Curves of Genus 2 and a Conjecture of Gauss

1. Introduction

- Let E_1 and E_2 be two elliptic curves over $K = \overline{K}$.
- Question: Is there a (smooth, irreducible) genus 2 curve C on the product surface $E_1 \times E_2$?
- **Equivalent Question:** Is there a curve C such that its Jacobian J_C is isomorphic to $E_1 \times E_2$?
- **Definition:** The pair (E_1, E_2) is called irreducible if such a curve exists, and is called reducible if no such curve exists.
- **Problem 1:** Classify the reducible pairs (E_1, E_2) .

Remarks: 1) This problem was studied by: Hayashida(1965), Hayashida/Nishi(1965) \rightarrow partial results Ibukiyama/Katsura/Oort (1986) If E_1 , E_2 are supersingular, then (E_1, E_2) is reducible \Leftrightarrow char(K) = 2 or 3.

2) If E_1 is not isogenous to E_2 , then (E_1, E_2) is reducible.

- Assume henceforth: $E_1 \sim E_2$ and E_1 is not supersingular.
- **Basic Observation:** The irreducibility depends only on the nature of the quadratic form

 $q_{E_1,E_2}(f) = \deg(f)$ on $\operatorname{Hom}(E_1,E_2) \simeq \mathbb{Z}^r$.

Here r = 2 if E_1 has CM and otherwise r = 1.

Notes: 1) Thus, by choosing a basis of $\text{Hom}(E_1, E_2)$, the map q_{E_1,E_2} defines an equivalence class of positive definite quadratic forms in $r \leq 2$ variables.

2) Conversely, it can be shown that every positive definite quadratic form q in $r \leq 2$ variables is equivalent to q_{E_1,E_2} , for some pair (E_1, E_2) of elliptic curves.

By using deep results in number theory (due to Chowla and Heilbronn), it is possible to prove:

- **Theorem 1:** There exist only finitely many equivalence classes of positive definite quadratic forms q in $r \leq 2$ variables such that $q \sim q_{E_1,E_2}$, for some reducible pair (E_1, E_2) .
- **Problem 1a:** Classify the (finitely many) "exceptional" quadratic forms of Theorem 1.
- **Problem 1b:** For each exceptional quadratic form q, classify the pairs (E_1, E_2) of elliptic curves with $q_{(E_1, E_2)} \sim q$.
- **Note:** While Problem 1b is relatively simple, Problem 1a is quite difficult, for it is closely connected to a Conjecture of Gauss.

2. A Conjecture of Gauss

- **Recall:** If $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field with $h_K = 1$, then $d \leq 163$ (provided that d is squarefree).
 - this was "conjectured" by Gauss (1801)
 - the fact that d is bounded was proved by Heilbronn (1934)
 - the conjecture was proved by Heegner (1952), Stark (1967),...
- However: the above conjecture is only a portion of what he actually conjectured in Article 303 of the *Disquisitiones Arithmeticae*. Translated to number fields, his conjecture is:

If $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field whose class group $Cl(\mathfrak{O}_K)$ is an elementary abelian 2-group, then $d \leq 5460$.

– the fact that d is bounded was proved by Chowla (1934) by extending Heilbronn's method.

- in the 1930's, the conjecture was studied by Dickson and his students (e.g. N. Hall), who obtained useful partial results.

– Swift (1948): conjecture is true for $d \leq 10^7$ (computations were carried out using Lehmer's linear congruence machine)

– Weinberger (1973) proved:

1) there is at most one counterexample (this requires Lehmer's computations that the conjecture is true for $d < 2.1 \times 10^{11}$) 2) GRH (Generalized Riemann Hypothesis) \Rightarrow there are no counterexamples, i.e. the conjecture is true.

Note: Chowla is the only person who mentions that this is (essentially) a conjecture of Gauss.

