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Curves of Genus 2 and
a Conjecture of Gauss

1. Introduction

Let E1 and E2 be two elliptic curves over K = K.

Question: Is there a (smooth, irreducible) genus 2 curve C on
the product surface E1 × E2?

Equivalent Question: Is there a curve C such that its Jacobian
JC is isomorphic to E1 × E2?

Definition: The pair (E1, E2) is called irreducible if such a curve
exists, and is called reducible if no such curve exists.

Problem 1: Classify the reducible pairs (E1, E2).

Remarks: 1) This problem was studied by:

Hayashida(1965), Hayashida/Nishi(1965) → partial results

Ibukiyama/Katsura/Oort (1986) If E1, E2 are supersingular,
then (E1, E2) is reducible ⇔ char(K) = 2 or 3.

2) If E1 is not isogenous to E2, then (E1, E2) is reducible.

Assume henceforth: E1 ∼ E2 and E1 is not supersingular.

Basic Observation: The irreducibility depends only on the na-
ture of the quadratic form

qE1,E2(f ) = deg(f ) on Hom(E1, E2) ' Zr.

Here r = 2 if E1 has CM and otherwise r = 1.
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Notes: 1) Thus, by choosing a basis of Hom(E1, E2), the map
qE1,E2 defines an equivalence class of positive definite quadratic
forms in r ≤ 2 variables.

2) Conversely, it can be shown that every positive definite
quadratic form q in r ≤ 2 variables is equivalent to qE1,E2,
for some pair (E1, E2) of elliptic curves.

By using deep results in number theory (due to Chowla and
Heilbronn), it is possible to prove:

Theorem 1: There exist only finitely many equivalence classes
of positive definite quadratic forms q in r ≤ 2 variables such
that q ∼ qE1,E2, for some reducible pair (E1, E2).

Problem 1a: Classify the (finitely many) “exceptional” quadratic
forms of Theorem 1.

Problem 1b: For each exceptional quadratic form q, classify the
pairs (E1, E2) of elliptic curves with q(E1,E2) ∼ q.

Note: While Problem 1b is relatively simple, Problem 1a is quite
difficult, for it is closely connected to a Conjecture of Gauss.
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2. A Conjecture of Gauss

Recall: If K = Q(
√
−d) is an imaginary quadratic field with

hK = 1, then d ≤ 163 (provided that d is squarefree).

– this was “conjectured” by Gauss (1801)

– the fact that d is bounded was proved by Heilbronn (1934)

– the conjecture was proved by Heegner (1952), Stark (1967),. . .

However: the above conjecture is only a portion of what he ac-
tually conjectured in Article 303 of the Disquisitiones Arith-
meticae. Translated to number fields, his conjecture is:

If K = Q(
√
−d) is an imaginary quadratic field whose

class group Cl(OK) is an elementary abelian 2-group, then
d ≤ 5460.

– the fact that d is bounded was proved by Chowla (1934) by
extending Heilbronn’s method.

– in the 1930’s, the conjecture was studied by Dickson and his
students (e.g. N. Hall), who obtained useful partial results.

– Swift (1948): conjecture is true for d ≤ 107 (computations
were carried out using Lehmer’s linear congruence machine)

– Weinberger (1973) proved:
1) there is at most one counterexample (this requires Lehmer’s
computations that the conjecture is true for d < 2.1× 1011)
2) GRH (Generalized Riemann Hypothesis) ⇒ there are no
counterexamples, i.e. the conjecture is true.

Note: Chowla is the only person who mentions that this is (es-
sentially) a conjecture of Gauss.
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Conjecture of Gauss: If q is a primitive, positive definite bi-
nary quadratic form of discriminant ∆(q) = −4D, then

c(q) = 1 ⇔ D is one of the 65 idoneal numbers of Euler.

Here (cf. Watson), c(q) is the class number of the form q, i.e.

c(q) = #(equivalence classes of forms in the genus of q).

Remarks: Watson studied in 1965-80 the “c(q) = 1” problem for
r ≥ 3 variables (and stated that the case r = 2 is impossible):

1) There exist only finitely many classes of positive definite
primitive forms with c(q) = 1 (and none for r ≥ 11).

