Verallgemeinerte Humbertsche Schemata und Durchschnitte von Humbert Flächen

1. Einleitung

Es sei: M_g/\mathbb{C} der Modulraum der Kurven vom Geschlecht g: $M_g(\mathbb{C}) = \{\langle C \rangle : g_C = g\}.$

Frage: Was kann man über die Dimension (und Struktur) der Untervarietäten von M_g sagen, die durch "spezielle Kurveneigenschaften" definiert sind?

Beispiele: 1) Kurven mit speziellen Automorphismen;

- 2) Kurven, die einen nicht-konstanten Morphismus zu einer nicht-rationalen Kurve besitzen;
- 3) Kurven C, deren Jacobische Varietäten J_C einen nichttrivialen Endomorphismus besitzen, d.h. $\operatorname{End}(J_C) \neq \mathbb{Z}$.

Bemerkung: Mithilfe der Torelli-Abbildung $C \mapsto (J_C, \lambda_\theta)$ kann man $M_g(\mathbb{C})$ als Teilmenge von $A_g(\mathbb{C})$ auffassen. Hierbei ist $\lambda_\theta : J_C \xrightarrow{\sim} \hat{J}_C$ die Theta-Polarisierung, und A_g bezeichnet den Modulraum, der Isomorphieklassen von hauptpolarisierten abelschen Varietäten (A, λ) der Dimension g klassifiziert.

Wir können also die Isomorphieklasse $\langle C \rangle$ der Kurve mit der Isomorphieklasse $\langle J_C, \lambda_\theta \rangle$ der hauptpolarisierten Jacobischen identifizieren, und daher läßt sich Beispiel 3 auf A_g erweitern.

- **Humbert (1900):** Für jede positive ganze Zahl $n \equiv 0, 1 \pmod{4}$, gibt es eine Fläche $H_n \subset A_2$ (genannt eine Humbert Fläche) mit den folgenden Eigenschaften:
 - (i) $\operatorname{End}(A) \neq \mathbb{Z} \Leftrightarrow \langle A, \lambda \rangle \in H_n$, für ein n;
 - (ii) $M_2 = A_2 \setminus H_1$;
 - (iii) $\exists f: C \to E, g_E = 1 \Leftrightarrow \langle J_C, \lambda_\theta \rangle \in H_{N^2}$, für ein $N \geq 2$.
- **Bemerkung:** Eigenschaft (iii) wurde in [ECAS] (1994) wie folgt verfeinert:
 - (iii') $\langle J_C, \lambda_\theta \rangle \in H_{N^2} \Leftrightarrow \exists f : C \to E, \deg(f) = N, f \text{ minimal.}$ Hierbei heißt $f : C \to E \text{ minimal, falls } f \text{ nur triviale Faktorisierungen besitzt (also } f = f_1 \circ f_2 \Rightarrow \deg(f_1) = 1 \text{ oder } \deg(f_2) = 1).$

Fragen: 1) Wie kann man die Komponenten des Durchschnitts

$$H_n \cap H_m$$

zweier Humbert Flächen beschreiben bzw. analysieren?

2) Allgemeiner, wie kann man die Teilmenge der Kurven (oder der abelschen Varietäten) beschreiben, die eine "spezielle Eigenschaft" besitzen?

2. Das Grundprinzip

Grundidee: Wie später genauer erklärt wird, definiert jede ganze positiv-definite quadratische Form q ein abgeschlossenes Unterschema

$$H_q(q) \subset A_q$$

des Modulraums A_g . Solche Unterschema heißen verallgemeinerte Humbert Schemata.

Eigenschaften: 1) $H_g(q)$ hängt nur von der GL_r -Äquivalenzklasse der quadratischen Form $q = q(x_1, \ldots, x_r)$ ab.

- 2) Es ist $H_g(q) \neq A_g$, aber $H_g(q)$ könnte leer sein.
- 3) Die klassische Humbert Fläche ist $H_n := H_2(nx^2)$.
- 4) Es folgt leicht aus der Definition, daß für $n \neq m$ gilt

$$(1) H_n \cap H_m = \bigcup_{q \to n, m} H_2(q),$$

Hierbei ist die Vereinigung über alle ganzen positiv-definiten binären quadratischen Formen q, die sowohl n wie auch m primitiv repräsentieren. (Bezeichnung: $q \to n, q \to m$.)

N.B. Bis auf Aquivalenz gibt es nur endlich viele Formen q mit dieser Eigenschaft, weil $|\operatorname{disc}(q)| \leq 4mn$.

Fragen: 1) Wann ist $H(q) \neq \emptyset$?

