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1. Introduction

> Let:
Mg /C  be the moduli space of genus g curves /C, i.e.
Mg(C) corresponds to isomorphism classes of such curves.

» Question: What is the dimension (and structure) of
subvarieties (subschemes) of M, defined by “special
properties” of curves?

» Examples: 1) Curves with extra automorphims;
2) Curves with non-constant morphisms to non-rational
curves;
3) Curves C whose Jacobians J¢ have non-trivial
endomorphisms, i.e. End(Jc) # Z.

» Note: Example 2 is a special case of Example 3.
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» Remark: Via the map C — (C) = (Jc, A\g), where
Ag JC1>.A/C is the f-polarization, we can view
Mg (C) C Ag(C), where Ag is the moduli space which
classifies isomorphism classes of principally polarized (p.p.)
abelian varieties (A, \) of dimension g. Thus, Example 3 can
be transported to Ag.

» Humbert (1900): For each positive integer n = 0,1 (mod4), 3
a surface H, C A (called a Humbert surface) such that:
(i) End(A) # Z < (A, \) € Hp,, for some n;
(ii) My = Ay \ Hi;
(i) IFf : C — E < (Jc, \g) € Hpp, for some N > 2.
» Remark: In [ECAS], property (iii) was refined to:
(iii") (Jc,Ng) € Hye < 3f 1 C — E, deg(f) = N, f minimal.
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» Questions: 1) How can we describe/analyze the components
of the intersection H, N H,, of two distinct Humbert
surfaces? (Of particular interest: the case n = N2.)

2) How many such components are there?

» Basic idea: As will be explained below, each integral, positive
definite quadratic form g defines a closed subscheme

H(q) - A27

called a generalized Humbert scheme.
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» Properties: 1) H(q) depends only on the GL,-equivalence
class of the quadratic form g = q(x1, ..., x,).
2) We have that H(q) # Az, but H(gq) may be empty.
3) The usual Humbert surface is H, := H(nx?).
4) It follows easily from the definition of H(q) (given below)
that if n # m, then

(1) Ho NHm = | H(q),

g—n,m

where the union is over all integral, positive definite binary
quadratic forms g which represent both n and m primitively.
Note: Up to equivalence, there are only finitely many forms g
with this property because |disc(q)| < 4mn.
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» Questions: 1) When is H(q) # 07
2) What is the (birational) structure of H(q)?
3) For a given g, how can we construct the p.p. abelian
surfaces (A, \) in H(q)? Is there a “modular construction”?



2. Main Results |

e Notation: Write ¢ = [a, b, c] for a binary quadratic form
q(x,y) = ax®> + bxy + cy?.

Let Q denote the set of GLy(Z)-equivalence classes of integral
binary quadratic forms g which satisfy:

(i) g is positive-definite;

(ii) g(x,y) =0,1(mod 4), Vx,y € Z.

Moreover, for n,m € N and m # n put

Q(n)={qe Q:9— n} and Q(n,m):= Q(n) N Q(m),

and for x > 1 put

Qnx)= J Qnm).

m<x,m#n
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>

Theorem 1: Let g be an integral binary quadratic form such
that ¢ — N2, for some N > 1. Then

(2) H(q)#0 < g€ Q < H(q) is an irreducible curve.

Corollary: If N > 1 and m # N?, then the rule g — H(q)
defines a bijection

Q(N?,m) = lrr(Hpe N Hp),

where Irr(V') denotes the set of irreducible components of an
algebraic set V. Similarly, the above rule also induces a
bijection
Q(N*x) S In(Hyen (| Hm))
m<x,m#N?2

Remark: This result allows us to translate problems about the
components of intersections of Humbert surfaces into
problems about binary quadratic forms.
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» Theorem 2: (a) If m=0,1(mod4) and m # N?, then
lIrf(Hpe N Hm)| > min([N?/4],[m/4]).

(b) For any N > 1 we have

lrr(He 0 (| Hm))l = cnx+ O(1),

m<x,m#N?

where cy = [%], if N is even, and cy = [%] if N is odd.
» Remark: The above result follows from the above Corollary

together with the reduction theory of binary quadratic forms.
By the same method one also obtains that

HyeNHyO My # 0, ifm>1,N>1.