2) For r = 3, ∃ precisely 790 classes of such forms.

Theorem 2 (Non-CM Case). If r = 1, then there are either 21
or 22 exceptional forms q(x) = dx2. If Gauss’s Conjecture (or
if GRH) is true, then q is exceptional ⇔ either d = 1 or d is
one of the 20 idoneal numbers d ≡ 2, 4, 6 (mod 8) ⇔ d ∈ L :=

{1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462}.

Moreover, to each such d belongs an infinite family of pairs
(E1, E2); these are parametrized by the (non-CM) points of
the modular curve X0(d).

Theorem 3 (CM Case). If r = 2, then there are precisely 15
exceptional forms, and these come from 46 (distinct) pairs of
CM-curves (E1, E2).

Note: If we restrict attention to those CM-curves for which End(Ei)
is a maximal order, then there are only 4 pairs of curves/forms,
as was proved by Hayashida and Nishi (1965).
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3. The Refined Humbert Invariant

Aim: Translate the existence of genus 2 curves into a problem
about quadratic forms.

Let A be an abelian surface (dim(A) = 2),
NS(A) = Div(A)/≡ its Néron-Severi group.

Observation: If C ⊂ A is a (smooth) curve of genus 2, then
C2 = 2 and so its class θC = cl(C) ∈ NS(A) is a principal
polarization on A.

The converse is false: not every θ ∈ P(A) := {principal po-
larizations on A} comes from an irreducible genus 2 curve.

Definition: The refined Humbert invariant of a principally polar-
ized abelian surface (A, θ) is the (positive definite) quadratic
form qθ on NS(A, θ) := NS(A)/Zθ defined by

(1) qθ(D) = (D.θ)2 − 2D2, for D ∈ Div(A).

Remark: In [ECAS] (1994) I showed how qθ is related to (and
refines) the classical Humbert invariant ∆(A, θ) ∈ N.

Key Lemma: Let θ ∈ P(A). Then θ = cl(C), for some (smooth)
genus 2 curve C on A ⇔ qθ(D) 6= 1, ∀D ∈ Div(A).

Proof (Sketch) (⇐) If not, then by a theorem of Weil(1957),
θ = cl(D), where D = E1 + E2, and the Ei’s are elliptic
curves with (E1.E2) = 1. But then qθ(Ei) = 1, contradiction.

(⇒) If θ = cl(C) but qθ(D) = 1, then by [ECAS] we have that
D ≡ E1 and θ − D ≡ E2, where the Ei are elliptic curves.
Thus θ ≡ E1 + E2 6≡ C (by Riemann-Roch), contradiction.
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Consequence: The existence (or non-existence) of genus 2 curves
C on A can be translated to a problem about the quadratic
form qA associated to the intersection pairing on NS(A), i.e.

qA(D) =
1

2
D2, for all D ∈ NS(A).

Corollary: If A is an abelian surface, then there is no smooth
genus 2 curve on A if and only if

(2) (qA)θ represents 1, for every θ ∈ NS(A) with qA(θ) = 1.

Note: If A = E1 × E2, then

qA ∼ xy ⊥ (−qE1,E2),

where xy is the quadratic form defined by the hyperbolic plane
and qE1,E2 is (as above) the quadratic form defined by the
degree map.

Definition: A positive definite quadratic form q is called excep-
tional if the form Q := xy ⊥ (−q) satisfies (2), i.e.

Qθ → 1 for all θ with Q(θ) = 1.

Here, following Watson, “q → 1” means “q represents 1”, and
Qθ is defined by replacing (the role of) qA in (1) by Q.

Note: By the above Corollary, this definition is consistent with
the previous use of the term “exceptional” (which was defined
only for the quadratic form qE1,E2 since its definition used a
geometric property of E1 × E2).
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4. Gauss’s Problem: A Generalization

Note: As was mentioned above, one such generalization was stud-
ied (and solved for r = 3) by Watson:

Classify the positive definite forms q with c(q) = 1.