- 2) Was ist die (birationale) Struktur von H(q)?
- 3) Für einen gegebene Form q, wie kann man die hauptpolarisierten (h.p.) abelschen Flächen (A, λ) in H(q) konstruieren? Gibt es eine "modulare Konstruktion"?

3. Hauptresultate (für g=2)

Satz 1: Sei q eine positive quadratische Form in r Variablen. Ist $H(q) := H_2(q) \neq \emptyset$, so hat H(q) die Codimension r in A_2 ; d.h.,

$$\dim H(q) = 3 - r.$$

Ferner, ist q' eine zweite positive quadratische Form, so gilt

$$(2) H(q) = H(q') \Leftrightarrow q \sim_{GL_r} q'.$$

N.B. Für r = 1 ist $q(x) = nx^2$ mit $n \ge 1$, und dann gilt $H_n := H(nx^2) \ne \emptyset \iff n \equiv 0, 1 \pmod{4}$.

Daher sind die Humbert Flächen genau diejenigen, die im Fall r=1 auftreten.

Definition: Eine ganze positive binäre quadratische Form

$$q(x,y) = ax^2 + bxy + cy^2$$

besitzt den Typ (n, m, d), falls folgendes gilt:

- (i) $\operatorname{disc}(q) := b^2 4ac = -16m^2d < 0 \text{ und } (n, d) = 1;$
- (ii) $q \rightarrow (mn)^2$;
- (iii) $q(x, y) \equiv 0, 1 \pmod{4}, \quad \forall x, y \in \mathbb{Z}.$

Die Menge aller quadratischen Formen vom Typ (n, m, d) sei mit T(m, n, d) bezeichnet.

Satz 2: Sei q eine ganze binäre quadratische Form derart, daß $q \to N^2$, für ein $N \ge 1$. Dann gilt:

$$(3) \ H(q) \neq \emptyset \Leftrightarrow H(q) \ \text{ist eine irreduzible Kurve} \\ \Leftrightarrow q \in T(N/m,m,d), \ \text{für ein } m|N,d \geq 1 \\ \text{mit } (N/m,d) = 1.$$

Korollar: Ist $m \equiv 0, 1 \pmod{4}$ und $N \geq 1$, so ist

$$H_m \cap H_{N^2} \neq \emptyset.$$

Ferner, ist m > 1 und N > 1, so gilt sogar

$$H_m \cap H_{N^2} \cap M_2 \neq \emptyset.$$

Beweisidee. Betrachte $q = [N^2, 2\varepsilon N, m] \in T(1, N, \frac{m-\varepsilon}{4}),$ wobei $\varepsilon = \text{Rest}(m, 4).$

- **Bemerkung:** Die Bedeutung der Parameter (n, m, d) wird zum Teil durch die folgende Tatsache erläutert. Diese führt auch zu der später betrachteten modularen Konstruktion.
- **Satz 3:** Es sei C eine Kurve vom Geschlecht 2, und seien $N \geq 2$, $d \geq 1$ zwei ganze Zahlen. Dann sind die folgenden Bedingungen äquivalent:
 - (i) $\langle C \rangle \in H(q)$, für ein $q \in T(N/m,m,d)$, wobei m|N und (N/m,d)=1;
 - (ii) Es gibt zwei komplementäre elliptische Unterlagerungen $f_i: C \to E_i$ vom Grad N und eine zyklische Isogenie $h: E_1 \to E_2$ vom Grad d.
- **N.B.** Eine *elliptische Unterlagerung* ist ein minimaler Morphismus $f: C \to E$ nach einer elliptischen Kurve E. Zwei elliptische Unterlagerungen $f_i: C \to E_i$ heißen $komplement \ddot{a}r$, falls die folgende Sequenz exakt ist:

$$0 \to J_{E_1} \stackrel{f_1^*}{\to} J_C \stackrel{(f_2)_*}{\to} J_{E_2} \to 0.$$

4. Einige Anwendungen

Anwendung 1: Die irreduziblen Komponenten von $H_m \cap H_{N^2}$.

Diese lassen sich mithilfe von (1)–(3) und der Reduktiontheorie (der binären quadratischen Formen) berechnen. Zum Beispiel:

$$H_5 \cap H_4 = H[1, 0, 4] \cup H[4, 0, 5] \cup H[4, 4, 5],$$

 $H_5 \cap H_9 = H[4, 0, 5] \cup H[5, 2, 9] \cup H[5, 4, 8].$

Die Anzahl der irreduziblen Komponenten von $H_m \cap H_{N^2}$ ist:

$N^2 \setminus m$	1	4	5	8	9	12	13	16	17	20	21	24	25
1													
4	1	*	3	4	3	4	5	5	5	6	5	6	6
9	1	3	3	5	*	6	5	6	8	7	7	9	9
16													
25	3	6	6	8	9	9	10	12	15	14	11	13	*

Anwendung 2: Kurven mit zusätzlichen Automorphismen.