Conjecture of Gauss: If q is a primitive, positive definite binary quadratic form of discriminant $\Delta(q) = -4D$, then

 $c(q) = 1 \Leftrightarrow D$ is one of the 65 idoneal numbers of Euler.

Here (cf. Watson), c(q) is the class number of the form q, i.e.

c(q) = #(equivalence classes of forms in the genus of q).

- **Remarks:** Watson studied in 1965-80 the "c(q) = 1" problem for $r \ge 3$ variables (and stated that the case r = 2 is impossible): 1) There exist only finitely many classes of positive definite primitive forms with c(q) = 1 (and none for $r \ge 11$).
 - 2) For r = 3, \exists precisely 790 classes of such forms.
- **Theorem 2** (Non-CM Case). If r = 1, then there are either 21 or 22 exceptional forms $q(x) = dx^2$. If Gauss's Conjecture (or if GRH) is true, then q is exceptional \Leftrightarrow either d = 1 or d is one of the 20 idoneal numbers $d \equiv 2, 4, 6 \pmod{8} \Leftrightarrow d \in L :=$

 $\{1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462\}.$

Moreover, to each such d belongs an infinite family of pairs (E_1, E_2) ; these are parametrized by the (non-CM) points of the modular curve $X_0(d)$.

- **Theorem 3** (CM Case). If r = 2, then there are precisely 15 exceptional forms, and these come from 46 (distinct) pairs of CM-curves (E_1, E_2) .
- **Note:** If we restrict attention to those CM-curves for which $\operatorname{End}(E_i)$ is a maximal order, then there are only 4 pairs of curves/forms, as was proved by Hayashida and Nishi (1965).

3. The Refined Humbert Invariant

- **Aim:** Translate the existence of genus 2 curves into a problem about quadratic forms.
- Let A be an abelian surface $(\dim(A) = 2)$, NS(A) = Div(A)/ \equiv its Néron-Severi group.
- **Observation:** If $C \subset A$ is a (smooth) curve of genus 2, then $C^2 = 2$ and so its class $\theta_C = cl(C) \in NS(A)$ is a principal polarization on A.

The converse is false: not every $\theta \in \mathcal{P}(A) := \{ \text{principal po-} | \text{arizations on } A \}$ comes from an irreducible genus 2 curve.

- **Definition:** The refined Humbert invariant of a principally polarized abelian surface (A, θ) is the (positive definite) quadratic form q_{θ} on $NS(A, \theta) := NS(A)/\mathbb{Z}\theta$ defined by
 - (1) $q_{\theta}(D) = (D.\theta)^2 2D^2, \text{ for } D \in \text{Div}(A).$
- **Remark:** In [ECAS] (1994) I showed how q_{θ} is related to (and refines) the classical Humbert invariant $\Delta(A, \theta) \in \mathbb{N}$.
- **Key Lemma:** Let $\theta \in \mathcal{P}(A)$. Then $\theta = cl(C)$, for some (smooth) genus 2 curve C on $A \Leftrightarrow q_{\theta}(D) \neq 1, \forall D \in \text{Div}(A)$.
- **Proof** (Sketch) (\Leftarrow) If not, then by a theorem of Weil(1957), $\theta = cl(D)$, where $D = E_1 + E_2$, and the E_i 's are elliptic curves with $(E_1.E_2) = 1$. But then $q_{\theta}(E_i) = 1$, contradiction. (\Rightarrow) If $\theta = cl(C)$ but $q_{\theta}(D) = 1$, then by [ECAS] we have that $D \equiv E_1$ and $\theta - D \equiv E_2$, where the E_i are elliptic curves. Thus $\theta \equiv E_1 + E_2 \not\equiv C$ (by Riemann-Roch), contradiction.

Consequence: The existence (or non-existence) of genus 2 curves C on A can be translated to a problem about the quadratic form q_A associated to the intersection pairing on NS(A), i.e.

$$q_A(D) = \frac{1}{2}D^2$$
, for all $D \in NS(A)$.