Here is another generalization:

Problem 2. Classify the positive definite quadratic forms q in
r ≥ 2 variables which satisfy the property:

(3) q′ → 1, for all q′ ∈ gen(q),

where gen(q) denotes the genus of q, i.e. the set of forms which
are genus-equivalent to q.

Remarks: 1) Clearly, if q → 1 and c(q) = 1 ⇒ (3) holds. Thus,
the solutions of Problem 2 include the solutions q of Watson’s
Problem with q → 1.

2) If r = 2, then Problem 2 is essentially equivalent to Gauss’s
Problem (or Conjecture) and to Watson’s problem (because
q → 1 ⇔ q ∼ 1∆).
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5. Exceptional Forms: the Case r = 1

Proposition 1: Let q(z) = dz2, where d > 0, and put Q(x, y, z) =
xy − dz2. Then:

(a) If d ≡ 3 (mod 4), then ∃θ with Q(θ) = 1 such that Qθ is
not primitive. In particular, Qθ 6→ 1, so q is not exceptional.

(b) If d 6≡ 3 (mod 4), then

{Qθ : Q(θ) = 1} = gen(1−16d)

is the principal genus of discriminant −16d. Thus q is excep-
tional ⇔ c(1−16d) = 1.

Proof. Preprint [Jacobians] = Jacobians isomorphic to . . .

Corollary: The form dz2 is exceptional ⇔

d ∈ L∗ := {d ≥ 1 : c(1−16d) = 1 and d 6≡ 3(4)}.

Remarks: 1) By Gauss we know that L ⊂ L∗, and that equality
holds if Gauss’s Conjecture is true.

If, however, there is a d∗ ∈ L∗ \ L, then d∗ ≡ 2, 4, 6 (mod 8)
and by Hall (1940) d∗ is squarefree. Thus −4d∗ is a funda-
mental discriminant, and then by Weinberger it is the unique
(fundamental) counterexample to Gauss’s Conjecture. Thus
L∗ = L ∪ {d∗} in this case.

2) This proves the first part of Theorem 2. The second part is
essentially trivial, for if E1 has no CM, then

qE1,E2 ∼ dx2 ⇔ ∃h : E1 → E2, Ker(h) cyclic of degree d

⇔ (h : E1 → E2) ∈ X0(d)(K).
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6. Exceptional Forms: the Case r = 2

Let q = (a, b, c) be a positive definite binary quadratic form, i.e.
q(x, y) = ax2 + bxy + cy2,
d = b2 − 4ac its discriminant
Q(x, y, z, w) = xy − q(z, w)
1q(x, y, z) = x2 + 4q(y, z)

Proposition 2. (a) If d ≡ 0 (mod 4) and q → a, where a ≡
3 (mod 4), then there is a θ with Q(θ) = 1 such that Qθ is not
primitive. In particular, q is not exceptional.

(b) If d ≡ 1 (mod 4) or if q 6→ a, for any a ≡ 3 (mod 4), then

{Qθ : Q(θ) = 1} ⊂ gen(1q)

Thus, if c(1q) = 1, then q is exceptional.

Main Theorem. If q is as in Proposition 2(b), then TFAE:

(i) q is exceptional;

(ii) 1q satisfies property (3) of Problem 2;

(iii) c(1q) = 1;

(iv) q ∈ L := {k(1, 1, 1) : k = 1, 2, 4, 6, 10}
∪ {k(1, 0, 1) : k = 1, 2, 6}
∪ {(1, 1, 2), (1, 1, 4)}
∪ {2(1, 1, c) : c = 3, 9}
∪ {2(1, 0, c) : c = 2, 5}
∪ {2(2, 0, 3)}.

Proof (Sketch). (iii)⇒ (ii)⇒ (i): trivial (by Proposition 2(b)).
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(i)⇒ (iv): If q is exceptional, then using Proposition 1(b), one
proves that q satisfies:

(i′) q → n, n < |d| ⇒ n ∈ L∗.

Using Weinberger’s result, this can be sharpened to

(i′′) q → n, n < |d| ⇒ n ∈ L.