Satz 4: Es sei *C* eine Kurve vom Geschlecht 2. Dann gilt:

(a)
$$V_4 \simeq D_2 \leq \operatorname{Aut}(C) \Leftrightarrow \langle C \rangle \in H_4$$
.

(b)
$$D_4 \leq \operatorname{Aut}(C) \Leftrightarrow \langle C \rangle \in H[4, 0, 4].$$

(c)
$$S_3 \simeq D_3 \leq \operatorname{Aut}(C) \Leftrightarrow \langle C \rangle \in H[4, 4, 4].$$

(d)
$$D_3, D_4 \leq \text{Aut}(C) \iff \langle C \rangle \in H[4, 0, 4] \cap H[4, 4, 4].$$

N.B. Die Kurven in diesen Familien haben explizite Gleichungen:

(a)
$$y^2 = x(x-1)(x-\alpha)(x-\beta)(x-\alpha\beta)$$
 (Jacobi, 1832)

(b)
$$y^2 = x(1-x^2)(1-\kappa^2x^2)$$
 (Legendre, 1832)

(c)
$$y^2 = x^6 + ax^3 + 1$$
 (Bolza, 1888)

(d)
$$y^2 = x(x^4 - 1)$$
 (Bolza, 1888; Burnside)

Anwendung 3: Isogene elliptische Involutionen.

Eine elliptische Involution ist ein $\sigma \in \operatorname{Aut}(C)$ mit $\sigma^2 = 1$ derart, daß $C_{\sigma} := C/\langle \sigma \rangle$ eine elliptische Kurve ist.

- **Satz 5:** Es sei C eine Kurve vom Geschlecht 2 mit hyperelliptisher Involution σ_C , und sei $d \geq 1$. Äquivalent sind:
 - (i) Es gibt eine elliptische Involution $\sigma \in \operatorname{Aut}(C)$ und eine zyklische Isogenie $h: C_{\sigma} \to C_{\sigma\sigma_C}$ vom Grad d;
 - (ii) $\langle C \rangle \in H[4, 0, 4d] \cup H[4, 4, 4d + 1] \cup H(d)$, wobei

$$H(d) = \begin{cases} H[4,4,d+1], & \text{falls } d \equiv 3 \pmod{4}, \\ H[4,0,d], & \text{falls } d \equiv 1 \pmod{4}, d > 1, \\ \emptyset, & \text{sonst.} \end{cases}$$

Bemerkung: Nach Accola/Previato [AP] (2006), p. 142: "A condition for being isogenous to any degree does not appear to be known".

Anwendung 4: Kurven mit elliptischen Morphismen.

Es sei $\mathcal{L}_d \subset M_2$ der Modulraum der Geschlecht 2 Kurven C mit einem Morphismus $C \xrightarrow{f} E$ vom Grad d nach einer elliptischen Kurve E. Es ist also

$$\mathcal{L}_d := \bigcup_{1 < N \mid d} H_{N^2} \cap M_2.$$

Frage ([AP]): Wann ist \mathcal{L}_d zusammenhängend?

Antwort: Immer! Denn aus dem Korollar von Satz 2 folgt sogar, daß sich stets je zwei irreduzible Komponenten von \mathcal{L}_d treffen.

- **Anwendung 5:** Jacobische Produktflächen: $J_C \simeq E_1 \times E_2$.
- **Satz 6:** Es sei *C* eine Kurve vom Geschlecht 2. Äquivalent sind:
 - (i) $J_C \simeq E_1 \times E_2$, für geeignete elliptische Kurven E_1, E_2 ;
 - (ii) $\langle J_C, \lambda_\theta \rangle \in H(q)$, für ein $q \in T(N, 1, d)$ mit (N, d) = 1.
- **Bemerkung:** Hayashida and Nishi (1965) stellten die folgende Frage, die sie aber nicht vollständig lösen konnten:

Für welche Paare (E_1, E_2) ist $E_1 \times E_2 \simeq J_C$, für ein C? Mithilfe von Satz 6 (und tiefliegenden Resultaten aus der Zahlentheorie) kann man beweisen (s. [MS], [JT]):

Satz 7: (a) Es sei $\operatorname{Hom}(E_1, E_2) = \mathbb{Z}f$ und $d = \deg(f)$. Dann gibt es eine Kurve C mit $J_C \simeq E_1 \times E_2$ genau dann, wenn d > 1 und d kein numerus idoneus mit $d \equiv 2, 4, 6 \pmod{8}$ ist. Mit anderen Worten, C existiert solange $d \notin L$, wobei

$$L = \{1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462, d^*\};$$

hierbei ist $d^* > 10^9$ eine weitere mögliche Zahl mit dieser Eigenschaft. Ferner gibt es kein solches d^* falls die Vermutung von Euler/Gauss (oder falls die Verallgemeinerte Riemannsche Hypothese (GRH)) richtig ist.

