# Intersections of Humbert Surfaces and Binary Quadratic Forms 

Ernst Kani<br>Queen's University

Québec-Maine Conference, Laval University 9 October 2016

## Outline

1. Introduction
2. Main Results I
3. Main Results II
4. The Refined Humbert Invariant
5. Generalized Humbert Schemes
6. The Modular Construction
7. Appendix: The basic construction
8. References

## 1. Introduction

- Let:
$M_{g} / \mathbb{C}$ be the moduli space of genus $g$ curves $/ \mathbb{C}$, i.e.
$M_{g}(\mathbb{C})$ corresponds to isomorphism classes of such curves.
- Question: What is the dimension (and structure) of subvarieties (subschemes) of $M_{g}$ defined by "special properties" of curves?
- Examples: 1) Curves with extra automorphims;

2) Curves with non-constant morphisms to non-rational curves;
3) Curves $C$ whose Jacobians $J_{C}$ have non-trivial endomorphisms, i.e. $\operatorname{End}\left(J_{C}\right) \neq \mathbb{Z}$.

- Note: Example 2 is a special case of Example 3.


## 1. Introduction -2

- Remark: Via the map $C \mapsto\langle C\rangle=\left(J_{C}, \lambda_{\theta}\right)$, where $\lambda_{\theta}: J_{C} \xrightarrow{\sim} \hat{J}_{C}$ is the $\theta$-polarization, we can view $M_{g}(\mathbb{C}) \subset A_{g}(\mathbb{C})$, where $A_{g}$ is the moduli space which classifies isomorphism classes of principally polarized (p.p.) abelian varieties $(A, \lambda)$ of dimension $g$. Thus, Example 3 can be transported to $A_{g}$.
- Humbert (1900): For each positive integer $n \equiv 0,1(\bmod 4), \exists$ a surface $H_{n} \subset A_{2}$ (called a Humbert surface) such that:
(i) $\operatorname{End}(A) \neq \mathbb{Z} \Leftrightarrow(A, \lambda) \in H_{n}$, for some $n$;
(ii) $M_{2}=A_{2} \backslash H_{1}$;
(iii) $\exists f: C \rightarrow E \Leftrightarrow\left(J_{C}, \lambda_{\theta}\right) \in H_{N^{2}}$, for some $N \geq 2$.
- Remark: In [ECAS], property (iii) was refined to: (iii') $\left(J_{C}, \lambda_{\theta}\right) \in H_{N^{2}} \Leftrightarrow \exists f: C \rightarrow E, \operatorname{deg}(f)=N, f$ minimal.


## 1. Introduction -3

- Questions: 1) How can we describe/analyze the components of the intersection $H_{n} \cap H_{m}$ of two distinct Humbert surfaces? (Of particular interest: the case $n=N^{2}$.)

2) How many such components are there?

- Basic idea: As will be explained below, each integral, positive definite quadratic form $q$ defines a closed subscheme

$$
H(q) \subset A_{2},
$$

called a generalized Humbert scheme.

## 1. Introduction - 4

- Properties: 1) $H(q)$ depends only on the $\mathrm{GL}_{r}$-equivalence class of the quadratic form $q=q\left(x_{1}, \ldots, x_{r}\right)$.

2) We have that $H(q) \neq A_{2}$, but $H(q)$ may be empty.
3) The usual Humbert surface is $H_{n}:=H\left(n x^{2}\right)$.
4) It follows easily from the definition of $H(q)$ (given below) that if $n \neq m$, then

$$
\begin{equation*}
H_{n} \cap H_{m}=\bigcup_{q \rightarrow n, m} H(q), \tag{1}
\end{equation*}
$$

where the union is over all integral, positive definite binary quadratic forms $q$ which represent both $n$ and $m$ primitively. Note: Up to equivalence, there are only finitely many forms $q$ with this property because $|\operatorname{disc}(q)| \leq 4 m n$.

## 1. Introduction - 5

- Questions: 1) When is $H(q) \neq \emptyset$ ?