Corollary: If A is an abelian surface, then there is no smooth genus 2 curve on A if and only if

(2) $(q_A)_{\theta}$ represents 1, for every $\theta \in NS(A)$ with $q_A(\theta) = 1$.

Note: If $A = E_1 \times E_2$, then

$$q_A \sim xy \perp (-q_{E_1, E_2}),$$

where xy is the quadratic form defined by the hyperbolic plane and q_{E_1,E_2} is (as above) the quadratic form defined by the degree map.

Definition: A positive definite quadratic form q is called exceptional if the form $Q := xy \perp (-q)$ satisfies (2), i.e.

 $Q_{\theta} \to 1$ for all θ with $Q(\theta) = 1$.

Here, following Watson, " $q \to 1$ " means "q represents 1", and Q_{θ} is defined by replacing (the role of) q_A in (1) by Q.

Note: By the above Corollary, this definition is consistent with the previous use of the term "exceptional" (which was defined only for the quadratic form q_{E_1,E_2} since its definition used a geometric property of $E_1 \times E_2$).

4. Gauss's Problem: A Generalization

Note: As was mentioned above, one such generalization was studied (and solved for r = 3) by Watson:

Classify the positive definite forms q with c(q) = 1.

Here is another generalization:

Problem 2. Classify the positive definite quadratic forms q in $r \ge 2$ variables which satisfy the property:

(3)
$$q' \to 1$$
, for all $q' \in \text{gen}(q)$,

where gen(q) denotes the genus of q, i.e. the set of forms which are genus-equivalent to q.

Remarks: 1) Clearly, if $q \to 1$ and $c(q) = 1 \Rightarrow (3)$ holds. Thus, the solutions of Problem 2 include the solutions q of Watson's Problem with $q \to 1$.

2) If r = 2, then Problem 2 is essentially equivalent to Gauss's Problem (or Conjecture) and to Watson's problem (because $q \to 1 \Leftrightarrow q \sim 1_{\Delta}$).

5. Exceptional Forms: the Case r = 1

Proposition 1: Let $q(z) = dz^2$, where d > 0, and put $Q(x, y, z) = xy - dz^2$. Then:

(a) If $d \equiv 3 \pmod{4}$, then $\exists \theta$ with $Q(\theta) = 1$ such that Q_{θ} is not primitive. In particular, $Q_{\theta} \not\rightarrow 1$, so q is not exceptional. (b) If $d \not\equiv 3 \pmod{4}$, then

$$\{Q_{\theta} : Q(\theta) = 1\} = \operatorname{gen}(1_{-16d})$$

is the principal genus of discriminant -16d. Thus q is exceptional $\Leftrightarrow c(1_{-16d}) = 1$.

Proof. Preprint [Jacobians] = Jacobians isomorphic to ...

Corollary: The form dz^2 is exceptional \Leftrightarrow

 $d \in L^* := \{ d \ge 1 : c(1_{-16d}) = 1 \text{ and } d \not\equiv 3(4) \}.$

Remarks: 1) By Gauss we know that $L \subset L^*$, and that equality holds if Gauss's Conjecture is true.

If, however, there is a $d^* \in L^* \setminus L$, then $d^* \equiv 2, 4, 6 \pmod{8}$ and by Hall (1940) d^* is squarefree. Thus $-4d^*$ is a fundamental discriminant, and then by Weinberger it is the unique (fundamental) counterexample to Gauss's Conjecture. Thus $L^* = L \cup \{d^*\}$ in this case.