This implies the validity of a conjecture of
Accola-Previato[AP].
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» Numerical Examples: By the Corollary of Theorem 1 and the
reduction theory of binary quadratic forms, we obtain

HiNH;s = H[1,0,4],
HiNHs = H[1,0,4],
HiNHs = H[1,0,4]U H[4,0,5]U H[4,4,5],
HoNHs = H[4,0,5]U H[5,2,9] U H[5,4,8].

and the number of irreducible components of Hye N H, is:

»\"11 45 8 9 12 13 16 17 20 21 24 25
1 |« 11212 2 2 3 3 2 3 3
4 |11 3 43 4 5 5 5 6 5 6 6
9 11335 =« 6 5 6 8 7 7 9 9
16 125566 9 9 x 9 12 10 11 12
25 /3 6 6 89 9 10 12 15 13 11 13 =

» Remark: Enea Milio wrote me that he/she was also able to
derive the above table by factoring suitable theta-series.
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» Theorem 3: Let g € Q(N?). If disc(g) = —16d, where
(d, N) =1, then the normalization H(q) of H(q) is the Fricke
modular curve Xo(d)™, i.e.

H(q) ~ Xo(d)" := Xo(d)/(wq), where wy= (%),

except possibly when g is a (so-called) ambiguous form. In
the exceptional cases we have that

H(q) = Xo(d)* /()

for some Atkin-Lehner involution «.

» Remark: See [MS] (2016) for the precise characterization of
the exceptional cases (and for the recipe for determining c.)
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» Theorem 4: If g € Q(N?), then 3! m|N and d > 1 such that
disc(q) = —16m*d and (N/m,d) =1.
Moreover, we have a finite surjective morphism
Bgn : Xo(N,d) — H(q),
where Xo(N, d) denotes the affine modular curve
Xo(N,d) == ([(N)NTo(Nd))\$.

» Remark: It is easy to see that Theorem 4 = Theorem 1.



4. The Refined Humbert Invariant

» Key Observation: The Néron-Severi group
NS(A) = Div(A)/ = of a p.p. abelian variety (A, \) comes
equipped with a canonical integral quadratic form q(a »)
(called the refined Humbert invariant).

» Notation: Let A/K be an abelian surface over an algebraically
closed field K. If A\: A — Ais a p.p., then A\ = ¢y for some
(unique) @ € NS(A). Put

d(an(D) = (D.0)*> —2(D.D), VD € NS(A).

Then by the Hodge Index Theorem g4 ) defines a positive
definite quadratic form g4 ) on the quotient group

NS(A, ) := NS(A)/Z6.
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» Definition: We call g(a,) the refined Humbert invariant of
(A N).

» Remark: If D € NS(A, \) is primitive (i.e., if NS(A, \)/ZD is
torsionfree), then it was shown in [ECAS] (1994) that

N = qan(D)

is the classical Humbert invariant of A (which Humbert
defined in the case K = C via the period matrix of A).

Note that if rank(NS(A)) > 2, then (A, \) has infinitely many
different (classical) Humbert invariants N associated to it.



5. Generalized Humbert Schemes

» Observation: The refined Humbert invariant g4 ) can be
used to define closed subschemes H(q) of the moduli space
A.

» Definition: If (M1, ¢1) and (M>, g2) are two quadratic
Z-modules, then we say that (M, g1) primitively represents
(Ma, g2) if there exists a linear injection f : My — Mj such
that

giof =g, and M;/f(M,) is torsionfree.

If this is the case, then we write g1 — go.

» Notation: If g is an integral, positive-definite quadratic form
(on Z"), then we put

H(a) = {(A ) € A(K) - gan) — ).
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» Proposition 1: H(q) is a closed subscheme of A,, provided
that char(K)? /disc(q).

» Example: As was already mentioned, the classical Humbert
surface is H, = H(nx?) (when K = C).

» Remark: It is possible to generalize the refined Humbert
invariant g4 ) to p.p. abelian varieties (A, \) of arbitrary
dimension g > 2. Then the above definition of H(q) extends
to define closed subschemes of Ag.



6. The Modular Construction: Step 1

» Step 1: The Basic Construction ([FK])

» Theorem 5: Let char(K){ N > 1, and let X(N)/K denote the
affine modular curve of level N. Then there is a finite
surjective morphism

ﬁ/\/ . X(N) X X(N) — HNz.

Moreover, the normalization Hyz of Hyz is isomorphic to the
quotient surface (X(N) x X(N))/ Aut(Gy).

» Remarks: 1) The morphism [y is a variant of the “basic
construction” of [FK].
2) We have that deg(5y) = | Aut(8y)| and that

Aut(By) ~ SLo(Z/NZ)/{+1} x Z/2Z.

In particular, | Aut(6n)| = | SL2(Z/NZ)|, if N > 3.