Indeed, if q = (a, b, c) is (wlog) reduced, then by (i′) we have
a, c, a+ b+ c ∈ L∗. But if c ∈ L∗ \L = {d∗}, then a+ b+ c >
c = d∗, so a + b + c /∈ L∗, contradiction. Thus, a, c ≤ 462, so
|d| ≤ 4 · 4622 < 106 < d∗, and hence (ii′′) holds.

We therefore have only finitely many d’s to consider, and by a
somewhat tedious argument (using (ii′′)) we obtain that q ∈ L.

(iv) ⇒ (iii) For each q ∈ L, apply the mass formula of Eisen-
stein/Smith/Brandt to the ternary form 1q. This has the form

M(1q) =

−kd′

6 · 2ν

∏
p|δ

(
1− 1

p2

) ∏
p|kd′

(
1 +

(
d′

p

)
1

p

) (
1 +

(
−4k2d′

p

)
1

p

)
where k = cont(q), d′ = d

k2 , δ = gcd(4k2, d′), etc. and

M(1q) =
∑

f∈gen(1q)/∼

1

|Aut(f )|
.

For each q ∈ L one calculates that M(1q) = 1
|Aut(q)|, and so

c(1q) = 1.
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This proves the Main Theorem and hence also the first part of
Theorem 3. For the second part, use:

Proposition 3. Let E1 ∼ E2 be two elliptic curves with CM by
the imaginary quadratic field k, so End(Ei) is an order in k
of discriminant Di = f 2

i dk, where dk is the discriminant of k.
Then

disc(qE1,E2) = −lcm(D1, D2),

cont(qE1,E2)
2 =

lcm(D1, D2)

gcd(D1, D2)
.

Remark: From the above we see that for a given binary form
q, there are only finitely many pairs (E1, E2) of elliptic curves
such that qE1,E2 ∼ q. These can be found precisely by using an
explicit formula for qE1,E2 in terms of the ideals “defining” the
Ei relative to a common curve E (i.e. such that Ei = E/Ii).
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7. Connection with Moduli Spaces

Let A2 denote the moduli space of princ. pol. abelian surfaces,
M2 the moduli space of smooth genus 2 curves;
M2 ⊂ A2 via the Torelli map: C 7→ (JC, θC).

Definition: Let q be a (positive definite) quadratic form. The
generalized Humbert variety associated to q is the subset of A2

defined by

H(q) = {(A, θ) ∈ A2(K) : q(A,θ) → q}

Here q(A,θ) is the refined Humbert invariant of (A, θ), and
“q(A,θ) → q” means that q(A,θ) primitively represents the form
q.

Examples: 1) The classical Humbert surface of discrim. ∆ is

(4) H∆ = H(∆x2),

as was explained in [ECAS]. Thus, by the Key Lemma we have

(5) H1 = A2 \M2,

which (for K = C) is a theorem of Biermann(1886) and Hum-
bert(1901).

2) If m and n are distinct positive integers, then

Hm ∩Hn =
⋃

H(q),

where the union runs over the (finitely many) equivalence classes
of positive definite binary quadratic forms q with q → m and
q → n.
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Theorem 5: (a) Let q ∈ gen(1−16d) ∪ gen(4 · 1−4d) be a pos-
itive definite binary quadratic form of discriminant −16d in
the principal genus. If q 6→ 1, then H(q) is a curve lying
completely in M2, and every C ∈ H(q) has the property that
JC ' E1 × E2, for some elliptic curves E1 and E2.

(b) Conversely, if C is a curve with JC ' E1 × E2, for some
elliptic curves E1 and E1, then C ∈ H(q), for some binary
form q as in part (a).

(c) If q is in part (a), then there are morphisms µs : X0(d) →
H(q) which are either of degree 2 or 4. Thus, H(q) ∼ X0(d)+

or to a degree 2 quotient thereof by an Atkin-Lehner involution.
Moreover, the latter case occurs if and only if q is an ambiguous
form.

Remark: In [Jacobians], a curve which appears in

T (d) =
⋃

q∈gen(1−16d)∪gen(4·1−4d)

H(d),

is called a curve of type d. Thus, Theorem 2 ⇔
Theorem 2′: There is no curve of type d ⇔ d ∈ L∗.
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