2) What is the (birational) structure of $H(q)$ ?
3) For a given $q$, how can we construct the p.p. abelian surfaces $(A, \lambda)$ in $H(q)$ ? Is there a "modular construction"?

## 2. Main Results I

- Notation: Write $q=[a, b, c]$ for a binary quadratic form

$$
q(x, y)=a x^{2}+b x y+c y^{2}
$$

Let $Q$ denote the set of $\mathrm{GL}_{2}(\mathbb{Z})$-equivalence classes of integral binary quadratic forms $q$ which satisfy:
(i) $q$ is positive-definite;
(ii) $q(x, y) \equiv 0,1(\bmod 4), \forall x, y \in \mathbb{Z}$.

Moreover, for $n, m \in \mathbb{N}$ and $m \neq n$ put

$$
Q(n)=\{q \in Q: q \rightarrow n\} \text { and } Q(n, m):=Q(n) \cap Q(m)
$$

and for $x \geq 1$ put

$$
Q^{\prime}(n, x):=\bigcup_{m \leq x, m \neq n} Q(n, m) .
$$

## 2. Main Results I-2

- Theorem 1: Let $q$ be an integral binary quadratic form such that $q \rightarrow N^{2}$, for some $N \geq 1$. Then
(2) $H(q) \neq \emptyset \Leftrightarrow q \in Q \Leftrightarrow H(q)$ is an irreducible curve.
- Corollary: If $N \geq 1$ and $m \neq N^{2}$, then the rule $q \mapsto H(q)$ defines a bijection

$$
Q\left(N^{2}, m\right) \xrightarrow{\sim} \operatorname{lrr}\left(H_{N^{2}} \cap H_{m}\right),
$$

where $\operatorname{Irr}(V)$ denotes the set of irreducible components of an algebraic set $V$. Similarly, the above rule also induces a bijection

$$
Q^{\prime}\left(N^{2}, x\right) \xrightarrow{\sim} \operatorname{lrr}\left(H_{N^{2}} \cap\left(\bigcup_{m \leq x, m \neq N^{2}} H_{m}\right)\right)
$$

- Remark: This result allows us to translate problems about the components of intersections of Humbert surfaces into problems about binary quadratic forms.


## 2. Main Results I-3

- Theorem 2: (a) If $m \equiv 0,1(\bmod 4)$ and $m \neq N^{2}$, then

$$
\left|\left|\operatorname{rr}\left(H_{N^{2}} \cap H_{m}\right)\right| \geq \min \left(\left[N^{2} / 4\right],[m / 4]\right) .\right.
$$

(b) For any $N \geq 1$ we have

$$
\left|\operatorname{lrr}\left(H_{N^{2}} \cap\left(\bigcup_{m \leq x, m \neq N^{2}} H_{m}\right)\right)\right|=c_{N} x+O(1)
$$

where $c_{N}=\left[\frac{N^{2}+4}{8}\right]$, if $N$ is even, and $c_{N}=\left[\frac{N^{2}+1}{8}\right]$, if $N$ is odd.

- Remark: The above result follows from the above Corollary together with the reduction theory of binary quadratic forms. By the same method one also obtains that

$$
H_{N^{2}} \cap H_{m} \cap M_{2} \neq \emptyset, \quad \text { if } m>1, N>1 .
$$

This implies the validity of a conjecture of Accola-Previato[AP].

## 2. Main Results I-4

- Numerical Examples: By the Corollary of Theorem 1 and the reduction theory of binary quadratic forms, we obtain

$$
\begin{aligned}
H_{1} \cap H_{4} & =H[1,0,4], \\
H_{1} \cap H_{5} & =H[1,0,4], \\
H_{4} \cap H_{5} & =H[1,0,4] \cup H[4,0,5] \cup H[4,4,5], \\
H_{9} \cap H_{5} & =H[4,0,5] \cup H[5,2,9] \cup H[5,4,8] .
\end{aligned}
$$

and the number of irreducible components of $H_{N^{2}} \cap H_{m}$ is:

| $N^{2} \backslash m$ | 1 | 4 | 5 | 8 | 9 | 12 | 13 | 16 | 17 | 20 | 21 | 24 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $*$ | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3 |
| 4 | 1 | $*$ | 3 | 4 | 3 | 4 | 5 | 5 | 5 | 6 | 5 | 6 | 6 |
| 9 | 1 | 3 | 3 | 5 | $*$ | 6 | 5 | 6 | 8 | 7 | 7 | 9 | 9 |
| 16 | 2 | 5 | 5 | 6 | 6 | 9 | 9 | $*$ | 9 | 12 | 10 | 11 | 12 |
| 25 | 3 | 6 | 6 | 8 | 9 | 9 | 10 | 12 | 15 | 13 | 11 | 13 | $*$ |

