-
tually conjectured in Article 303 of the Disquisitiones Arith-
meticae. Translated to number fields, his conjecture is:

If K = Q(v/—d) is an imaginary quadratic field whose
class group Cl(Dg) is an elementary abelian 2-group, then
d < 5460.

— the fact that d is bounded was proved by Chowla (1934) by
extending [Heilbronn’s method.

—in the 1930’s, the conjecture was studied by Dickson and his
students (e.g. N. Hall), who obtained useful partial results.

— Swift (1948): conjecture is true for d < 107 (computations
were carried out using [.ehmer’s linear congruence machine)
— Weinberger (1973) proved:

1) there is at most one counterexample (this requires Lehmer’s
computations that the conjecture is true for d < 2.1 x 10")
2) GRH (Generalized Riemann Hypothesis) = there are no
counterexamples, i.e. the conjecture is true.

Note: Chowla is the only person who mentions that this is (es-
sentially) a conjecture of Gauss.
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Conjecture of Gauss: If ¢ is a primitive, positive definite bi-
nary quadratic form of discriminant A(q) = —4D), then

c(q) =1 < D is one of the 65 idoneal numbers of Euler.
Here (cf. ), ¢(q) is the class number of the form ¢, i.e.

c(q) = #(equivalence classes of forms in the genus of q).

Remarks: studied in the “c(q) = 1”7 problem for
r > 3 variables (and stated that the case r = 2 is impossible):

1) There exist only finitely many classes of positive definite
primitive forms with ¢(q) = 1 (and none for r» > 11).

2) For r = 3, d precisely 790 classes of such forms.

Theorem 2 (Non-CM Case). If r = 1, then there are either 21
or 22 exceptional forms g(z) = da?. If Gauss’s Conjecture (or
if GRH) is true, then ¢ is exceptional < either d = 1 or d is
one of the 20 idoneal numbers d = 2,4,6 (mod 8) < d € L =

{1,2,4,6,10,12, 18,22, 28,30, 42, 53, 60, 70, 78, 102, 130, 190, 210, 330, 462}.

Moreover, to each such d belongs an infinite family of pairs
(E1, Es); these are parametrized by the (non-CM) points of
the modular curve Xy(d).

Theorem 3 (CM Case). If » = 2, then there are precisely 15

exceptional forms, and these come from 46 (distinct) pairs of
CM-curves (E7, Es).

Note: If we restrict attention to those CM-curves for which End(E})
is a maximal order, then there are only 4 pairs of curves/forms,
as was proved by and



3. The Refined Humbert Invariant

Aim: Translate the existence of genus 2 curves into a problem
about quadratic forms.

Let A be an abelian surface (dim(A) = 2),
NS(A) = Div(A)/ = its Néron-Severi group.
Observation: If C' C A is a (smooth) curve of genus 2, then
C? = 2 and so its class ¢ = cl(C) € NS(A) is a principal
polarization on A.

The converse is false: not every 6 € P(A) := {principal po-
larizations on A} comes from an irreducible genus 2 curve.

Definition: The refined Humbert invariant of a principally polar-
ized abelian surface (A, 6) is the (positive definite) quadratic
form gy on NS(A, ) := NS(A)/Z0O defined by

(1) q(D) = (D.0)* —2D?* for D € Div(A).

Remark: In [ECAS] (1994) T showed how ¢ is related to (and
refines) the classical Humbert invariant A(A, 6) € N.

Key Lemma: Let 6 € P(A). Then 0 = cl(C), for some (smooth)
genus 2 curve C' on A < qp(D) # 1, VD € Div(A4).

Proof (Sketch) («=) If not, then by a theorem of \Weil(1957),
0 = cl(D), where D = E; + FE5, and the E;’s are elliptic
curves with (E1.Ey) = 1. But then gy(FE;) = 1, contradiction.
(=) If 0 = cl(C) but go(D) = 1, then by [ECAS| we have that
D = Ej and 6§ — D = E,, where the E; are elliptic curves.
Thus 0 = Ey + Fy # C (by Riemann-Roch), contradiction.



6

Consequence: The existence (or non-existence) of genus 2 curves
C on A can be translated to a problem about the quadratic
form g4 associated to the intersection pairing on NS(A), i.e.

1
qa(D) = 51)2, for all D € NS(A).