2) This proves the first part of Theorem 2. The second part is essentially trivial, for if E_1 has no CM, then

$$q_{E_1,E_2} \sim dx^2 \iff \exists h : E_1 \to E_2, \operatorname{Ker}(h) \text{ cyclic of degree } d \Leftrightarrow (h : E_1 \to E_2) \in X_0(d)(K).$$

6. Exceptional Forms: the Case r = 2

- Let q = (a, b, c) be a positive definite binary quadratic form, i.e. $q(x, y) = ax^2 + bxy + cy^2,$ $d = b^2 - 4ac$ its discriminant Q(x, y, z, w) = xy - q(z, w) $1_q(x, y, z) = x^2 + 4q(y, z)$
- **Proposition 2.** (a) If $d \equiv 0 \pmod{4}$ and $q \rightarrow a$, where $a \equiv 3 \pmod{4}$, then there is a θ with $Q(\theta) = 1$ such that Q_{θ} is not primitive. In particular, q is not exceptional.

(b) If $d \equiv 1 \pmod{4}$ or if $q \not\rightarrow a$, for any $a \equiv 3 \pmod{4}$, then

 $\{Q_{\theta}: Q(\theta) = 1\} \subset \operatorname{gen}(1_q)$

Thus, if $c(1_q) = 1$, then q is exceptional.

Main Theorem. If q is as in Proposition 2(b), then TFAE:

(i) q is exceptional; (ii) 1_q satisfies property (3) of Problem 2; (iii) $c(1_q) = 1$; (iv) $q \in \mathcal{L} := \{k(1, 1, 1) : k = 1, 2, 4, 6, 10\}$ $\cup \{k(1, 0, 1) : k = 1, 2, 6\}$ $\cup \{k(1, 0, 1) : k = 1, 2, 6\}$ $\cup \{2(1, 1, 2), (1, 1, 4)\}$ $\cup \{2(1, 1, c) : c = 3, 9\}$ $\cup \{2(1, 0, c) : c = 2, 5\}$ $\cup \{2(2, 0, 3)\}.$

Proof (Sketch). (iii) \Rightarrow (ii) \Rightarrow (i): trivial (by Proposition 2(b)).

(i) \Rightarrow (iv): If q is exceptional, then using Proposition 1(b), one proves that q satisfies:

(i') $q \to n, n < |d| \Rightarrow n \in L^*$.

Using Weinberger's result, this can be sharpened to

$$(\mathbf{i}'') \ q \to n, n < |d| \Rightarrow n \in L.$$

Indeed, if q = (a, b, c) is (wlog) reduced, then by (i') we have $a, c, a+b+c \in L^*$. But if $c \in L^* \setminus L = \{d^*\}$, then $a+b+c > c = d^*$, so $a+b+c \notin L^*$, contradiction. Thus, $a, c \leq 462$, so $|d| \leq 4 \cdot 462^2 < 10^6 < d^*$, and hence (ii'') holds.

We therefore have only finitely many d's to consider, and by a somewhat tedious argument (using (ii'')) we obtain that $q \in \mathcal{L}$. (iv) \Rightarrow (iii) For each $q \in \mathcal{L}$, apply the mass formula of Eisenstein/Smith/Brandt to the ternary form 1_q . This has the form $M(1_q) =$

$$\frac{-kd'}{6\cdot 2^{\nu}}\prod_{p|\delta}\left(1-\frac{1}{p^2}\right)\prod_{p|kd'}\left(1+\left(\frac{d'}{p}\right)\frac{1}{p}\right)\left(1+\left(\frac{-4k^2d'}{p}\right)\frac{1}{p}\right)$$

where $k = \operatorname{cont}(q), d' = \frac{d}{k^2}, \delta = \gcd(4k^2, d')$, etc. and

$$M(1_q) = \sum_{f \in \operatorname{gen}(1_q)/\sim} \frac{1}{|\operatorname{Aut}(f)|}.$$

For each $q \in \mathcal{L}$ one calculates that $M(1_q) = \frac{1}{|\operatorname{Aut}(q)|}$, and so $c(1_q) = 1$.