- Remark: Enea Milio wrote me that he/she was also able to derive the above table by factoring suitable theta-series.


## 3. Main Results II

- Theorem 3: Let $q \in Q\left(N^{2}\right)$. If $\operatorname{disc}(q)=-16 d$, where $(d, N)=1$, then the normalization $\tilde{H}(q)$ of $H(q)$ is the Fricke modular curve $X_{0}(d)^{+}$, i.e.

$$
\tilde{H}(q) \simeq X_{0}(d)^{+}:=X_{0}(d) /\left\langle w_{d}\right\rangle, \quad \text { where } w_{d}=\left(\begin{array}{cc}
0 & -1 \\
d & 0
\end{array}\right),
$$

except possibly when $q$ is a (so-called) ambiguous form. In the exceptional cases we have that

$$
\tilde{H}(q) \simeq X_{0}(d)^{+} /\langle\alpha\rangle,
$$

for some Atkin-Lehner involution $\alpha$.

- Remark: See [MS] (2016) for the precise characterization of the exceptional cases (and for the recipe for determining $\alpha$.)


## 3. Main Results II - 2

- Theorem 4: If $q \in Q\left(N^{2}\right)$, then $\exists!m \mid N$ and $d \geq 1$ such that

$$
\operatorname{disc}(q)=-16 m^{2} d \quad \text { and } \quad(N / m, d)=1
$$

Moreover, we have a finite surjective morphism

$$
\beta_{q, N}: X_{0}(N, d) \rightarrow H(q),
$$

where $X_{0}(N, d)$ denotes the affine modular curve

$$
X_{0}(N, d):=\left(\Gamma(N) \cap \Gamma_{0}(N d)\right) \backslash \mathfrak{H} .
$$

- Remark: It is easy to see that Theorem $4 \Rightarrow$ Theorem 1 .


## 4. The Refined Humbert Invariant

- Key Observation: The Néron-Severi group $\mathrm{NS}(A)=\operatorname{Div}(A) / \equiv$ of a p.p. abelian variety $(A, \lambda)$ comes equipped with a canonical integral quadratic form $q_{(A, \lambda)}$ (called the refined Humbert invariant).
- Notation: Let $A / K$ be an abelian surface over an algebraically closed field $K$. If $\lambda: A \rightarrow \hat{A}$ is a p.p., then $\lambda=\phi_{\theta}$ for some (unique) $\theta \in \operatorname{NS}(A)$. Put

$$
\tilde{q}_{(A, \lambda)}(D)=(D \cdot \theta)^{2}-2(D \cdot D), \quad \forall D \in \mathrm{NS}(A)
$$

Then by the Hodge Index Theorem $\tilde{q}_{(A, \lambda)}$ defines a positive definite quadratic form $q_{(A, \lambda)}$ on the quotient group

$$
\mathrm{NS}(A, \lambda):=\mathrm{NS}(A) / \mathbb{Z} \theta
$$

## 4. The Refined Humbert Invariant - 2

- Definition: We call $q_{(A, \lambda)}$ the refined Humbert invariant of $(A, \lambda)$.
- Remark: If $\bar{D} \in \operatorname{NS}(A, \lambda)$ is primitive (i.e., if $\operatorname{NS}(A, \lambda) / \mathbb{Z} \bar{D}$ is torsionfree), then it was shown in [ECAS] (1994) that

$$
N=q_{(A, \lambda)}(\bar{D})
$$

is the classical Humbert invariant of $A$ (which Humbert defined in the case $K=\mathbb{C}$ via the period matrix of $A$ ). Note that if $\operatorname{rank}(\operatorname{NS}(A))>2$, then $(A, \lambda)$ has infinitely many different (classical) Humbert invariants $N$ associated to it.