(b) Ist $Rg(Hom(E_1, E_2)) > 1$, so existiert stets eine Kurve C mit $J_C \simeq E_1 \times E_2$, außer für endlich viele Paare (E_1, E_2) von Isomorphieklassen elliptischer Kurven. (Genaue #: 46 Paare.) Genauer gibt es genau 15 (Isomorphieklassen von) Flächen A mit Picardzahl $\rho(A) \geq 4$ derart, daß $A \not\simeq J_C$, für irgendeine curve C. (Jede solche Fläche A ist eine Produktfläche.)

5. Die verfeinerte Humbert Invariante

Grundidee: Die Néron-Severi Gruppe NS(A) einer h.p. abelschen Varietät (A, λ) besitzt eine kanonische quadratische Form $q_{(A,\lambda)}$, die verfeinerte Humbert Invariante. Diese wird wie folgt definiert.

Sei: A/K eine abelsche Varietät mit $\dim(A) = g$ (K ein Körper), $\operatorname{NS}(A) = \operatorname{Pic}(A)/\operatorname{Pic}^0(A)$ ihre Néron-Severi Gruppe, $\lambda: A \xrightarrow{\sim} \hat{A}$ eine Hauptpolarisierung.

Dann gibt es eine natürliche Injektion

$$\Phi_{\lambda} : NS(A) \to End_{\lambda}(A) := \{ \alpha \in End(A) : \hat{\alpha}\lambda = \lambda\alpha \},$$

die durch $\Phi_{\lambda}(D) = \lambda^{-1} \circ \phi_D$ gegeben ist. Außerdem ist Φ_{λ} ein Isomorphismus, falls K algebraisch abgeschlossen ist (Mumford).

Proposition 0: (a) Es sei tr : $\operatorname{End}(A) \to \mathbb{Z}$ die übliche Spurabbildung. Dann definiert

$$q_A(\alpha) = \frac{1}{2}\operatorname{tr}(\alpha^2),$$

eine ganze, positive quadratische Form q_A auf $\operatorname{End}_{\lambda}(A)$.

(b) Die Formel

$$q_{(A,\lambda)}(\alpha) = \frac{1}{4}(2g \operatorname{tr}(\alpha^2) - \operatorname{tr}(\alpha)^2)$$

definiert eine ganze, positiv-definite quadratische Form $q_{(A,\lambda)}$ auf der Quotientengruppe $\overline{\operatorname{End}}_{\lambda}(A) := \operatorname{End}_{\lambda}(A)/\mathbb{Z}1_A$.

Definition: Die quadratische Form $q_{(A,\lambda)}$ heißt die *verfeinerte Humbert Invariante* von (A,λ) .

Bemerkungen: 1) Wenn K algebraisch abgeschlossen ist, so ist $\lambda = \phi_{\theta}$, für ein $\theta \in NS(A)$, und dann induziert Φ_{λ} einen Isomorphismus

$$\bar{\Phi}_{\lambda} : \mathrm{NS}(A, \theta) := \mathrm{NS}(A)/\mathbb{Z}\theta \xrightarrow{\sim} \overline{\mathrm{End}}_{\lambda}(A).$$

Daher kann man $q_{(A,\lambda)} = q_{(A,\theta)}$ auch als quadratische Form auf $NS(A,\theta)$ betrachten. (Beachte: $\theta \in NS(A)$ ist durch λ eindeutig bestimmt.)

2) Falls A eine abelsche Fläche ist (also g = 2), so gilt

$$q_{(A,\lambda)}(\Phi_{\lambda}(D)) = (D.\theta)^2 - 2(D.D), \quad \forall D \in NS(A).$$

Außerdem wurde in [ECAS] gezeigt, daß wenn $\bar{D} \in NS(A, \theta)$ primitiv ist, (d.h., wenn $NS(A, \theta)/\mathbb{Z}\bar{D}$ torsionsfrei ist), so ist

$$N = q_{(A,\lambda)}(\bar{D}) = q_{(A,\theta)}(\bar{D})$$

die klassische Humbert Invariante von A, die Humbert im Fall $K = \mathbb{C}$ mithilfe der Periodenmatrix von A definiert hat.