6. The Modular Construction: Step 1 (cont'd)

» Remarks: 3) The morphism [y is constructed by using the
modular interpretation of the curve X(N), i.e., the fact that
X(N) represents the functor X'(/N) which classifies
isomorphism classes of elliptic curves with (symplectic)
level-N-structure. In particular,

X(N)(K) = {(E/K,a)},
where E/K is an elliptic curve and
o E[N] 5 (Z/NZ)?

is a level-N-structure (of fixed determinant), and (-, -) denotes
the isomorphism class of the pair (E/K, ).



6. The Modular Construction: Step 2
» Step 2: The Modular Curve X4

» Notation: For d > 1, let My denote the set of primitive
matrices of determinant d, so

Mg =T(1)agM(1), where (1) =SLy(Z),aq = (19).

Moreover, for A € My and N > 1, let X4 y denote the
moduli functor (or moduli problem) given by

XAJ\/(K) = {<E1/K, aq, EQ/K,OQ; h)},

where (Ei/K,aj) € X(N)(K) for i =1,2,and h: E; — Ex is
a cyclic isogeny of degree d = det(A) such that

Qi O h\El[N] = [A]N o «q,

where [A]y € End((Z/NZ)?) is defined by the matrix
A(mod N) (via the canonical basis of (Z/NZ)?).



6. The Modular Construction: Step 2 (cont'd)

» Proposition 2: If char(K) { Nd and N > 3, then the functor
Xa n is represented by an irreducible smooth affine curve

Xan = Xo(N,d) k-



6. The Modular Construction: Step 3
» Step 3: The Modular Correspondence T4 y
» Notation: Define the forget map
TAN : Xan — X(N) x X(N)
by the rule
Tan((E1/K, a1 B2/ K, a0, h)}) = (E1/K, a1; B2/ K, a2) }.
By the modular interpretation, this induces a morphism
AN Xan — X(N) x X(N).

» Proposition 3: Tan : Xan — Tan = 7an(Xn,a) is the
normalization of Tx y.

» Remark: The curve T4y C X(N) x X(N) is the modular
correspondence associated to the double coset ['(N)AT(N).



6. The Modular Construction: Step 4

» Step 4: The Morphism (4

» Notation: For A€ My and N > 1, let B4 n be the
composition

Ban = BnoTtan : Xan — X(N) x X(N) — Hppe.

» Theorem 6: Let A= (3}
y

A= A= (% 0)an

Then
Ban(Xan) = H(ga n),

3{,) € My, and put
and m := N/ ged(tr(A),y, z, N).

where
qan = [N?,2mtr(A"), m?(tr(A)? + 4d)/N?).

» Remark: The proof uses the computations from [ESC].



6. The Modular Construction: Step 4 (cont'd)

» Corollary: If g € Q(N?), then 3d > 1 and a matrix A € My

such that H(q) = Ban(Xan) = Bn(Tan)- In particular,
H(q) is an irreducible curve, provided that char(K) { Nd.

» Remark: This follows from Theorem 6 together with:
» Lemma: If g € Q(N?), then 3! m|N and d > 1 such that

disc(q) = —16m*d and (N/m,d) = 1.
Moreover, there is a matrix A € My such that
/1 _ (1 0
q ~ qa.n, Wwhere A'= (0 _1)A.

» Remarks: 1) Corollary = Theorem 4 = Theorem 1.
2) If char(K) = 0, then the above results show that

{H(q): g € QIN*)} = {Bn(Tan): A€ [ J Mqd}.

d>1



7. Appendix: The basic construction [y
» Modular description: Define the morphism (of functors)
By X(N) x X(N) — A

as follows. Let (E;/K,a;) € X(N)(K), where i = 1,2, and
put
Y= a2_1 o (é_(i)N oy : E1[N] — E3[N].

Let
T - E1 X E2 — ATZ} = (El X E2)/Gt’8ph(—'(ﬂ)

be the quotient map. Since ¢ : E1[N] — Ex[N] is an
anti-isometry, there is a unique p.p. Ay : Ay, — Ay such that

fporpomy = N(Ag @ Ag),

where A\g, ® Ag, is the product polarization on E; x Es.
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> Thus: (A, Ay) € Aa(K), and so the rule
Bnk((Er/K, a1 B2/ K, a2)) = (Ap, Ay)
defines a map
Bnk = (X(N) x X(N))(K) — Ax(K).

Since this map is compatible with base-change (and extends
to all K-schemes S), we obtain the desired morphism

ﬁ/\/ = {ﬁN,S}S . X(N) X X(N) — Az
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