## 5. Generalized Humbert Schemes

- Observation: The refined Humbert invariant $q_{(A, \lambda)}$ can be used to define closed subschemes $H(q)$ of the moduli space $A_{2}$.
- Definition: If $\left(M_{1}, q_{1}\right)$ and $\left(M_{2}, q_{2}\right)$ are two quadratic $\mathbb{Z}$-modules, then we say that ( $M_{1}, q_{1}$ ) primitively represents $\left(M_{2}, q_{2}\right)$ if there exists a linear injection $f: M_{2} \rightarrow M_{1}$ such that

$$
q_{1} \circ f=q_{2} \quad \text { and } \quad M_{1} / f\left(M_{2}\right) \text { is torsionfree. }
$$

If this is the case, then we write $q_{1} \rightarrow q_{2}$.

- Notation: If $q$ is an integral, positive-definite quadratic form (on $\mathbb{Z}^{r}$ ), then we put

$$
H(q):=\left\{(A, \lambda) \in A_{2}(\bar{K}): q_{(A, \lambda)} \rightarrow q\right\} .
$$

## 5. Generalized Humbert Schemes

- Proposition 1: $H(q)$ is a closed subscheme of $A_{2}$, provided that $\operatorname{char}(K)^{2} \nmid \operatorname{disc}(q)$.
- Example: As was already mentioned, the classical Humbert surface is $H_{n}=H\left(n x^{2}\right)$ (when $K=\mathbb{C}$ ).
- Remark: It is possible to generalize the refined Humbert invariant $q_{(A, \lambda)}$ to p.p. abelian varieties $(A, \lambda)$ of arbitrary dimension $g \geq 2$. Then the above definition of $H(q)$ extends to define closed subschemes of $A_{g}$.


## 6. The Modular Construction: Step 1

- Step 1: The Basic Construction ([FK])
- Theorem 5: Let char $(K) \nmid N \geq 1$, and let $X(N) / K$ denote the affine modular curve of level $N$. Then there is a finite surjective morphism

$$
\beta_{N}: X(N) \times X(N) \rightarrow H_{N^{2}} .
$$

Moreover, the normalization $\tilde{H}_{N^{2}}$ of $H_{N^{2}}$ is isomorphic to the quotient surface $(X(N) \times X(N)) / \operatorname{Aut}\left(\beta_{N}\right)$.

- Remarks: 1) The morphism $\beta_{N}$ is a variant of the "basic construction" of [FK].

2) We have that $\operatorname{deg}\left(\beta_{N}\right)=\left|\operatorname{Aut}\left(\beta_{N}\right)\right|$ and that

$$
\operatorname{Aut}\left(\beta_{N}\right) \simeq \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm 1\} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

In particular, $\left|\operatorname{Aut}\left(\beta_{N}\right)\right|=\left|\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right|$, if $N \geq 3$.

## 6. The Modular Construction: Step 1 (cont'd)

- Remarks: 3) The morphism $\beta_{N}$ is constructed by using the modular interpretation of the curve $X(N)$, i.e., the fact that $X(N)$ represents the functor $\mathcal{X}(N)$ which classifies isomorphism classes of elliptic curves with (symplectic) level- $N$-structure. In particular,

$$
\mathcal{X}(N)(K)=\{\langle E / K, \alpha\rangle\},
$$

where $E / K$ is an elliptic curve and

$$
\alpha: E[N] \xrightarrow{\sim}(\mathbb{Z} / N \mathbb{Z})^{2}
$$

is a level- $N$-structure (of fixed determinant), and $\langle\cdot, \cdot\rangle$ denotes the isomorphism class of the pair $(E / K, \alpha)$.