Man beachte, dass wenn $\operatorname{rank}(\operatorname{NS}(A)) > 2$ ist, so besitzt (A, λ) unendlich viele verschiedene (klassische) Humbert Invarianten $N = q_{(A,\theta)}(\bar{D})$.

6. Verallgemeinerte Humbertsche Schemata

- **Prinzip:** Mann kann die verfeinerte Humbert Invariante $q_{(A,\lambda)}$ benützen, um abgeschlossene Unterschemata $H_g(q)$ des Modulraums A_g zu definieren.
- **Definition:** Es seien (M_1, q_1) und (M_2, q_2) zwei quadratische \mathbb{Z} Moduln. Dann repräsentiert (M_1, q_1) den Modul (M_2, q_2) primitiv, falls es eine Injektion $f: M_2 \to M_1$ gibt derart, daß

$$f \circ q_1 = q_2$$
 und $M_1/f(M_2)$ torsionfrei ist.

Ist dies der Fall, so schreibt man $q_1 \rightarrow q_2$.

- **N.B.:** Ist $n \in \mathbb{Z}$, so gilt $q_1 \to n$ (im Sinne des §2) genau dann, wenn $q_1 \to q_2 := nx^2$.
- **Bezeichnung:** Ist q eine positive quadratische Form (auf \mathbb{Z}^r), so sei

$$H_g(q) := \{ (A, \lambda) \in A_g(\overline{K}) : q_{(A,\lambda)} \to q \}.$$

- Satz 0: $H_g(q)$ ist ein abgeschlossenes Unterschema von A_g , vorausgesetzt, daß $\operatorname{char}(K)^2 / \operatorname{disc}(q)$.
- **Beispiele:** 1) Wie schon erwähnt, ist die klassische Humbert Fläche durch $H_n = H_2(nx^2)$ definiert (wenn $K = \mathbb{C}$).
 - 2) Ist $(A, \lambda) \in A_g$, so ist $NS(A) \not\simeq \mathbb{Z} \Leftrightarrow (A, \lambda) \in H_g(nx^2)$, für ein $n \geq 1$. (Analogon zu Humberts Resultat (i).)
- Offene Fragen: 1) Wann ist $H_g(q) \neq \emptyset$?
 - 2) Berechne dim $H_g(q)$ (falls $H_g(q) \neq \emptyset$).
 - 3) Wann ist $H_g(q)$ irreduzibel?

7. Die modulare Konstruktion (g = 2)

Die Grundkonstruktion ("basic construction"); vgl.

[FK1], [FK2]: Es sei $N \ge 1$ und (E_1, E_2, ψ) ein Tripel, das aus zwei elliptischen Kurven E_i/K und einem Isomorphismus

$$\psi: E_1[N] \xrightarrow{\sim} E_2[N]$$

der Gruppen $E_i[N]$ der N-Torsionspunkten besteht. Sei

$$\pi_{\psi}: E_1 \times E_2 \to A_{\psi}:= (E_1 \times E_2)/(\operatorname{Graph}(\psi))$$

der Quotientenhomomorphismus, der also eine Isogenie vom Grad $N^2 = |\operatorname{Graph}(\psi)|$ ist.

Ist ψ eine Anti-isometrie (bzgl. den Weilpaarungen auf $E_i[N]$), und ist $\overline{K} = K$, so $\exists ! \theta_{\psi} \in \text{NS}(A_{\psi})$ derart, daß

$$\pi_{\psi}^* \theta_{\psi} = N(\theta_1 + \theta_2), \text{ wobei } \theta_i = pr_i^*(0_{E_i}),$$

und dann ist $(A_{\psi}, \lambda_{\theta_{\psi}}) \in A_2$ eine h.p. abelsche Fläche. Daher, wenn

$$\mathcal{Z}_N = \{\langle E_1, E_2, \psi \rangle_N \}$$

Menge der Isomorphieklassen solcher Tripel bezeichnet, so definiert die Regel $(E_1, E_2, \psi) \mapsto (A_{\psi}, \lambda_{\psi})$ eine Abbildung

$$\beta_N: \mathcal{Z}_N \to A_2,$$

die in [FK2] die Grundkonstruktion ("basic construction") genannt wird.

Tatsachen: 1) Ist $K = \mathbb{C}$, so kann man $\mathcal{Z}_N = \{\langle E_1, E_2, \psi \rangle_N\}$ mit den Punkten der Quotientenvarietät

$$Z_N = (X(N) \times X(N))/(\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/\pm 1)$$

identifizieren, wobei $X(N) = \Gamma(N) \setminus \mathfrak{H}$ die Modulkurve der Stufe N ist, und die Gruppe $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$ auf der Produktfläche $X(N) \times X(N)$ durch eine (getwistete) Diagonalwirkung operiert. Ferner gibt es einen Morphismus von Varietäten

$$\beta_N: Z_N \to A_2,$$

der, via der obigen Identifikation, mit der Grundkonstruktion übereinstimmt.