Corollary: If A is an abelian surface, then there is no smooth
genus 2 curve on A if and only if

(2) (ga)g represents 1, for every 6 € NS(A) with g4(0) = 1.
Note: If A = F| x E5, then

qga ~ vy L <_QE1,E2>7

where xy is the quadratic form defined by the hyperbolic plane
and qg, p, 1s (as above) the quadratic form defined by the
degree map.

Definition: A positive definite quadratic form ¢ is called excep-
tional if the form @ = zy L (—q) satisfies (2), i.e.

Qy — 1 for all 6 with Q(0) = 1.

Here, following . “qg — 1”7 means “q represents 1”7, and
()y is defined by replacing (the role of) ¢4 in (1) by Q.

Note: By the above Corollary, this definition is consistent with
the previous use of the term “exceptional” (which was defined
only for the quadratic form gg, g, since its definition used a
geometric property of £y x FEj).



4. Gauss’s Problem: A Generalization

Note: As was mentioned above, one such generalization was stud-
ied (and solved for r = 3) by Watson:
Classify the positive definite forms q with ¢(q) = 1.
Here is another generalization:

Problem 2. Classify the positive definite quadratic forms ¢ in
r > 2 variables which satisty the property:

(3) ¢ — 1, forall ¢ € gen(q),

where gen(q) denotes the genus of ¢, i.e. the set of forms which
are genus-equivalent to gq.

Remarks: 1) Clearly, if ¢ — 1 and ¢(q) = 1 = (3) holds. Thus,
the solutions of Problem 2 include the solutions ¢ of Watson's
Problem with ¢ — 1.

2) If r = 2, then Problem 2 is essentially equivalent to Gauss’s
Problem (or Conjecture) and to Watson’s problem (because
q— 1 q~1a)



5. Exceptional Forms: the Case r =1
Proposition 1: Let ¢(z) = dz?, where d > 0, and put Q(z, y, 2) =
ry — dz*. Then:

(a) If d = 3 (mod 4), then 30 with Q(#) = 1 such that Qg is
not primitive. In particular, (Jy /4 1, so q is not exceptional.

(b) If d # 3 (mod 4), then
{Qo: Q) =17 = gen(1_144)

is the principal genus of discriminant —16d. Thus ¢ is excep-
tional < ¢(1_164) = 1.

Proof. Preprint |Jacobians| = Jacobians isomorphic to . ..

Corollary: The form dz? is exceptional <
de L :={d>1:c(l_16¢) =1 and d # 3(4)}.

Remarks: 1) By Gauss we know that L C L*, and that equality
holds if Gauss’s Conjecture is true.
If, however, there is a d* € L*\ L, then d* = 2,4, 6 (mod 8)
and by Hall (1940) d* is squarefree. Thus —4d* is a funda-
mental discriminant, and then by \Weinberger it is the unique
(fundamental) counterexample to Gauss’s Conjecture. Thus
L* = LU{d"} in this case.
2) This proves the first part of Theorem 2. The second part is
essentially trivial, for if £ has no CM, then

QB By ~ dz® < 3h: Ey — F», Ker(h) cyclic of degree d
& (h: By — Es) € Xo(d)(K).



6. Exceptional Forms: the Case r = 2

Let ¢ = (a, b, ¢) be a positive definite binary quadratic form, i.e.
q(x,y) = ax® + bxy + cy?,
d = b*> — 4ac its discriminant
Q(CB, Y, =, w) = Y — Q<Zv ”UJ)
1,(z,y,2) = % + 4q(y, 2)
Proposition 2. (a) If d = 0(mod4) and ¢ — a, where a =
3 (mod4), then there is a # with Q(#) = 1 such that @y is not
primitive. In particular, ¢ is not exceptional.

(b) If d =1 (mod4) or if ¢ /4 a, for any a = 3 (mod 4), then
{Qu: Q(O) = 1} € gen(1,)
Thus, if ¢(1,) = 1, then ¢ is exceptional.
Main Theorem. If ¢ is as in Proposition 2(b), then TFAE:

(i) q is exceptional;
(i1) 1, satisfies property (3) of Problem 2;
(i) e(1g) = 1;
(iv)ge £ = {k(1,1,1): k=1,2,4,6,10}
U {k(1,0,1) : kzl 2 6}
U {(1,1,2), (1, 1,4)}
U {2(1,1,¢) : ¢ = 3,9}
U{2(1,0,c):c=2,5}
U {2(2,0,3)}.