## 6. The Modular Construction: Step 2

- Step 2: The Modular Curve $X_{A, N}$
- Notation: For $d \geq 1$, let $\mathcal{M}_{d}$ denote the set of primitive matrices of determinant $d$, so

$$
\mathcal{M}_{d}=\Gamma(1) \alpha_{d} \Gamma(1), \quad \text { where } \Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z}), \alpha_{d}=\left(\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right) .
$$

Moreover, for $A \in \mathcal{M}_{d}$ and $N \geq 1$, let $\mathcal{X}_{A, N}$ denote the moduli functor (or moduli problem) given by

$$
\mathcal{X}_{A, N}(K)=\left\{\left\langle E_{1} / K, \alpha_{1} ; E_{2} / K, \alpha_{2} ; h\right\rangle\right\},
$$

where $\left\langle E_{i} / K, \alpha_{i}\right\rangle \in \mathcal{X}(N)(K)$ for $i=1,2$, and $h: E_{1} \rightarrow E_{2}$ is a cyclic isogeny of degree $d=\operatorname{det}(A)$ such that

$$
\alpha_{2} \circ h_{\mid E_{1}[N]}=[A]_{N} \circ \alpha_{1},
$$

where $[A]_{N} \in \operatorname{End}\left((\mathbb{Z} / N \mathbb{Z})^{2}\right)$ is defined by the matrix $A(\bmod N)\left(\right.$ via the canonical basis of $\left.(\mathbb{Z} / N \mathbb{Z})^{2}\right)$.

## 6. The Modular Construction: Step 2 (cont'd)

- Proposition 2: If $\operatorname{char}(K) \nmid N d$ and $N \geq 3$, then the functor $\mathcal{X}_{A, N}$ is represented by an irreducible smooth affine curve

$$
X_{A, N} \simeq X_{0}(N, d)_{/ K}
$$

## 6. The Modular Construction: Step 3

- Step 3: The Modular Correspondence $T_{A, N}$
- Notation: Define the forget map

$$
\tau_{A, N}: \mathcal{X}_{A, N} \rightarrow \mathcal{X}(N) \times \mathcal{X}(N)
$$

by the rule

$$
\left.\left.\tau_{A, N}\left(\left\langle E_{1} / K, \alpha_{1} ; E_{2} / K, \alpha_{2} ; h\right\rangle\right\}\right)=\left\langle E_{1} / K, \alpha_{1} ; E_{2} / K, \alpha_{2}\right\rangle\right\} .
$$

By the modular interpretation, this induces a morphism

$$
\tau_{A, N}: X_{A, N} \rightarrow X(N) \times X(N)
$$

- Proposition 3: $\tau_{A, N}: X_{A, N} \rightarrow T_{A, N}:=\tau_{A, N}\left(X_{N, A}\right)$ is the normalization of $T_{A, N}$.
- Remark: The curve $T_{A, N} \subset X(N) \times X(N)$ is the modular correspondence associated to the double coset $\Gamma(N) A \Gamma(N)$.


## 6. The Modular Construction: Step 4

- Step 4: The Morphism $\beta_{A, N}$
- Notation: For $A \in \mathcal{M}_{d}$ and $N \geq 1$, let $\beta_{A, N}$ be the composition

$$
\beta_{A, N}:=\beta_{N} \circ \tau_{A, N}: X_{A, N} \rightarrow X(N) \times X(N) \rightarrow H_{N^{2}}
$$

- Theorem 6: Let $A=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \in \mathcal{M}_{d}$, and put $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right) A=\left(\begin{array}{cc}x & y \\ -z & -w\end{array}\right)$ and $m:=N / \operatorname{gcd}\left(\operatorname{tr}\left(A^{\prime}\right), y, z, N\right)$.
Then

$$
\beta_{A, N}\left(X_{A, N}\right)=H\left(q_{A^{\prime}, N}\right),
$$

where

$$
q_{A^{\prime}, N}=\left[N^{2}, 2 m \operatorname{tr}\left(A^{\prime}\right), m^{2}\left(\operatorname{tr}\left(A^{\prime}\right)^{2}+4 d\right) / N^{2}\right] .
$$

- Remark: The proof uses the computations from [ESC].