2) Das Bild von β_N ist die Humbert Fläche H_{N^2} , und der induzierte Morphismus

$$\beta_N: Z_N \to \beta_N(Z_N) = H_{N^2}$$

ist endlich vom (generischen) Grad 2.

Frage: Wie sieht $\beta_N^{-1}(H(q))$ aus, wenn q eine binäre Form ist mit $\emptyset \neq H(q) \subset H_{N^2}$?

Vermutung: $\beta_N^{-1}(H(q))$ ist die Vereinigung von höchstens zwei Modulkurven auf Z_N , d.h., von Kurven, die Bilder sind der Modularkorrespondenzen $T_{A,N}$ auf $X(N) \times X(N)$.

8. Der Fall der Produktflächen $A \ (m=1)$

Sei $X_0(d) = \Gamma_0(d) \setminus \mathfrak{H}$, die Hecke Modulkurve, und sei $\mathcal{X}_0(d) = \{\langle E_1, E_2, h \rangle : h \in \text{Hom}(E_1, E_2) \text{ zyklisch}, \deg(h) = d\}.$ N.B.: Wie bekannt, \exists natürliche Bijektion $\mathcal{X}_0(d) \leftrightarrow X_0(d)(\mathbb{C}).$

Fixiere N, und seien k, d derart, daß $k^2d \equiv -1 \pmod{N}$. Dann definiert die Regel $\tau_{d,k,N}(\langle E_1, E_2, h \rangle) = \langle E_1, E_2, kh_{|E_1[N]} \rangle$ eine Abbildung

$$\tau_{d,k,N}: \mathcal{X}_0(d) \rightarrow \mathcal{Z}_N,$$

die, via den obigen Identifikationen, von einem Morphismus

$$\tau_{d,k,N}: X_0(d) \rightarrow Z_N$$

induziert wird. Außerdem ist $\tau_{d,k,N}$ birational auf sein Bild. Betrachte die Komposition

$$\mu_{d,k,N} := \beta_N \circ \tau_{d,k,N} : X_0(d) \to Z_N \to A_2.$$

Satz 8: Das Bild von $\mu_{d,k,N}: X_0(d) \to A_2$ ist

$$\mu_{d,k,N}(X_0(d)) = H(q_{d,k,N}),$$

wobei

$$q_{d,k,N} = [N^2, 2kt, (k^2t^2 + 4d)/N^2] \text{ mit } t = d(k^2d + 3).$$

Korollar: Ist $q \in T(N, 1, d)$, so ist $H(q) = \mu_{d,k,N}(X_0(d))$, für ein k mit $k^2 d \equiv -1 \pmod{N}$.

N.B.: Hierzu wird noch die folgende Tatsache benötigt:

Lemma: Eine binäre quadratische Form q ist vom Typ (N, 1, d) genau dann, wenn $q \sim q_{d,k,N}$, für ein k mit $dk^2 \equiv -1 \pmod{N}$.

- **Bemerkung:** Ist $q \in T(N, 1, d)$, so kann man die Normalisierung $\tilde{H}(q)$ von H(q) genau angeben; s. [MS]. Genauer gilt:
- **Satz 9:** Es sei $q \in T(N, 1, d)$, also $q \sim q_{d,k,N}$ mit $dk^2 \equiv -1(N)$.
 - (a) Der Morphismus $\mu_{d,k,N}$ faktorisiert über die Normalisierung $\nu_{N^2}: \tilde{H}_{N^2} \to H_{N^2}$ der Humbertfläche H_{N^2} , und sein Bild auf \tilde{H}_{N^2} ist birational isomorph zu der Fricke Kurve

$$X_0(d)^+ := X_0(d)/\langle w_d \rangle$$
, wobei $w_d = \begin{pmatrix} 0 & -1 \\ d & 0 \end{pmatrix}$.

(b) Der induzierte Morphismus $\nu_{d,k,N}: X_0(d)^+ \to \tilde{H}(q)$ ist ein Isomorphismus, außer wenn q eine (nicht-triviale) ambige Form ist. In diesem Ausnahmefall ist $\deg(\nu_{d,k,N})=2$ und

$$\tilde{H}(q) \simeq X_0(d)/\langle w_d, \alpha_{d_1} \rangle,$$

für eine (explizit berechenbare) Atkin-Lehner involution α_{d_1} mit $d_1|d$ und $(d_1, d/d_1) = 1$.