This proves the Main Theorem and hence also the first part of Theorem 3. For the second part, use:

Proposition 3. Let $E_1 \sim E_2$ be two elliptic curves with CM by the imaginary quadratic field k, so $\text{End}(E_i)$ is an order in kof discriminant $D_i = f_i^2 d_k$, where d_k is the discriminant of k. Then

disc
$$(q_{E_1,E_2})$$
 = $-\text{lcm}(D_1, D_2),$
cont $(q_{E_1,E_2})^2$ = $\frac{\text{lcm}(D_1, D_2)}{\text{gcd}(D_1, D_2)}.$

Remark: From the above we see that for a given binary form q, there are only finitely many pairs (E_1, E_2) of elliptic curves such that $q_{E_1,E_2} \sim q$. These can be found precisely by using an explicit formula for q_{E_1,E_2} in terms of the ideals "defining" the E_i relative to a common curve E (i.e. such that $E_i = E/I_i$).

7. Connection with Moduli Spaces

- Let A_2 denote the moduli space of princ. pol. abelian surfaces, M_2 the moduli space of smooth genus 2 curves; $M_2 \subset A_2$ via the Torelli map: $C \mapsto (J_C, \theta_C)$.
- **Definition:** Let q be a (positive definite) quadratic form. The generalized Humbert variety associated to q is the subset of A_2 defined by

$$H(q) = \{ (A, \theta) \in A_2(K) : q_{(A,\theta)} \to q \}$$

Here $q_{(A,\theta)}$ is the refined Humbert invariant of (A, θ) , and " $q_{(A,\theta)} \rightarrow q$ " means that $q_{(A,\theta)}$ primitively represents the form q.

Examples: 1) The classical Humbert surface of discrim. Δ is

(4)
$$H_{\Delta} = H(\Delta x^2),$$

as was explained in [ECAS]. Thus, by the Key Lemma we have

(5)
$$H_1 = A_2 \setminus M_2,$$

which (for $K = \mathbb{C}$) is a theorem of Biermann(1886) and Humbert(1901).

2) If m and n are distinct positive integers, then

$$H_m \cap H_n = \bigcup H(q),$$

where the union runs over the (finitely many) equivalence classes of positive definite binary quadratic forms q with $q \rightarrow m$ and $q \rightarrow n$. **Theorem 5:** (a) Let $q \in \text{gen}(1_{-16d}) \cup \text{gen}(4 \cdot 1_{-4d})$ be a positive definite binary quadratic form of discriminant -16d in the principal genus. If $q \not\rightarrow 1$, then H(q) is a curve lying completely in M_2 , and every $C \in H(q)$ has the property that $J_C \simeq E_1 \times E_2$, for some elliptic curves E_1 and E_2 .

(b) Conversely, if C is a curve with $J_C \simeq E_1 \times E_2$, for some elliptic curves E_1 and E_1 , then $C \in H(q)$, for some binary form q as in part (a).

(c) If q is in part (a), then there are morphisms $\mu_s : X_0(d) \to H(q)$ which are either of degree 2 or 4. Thus, $H(q) \sim X_0(d)^+$ or to a degree 2 quotient thereof by an Atkin-Lehner involution. Moreover, the latter case occurs if and only if q is an ambiguous form.

Remark: In [Jacobians], a curve which appears in

$$T(d) = \bigcup_{\substack{q \in \operatorname{gen}(1 - \iota_q) \mid |\operatorname{gen}(4, 1 - \iota_q)}} H(d),$$

 $q \in \text{gen}(1_{-16d}) \cup \text{gen}(4 \cdot 1_{-4d})$

is called a curve of type d. Thus, Theorem 2 \Leftrightarrow

Theorem 2': There is no curve of type $d \Leftrightarrow d \in L^*$.

References:

[ECAS] Elliptic curves on abelian surfaces. Manusc. math. 84 (1994), 199–223.

[Jacobians] Jacobians isomorphic to a product of two elliptic curves. Preprint, 39pp.