## 6. The Modular Construction: Step 4 (cont'd)

- Corollary: If $q \in Q\left(N^{2}\right)$, then $\exists d \geq 1$ and a matrix $A \in \mathcal{M}_{d}$ such that $H(q)=\beta_{A, N}\left(X_{A, N}\right)=\beta_{N}\left(T_{A, N}\right)$. In particular, $H(q)$ is an irreducible curve, provided that $\operatorname{char}(K) \nmid N d$.
- Remark: This follows from Theorem 6 together with:
- Lemma: If $q \in Q\left(N^{2}\right)$, then $\exists!m \mid N$ and $d \geq 1$ such that

$$
\operatorname{disc}(q)=-16 m^{2} d \quad \text { and } \quad(N / m, d)=1
$$

Moreover, there is a matrix $A \in \mathcal{M}_{d}$ such that

$$
q \sim q_{A^{\prime}, N}, \quad \text { where } A^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) A .
$$

- Remarks: 1) Corollary $\Rightarrow$ Theorem $4 \Rightarrow$ Theorem 1. 2) If $\operatorname{char}(K)=0$, then the above results show that

$$
\left\{H(q): q \in Q\left(N^{2}\right)\right\}=\left\{\beta_{N}\left(T_{A, N}\right): A \in \bigcup_{d \geq 1} \mathcal{M}_{d}\right\}
$$

## 7. Appendix: The basic construction $\beta_{N}$

- Modular description: Define the morphism (of functors)

$$
\beta_{N}: \mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{A}_{2}
$$

as follows. Let $\left\langle E_{i} / K, \alpha_{i}\right\rangle \in \mathcal{X}(N)(K)$, where $i=1,2$, and put

$$
\psi:=\alpha_{2}^{-1} \circ\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{N} \circ \alpha_{1}: E_{1}[N] \rightarrow E_{2}[N] .
$$

Let

$$
\pi_{\psi}: E_{1} \times E_{2} \rightarrow A_{\psi}:=\left(E_{1} \times E_{2}\right) / \operatorname{Graph}(-\psi)
$$

be the quotient map. Since $\psi: E_{1}[N] \rightarrow E_{2}[N]$ is an anti-isometry, there is a unique p.p. $\lambda_{\psi}: A_{\psi} \rightarrow \hat{A}_{\psi}$ such that

$$
\hat{\pi}_{\psi} \circ \lambda_{\psi} \circ \pi_{\psi}=N\left(\lambda_{E_{1}} \otimes \lambda_{E_{2}}\right),
$$

where $\lambda_{E_{1}} \otimes \lambda_{E_{2}}$ is the product polarization on $E_{1} \times E_{2}$.

## 7. The basic construction - 2

- Thus: $\left(A_{\psi}, \lambda_{\psi}\right) \in \mathcal{A}_{2}(K)$, and so the rule

$$
\beta_{N, K}\left(\left\langle E_{1} / K, \alpha_{1} ; E_{2} / K, \alpha_{2}\right\rangle\right)=\left\langle A_{\psi}, \lambda_{\psi}\right\rangle
$$

defines a map

$$
\beta_{N, K}:(\mathcal{X}(N) \times \mathcal{X}(N))(K) \rightarrow \mathcal{A}_{2}(K)
$$

Since this map is compatible with base-change (and extends to all $K$-schemes $S$ ), we obtain the desired morphism

$$
\beta_{N}=\left\{\beta_{N, S}\right\}_{S}: \mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{A}_{2}
$$

## 8. References

[AP] R. Accola, E. Previato, Covers of Tori: Genus 2. Letters for Math. Phys. 76 (2006), 135-161.
[FK] G. Frey, E.K., Curves of genus 2 and associated Hurwitz spaces. Contemp. Math. 487 (2009), 33-81.
[ECAS] E. K., Elliptic curves on abelian surfaces. Manusc. math. 84 (1994), 199-223.
[MS] E. K., The moduli spaces of Jacobians isomorphic to a product of two elliptic curves. Collect. Math. 67 (2016), 21-54.
[ESC] E. K., Elliptic subcovers of a curve of genus 2. Preprint, 2016, 41pp.