- **Bemerkungen:** 1) Ist $a := \deg(\nu_{d,k,N}) > 1$, so folgt, daß die Kurve $H(q) \subset (H_{N_2})^{sing}$ im singulären Ort von H_{N^2} liegt, und daher ist dann H_{N^2} nicht normal.
 - 2) Nach Satz 9 ist H(q) durch die Angabe von d, a und d_1 genau bestimmt. Ferner kann man das Geschlecht von $\tilde{H}(q)$ explizit ausrechnen; zum Beispiel ist

$$g(X_0(d)^+) = (g(X_0(d)) + 1)/2 - (h(-d) + h(-4d))/4,$$

wobei h(D) die Anzahl der Klassen primitiver Formen der Diskiminante D ist. (Also ist h(D) = 0, wenn $D \not\equiv 0, 1 \pmod{4}$.)

Beispiel: Die Komponenten von $H_9 \cap H_{25}$.

q	g(H(q))	3-Тур	a	d_1	5-Typ	a	d_1
[9, 0, 16]	0	(1, 3, 4)		_	(5, 1, 36)	2	4
[4, 0, 9]		(1, 3, 1)	_	_	(5,1,9)	1	_
[5, 2, 9]	0	(3, 1, 11)	1		(5, 1, 11)	1	_
[8, 8, 9]	0	(3, 1, 14)	2	2	(5, 1, 14)	2	2
[9, 4, 12]	0	(3, 1, 26)	1		(5, 1, 26)	1	_
[9, 6, 25]	1	(1, 3, 6)		_	(5, 1, 54)	1	_
[9, 4, 20]	1	(3, 1, 44)	1	_	(5, 1, 44)	1	_
[9, 8, 24]	0	(3, 1, 50)	1	_	(1, 5, 2)	_	_
[9, 2, 25]	1	(3, 1, 56)	1	_	(5, 1, 56)	1	_

Daher hat $H_9 \cap H_{25}$ genau 9 irreduzible Komponenten, und

$$H[8, 8, 9] \subset (H_9)^{sing},$$

 $H[9, 0, 16] \cup H[8, 8, 9] \subset (H_{25})^{sing}.$

Insbesondere ist weder H_9 noch H_{25} normal.

9. Der allgemeine Fall $(m \ge 1)$

Vorbemerkung: Hier werden alle Modularkorrespondenzen $T_{A,N}$ auf $X(N) \times X(N)$ benötigt. Jede solche wird durch primitive matrix $A \in \mathcal{M}_d$ definiert, wobei

$$\mathcal{M}_d = \Gamma(1)\alpha_d\Gamma(1)$$
, with $\Gamma(1) = \mathrm{SL}_2(\mathbb{Z}), \alpha_d = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$.

Modulare Beschreibung von $T_{A,N}$: Es sei

$$\mathcal{T}_{A,N} = \{\langle E_1, \alpha_1; E_2, \alpha_2; h \rangle_N \};$$

hierbei ist $\alpha_i : E_i[N] \xrightarrow{\sim} V_N := (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ eine (symplektische) Stufe-N-Struktur, $h : E_1 \to E_2$ eine zyklische Isogenie vom Grad $d = \det(A)$ derart, dass

$$\alpha_2 \circ h_{|E_1[N]} = [A]_N \circ \alpha_1, \quad \alpha_1 \circ (h^t)_{|E_2[N]} = [A^*]_N \circ \alpha_2,$$

wobei $[A]_N \in \operatorname{End}(V_N)$ durch die Matrix $A \pmod{N}$ gegeben ist (via der Standardbasis von V_N), und $A^* = \det(A)A^{-1}$.

Bezeichnung: Es sei $\tau_{A,N}:\mathcal{T}_{A,N}\to\mathcal{Z}_N$ durch die Regel

$$\tau_{A,N}(x) = \langle E_1, E_2, \psi_x \rangle_N$$

definiert, wobei

$$\psi_x := \alpha_2^{-1} \circ [(\begin{smallmatrix} -1 & 0 \\ 0 & 1 \end{smallmatrix})]_N \circ \alpha_1, \quad \text{wenn } x = \langle E_1, \alpha_1; E_2, \alpha_2; h \rangle_N.$$