Proof (Sketch). (iii) = (ii) = (i): trivial (by Proposition 2(b)).
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(i) = (iv): If q is exceptional, then using Proposition 1(b), one
proves that ¢ satisfies:

(i') g = n,n < |d| =ne L".

Using Weinberger’s result, this can be sharpened to

(i") g = n,n < |d| =n € L.

Indeed, if ¢ = (a, b, ¢) is (wlog) reduced, then by (i') we have
a,c,a+b+ce L*. Butifce L*\ L = {d*}, then a+b+c >

c=d*, s0oa+b+c¢ L* contradiction. Thus, a,c < 462, so
d| < 4-462% < 10° < d*, and hence (ii”) holds.

We therefore have only finitely many d’s to consider, and by a
somewhat tedious argument (using (ii”)) we obtain that ¢ € L.

(iv) = (iii) For each ¢ € L, apply the mass formula of Fisen-
stein/Smith/Brandt to the ternary form 1,. This has the form

M(lq) —

) I ()3 0 (557))

plo

where k = cont(q), d" = k%, 0 = ged(4k?,d'), ete. and

1
M) = 2. TR

ngen(lq)/N

For each ¢ € L one calculates that M(1,) = mj and so
c(1,) = 1.
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This proves the Main Theorem and hence also the first part of
Theorem 3. For the second part, use:

Proposition 3. Let E; ~ E5 be two elliptic curves with CM by
the imaginary quadratic field k, so End(FE;) is an order in k
of discriminant D; = f?d, where d}, is the discriminant of k.
Then

disc(qg, B,) = —lem(Dy, D),
lem(Dy, Do)
ged(Dy, Do)’

cont(qu,EQ)Q =

Remark: From the above we see that for a given binary form
q, there are only finitely many pairs (E7, Es) of elliptic curves
such that ¢g, g, ~ ¢. These can be found precisely by using an
explicit formula for ¢g, g, in terms of the ideals “defining” the
E; relative to a common curve E (i.e. such that F; = E/I;).
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7. Connection with Moduli Spaces

Let A, denote the moduli space of princ. pol. abelian surfaces,

M the moduli space of smooth genus 2 curves;
My C Aj via the Torelli map: C' +— (Je, 0¢).

Definition: Let ¢ be a (positive definite) quadratic form. The
generalized Humbert variety associated to ¢ is the subset of A
defined by

H(q) = {(A,0) € Ao(K) : qa0) — ¢}

Here g4y is the refined Humbert invariant of (A,0), and
“q(ag) — ¢ means that g4 g) primitively represents the form

q.
Examples: 1) The classical Humbert surface of discrim. A is
(4) Hp = H(Az?),
as was explained in [ECAS]. Thus, by the Key Lemma we have
(5) Hy = Ay \ Mo,
which (for K = C) is a theorem of Biermann(1830) and Hum-
bert(1901).

2) If m and n are distinct positive integers, then

where the union runs over the (finitely many) equivalence classes
of positive definite binary quadratic forms ¢ with ¢ — m and
qg— n.
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Theorem 5: (a) Let ¢ € gen(1_144) U gen(4 - 1_44) be a pos-
itive definite binary quadratic form of discriminant —16d in
the principal genus. If ¢ /4 1, then H(q) is a curve lying
completely in My, and every C' € H(q) has the property that
Jo ~ F x Esy, for some elliptic curves E; and Es.

(b) Conversely, if C'is a curve with Jo ~ F; X FEs, for some
elliptic curves Fy and Ey, then C' € H(q), for some binary
form ¢ as in part (a).

(c) If ¢ is in part (a), then there are morphisms s @ Xo(d) —
H(q) which are either of degree 2 or 4. Thus, H(q) ~ Xo(d)"
or to a degree 2 quotient thereof by an Atkin-Lehner involution.
Moreover, the latter case occurs if and only if ¢ is an ambiguous
form.

Remark: In |Jacobians|, a curve which appears in
T(d) = U H(d),
gegen(1_y4q)Ugen(4-1_4q)
is called a curve of type d. Thus, Theorem 2 <
Theorem 2’: There is no curve of type d < d € L*.
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