Durch die modulare Interpretation induziert dies einen Morphismus

$$au_{A,N}:T_{A,N}:=\Gamma_{A,N}\backslash\mathfrak{H}\to Z_N,$$

der zugehörigen (groben) Modulschemata; hierbei ist

$$\Gamma_{A,N} := \Gamma(N) \cap A^{-1}\Gamma(N)A \geq \Gamma(Nd).$$

Wir betrachten nun die Komposition

$$\mu_{A,N} := \beta_N \circ \tau_{A,N} : T_{A,N} \to Z_N \to A_2.$$

- **N.B.:** 1) Ist $k^2d \equiv -1 \pmod{N}$, und ist $\sigma_k \in \Gamma(1)$ derart, daß $\sigma_k \equiv \binom{k^{-1} \ 0}{0 \ k} \pmod{N}$, so faktorisiert $\tau_{\sigma_k \alpha_d, N}$ über den vorherdefinierten Morphismus $\tau_{d,k,N}$, und beide haben das gleiche Bild in Z_N . Daher kann man $\mu_{A,N}$ als Verallgemeinerung von $\mu_{d,k,N}$ betrachten. (Allerdings ist im allgemeinen $\tau_{A,N}$ nicht mehr birational auf sein Bild.)
 - 2) Verschidene Matrizen $A \in \mathcal{M}_d$ können die gleiche Bildkurve $\overline{T}_{A,N} := \tau_{A,N}(T_{A,N})$ auf Z_N produzieren. Es ist daher nützlich, den folgenden Begriff einzuführen.
- **Definition:** Eine Matrix $A \in \mathcal{M}_d = \Gamma(1)\alpha_d\Gamma(1)$ heißt (rechts-) normalisiert, falls sie die folgende Form hat:

$$A = g\alpha_d = g\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$$
 mit $g \in \Gamma(1) = \mathrm{SL}_2(\mathbb{Z})$.

Satz 10: Ist $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathcal{M}_d$ normalisiert, so gilt

$$\mu_{A,N}(T_{A,N}) = H(q_{A,N}),$$

wobei $q_{A,N} \in T(N/m,m,d)$ durch die Formel

$$q_{A,N} = [N^2, 2m(x-w), m^2(\operatorname{tr}(A)^2 - 4yz)/N^2]$$

gegeben ist. Hierbei ist $m := N/\gcd(\operatorname{tr}(A), y, z, N)$.

Korollar: Ist $q \in T(N/m, m, d)$, so ist $H(q) = \mu_{A,N}(T_{A,N})$ mit einer geeigneten normalisierten Matrix $A \in \mathcal{M}_d$. Insbesondere ist also H(q) eine irreduzible Kurve.

Dieses Korollar folgt aus Satz 10 zusammen mit der folgenden Verallgemeinerung des vorhergehenden Lemmas:

- **Lemma':** Ist $q \in T(N/m, m, d)$, so gibt es eine (explizit berechenbare) normalisierte Matrix $A \in \mathcal{M}_d$ derart, daß $q \sim q_{A,N}$.
- **Bemerkungen:** 1) Satz 10 and sein Korollar liefern die Existenzaussage von Satz 2.
 - 2) Wir fassen zusammen:
 - (i) Jede Modularkorrespondenz $\overline{T}_{A,N} := \tau_{A,N}(T_{A,N})$ auf Z_N definiert via β_N eine (verallgemeinerte) Humbertkurve

$$H(q) = \beta_N(\overline{T}_{A,N}) \subset Z_{N^2}.$$

Diese wird durch Satz 9 explizit beschrieben.

(ii) Umgekehrt, jedes (nicht leere) $H(q) \subset Z_{N^2}$ (mit q binär) ist das Bild einer geeigneten Modularkorrespondenz $\overline{T}_{A,N}$. Ferner kann man die (normalisierte) Matrix A aus der Vorgabe von q explizit berechnen (s. Lemma').

10. Literatur

- [AP] R. Accola, E. Previato, Covers of Tori: Genus 2. Letters for Math. Phys. 76 (2006), 135–161.
- [FK1] G. Frey, E.K., Curves of genus 2 covering elliptic curves and an arithmetical application. *Progress in Math.* 89, Birkhäuser, Boston, 1991; pp. 153–176.
- [FK2] G. Frey, E.K., Curves of genus 2 and associated Hurwitz spaces. *Contemp. Math.* 487 (2009), 33–81.
- [HN] T. Hayashida, M. Nishi, Existence of curves of genus 2 on a product of two elliptic curves. *J. Math. Soc. Japan* **20** (1965), 1-16.
- [ECAS] E. K., Elliptic curves on abelian surfaces. Manusc. math. 84 (1994), 199–223.
- [MS] E.K., The moduli spaces of Jacobians isomorphic to a product of two elliptic curves. Preprint, 39pp.
- [JT] E.K., Jacobians isomorphic to a product of two elliptic curves and ternary quadratic forms. Preprint, 36pp.