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1. Introduction

I Let:
Mg/C be the moduli space of genus g curves /C, i.e.
Mg (C) corresponds to isomorphism classes of such curves.

I Question: What is the dimension (and structure) of
subvarieties (subschemes) of Mg defined by “special
properties” of curves?

I Examples: 1) Curves with extra automorphims;
2) Curves with non-constant morphisms to non-rational
curves;
3) Curves C whose Jacobians JC have non-trivial
endomorphisms, i.e. End(JC ) 6= Z.

I Note: Example 2 is a special case of Example 3.



1. Introduction – 2

I Remark: Via the map C 7→ 〈C 〉 = (JC , λθ), where
λθ : JC

∼→ ĴC is the θ-polarization, we can view
Mg (C) ⊂ Ag (C), where Ag is the moduli space which
classifies isomorphism classes of principally polarized (p.p.)
abelian varieties (A, λ) of dimension g . Thus, Example 3 can
be transported to Ag .

I Humbert (1900): For each positive integer n ≡ 0, 1 (mod 4), ∃
a surface Hn ⊂ A2 (called a Humbert surface) such that:
(i) End(A) 6= Z ⇔ (A, λ) ∈ Hn, for some n;
(ii) M2 = A2 \ H1;
(iii) ∃f : C → E ⇔ (JC , λθ) ∈ HN2 , for some N ≥ 2.

I Remark: In [ECAS], property (iii) was refined to:
(iii′) (JC , λθ) ∈ HN2 ⇔ ∃f : C → E , deg(f ) = N, f minimal.



1. Introduction – 3

I Questions: 1) How can we describe/analyze the components
of the intersection Hn ∩ Hm of two distinct Humbert
surfaces? (Of particular interest: the case n = N2.)

2) How many such components are there?

I Basic idea: As will be explained below, each integral, positive
definite quadratic form q defines a closed subscheme

H(q) ⊂ A2,

called a generalized Humbert scheme.



1. Introduction – 4

I Properties: 1) H(q) depends only on the GLr -equivalence
class of the quadratic form q = q(x1, . . . , xr ).
2) We have that H(q) 6= A2, but H(q) may be empty.
3) The usual Humbert surface is Hn := H(nx2).
4) It follows easily from the definition of H(q) (given below)
that if n 6= m, then

(1) Hn ∩ Hm =
⋃

q→n,m

H(q),

where the union is over all integral, positive definite binary
quadratic forms q which represent both n and m primitively.
Note: Up to equivalence, there are only finitely many forms q
with this property because |disc(q)| ≤ 4mn.



1. Introduction – 5

I Questions: 1) When is H(q) 6= ∅?
2) What is the (birational) structure of H(q)?
3) For a given q, how can we construct the p.p. abelian
surfaces (A, λ) in H(q)? Is there a “modular construction”?



2. Main Results I

• Notation: Write q = [a, b, c] for a binary quadratic form

q(x , y) = ax2 + bxy + cy2.

Let Q denote the set of GL2(Z)-equivalence classes of integral
binary quadratic forms q which satisfy:
(i) q is positive-definite;
(ii) q(x , y) ≡ 0, 1 (mod 4), ∀x , y ∈ Z.
Moreover, for n,m ∈ N and m 6= n put

Q(n) = {q ∈ Q : q → n} and Q(n,m) := Q(n) ∩ Q(m),

and for x ≥ 1 put

Q ′(n, x) :=
⋃

m≤x ,m 6=n

Q(n,m).



2. Main Results I - 2

I Theorem 1: Let q be an integral binary quadratic form such
that q → N2, for some N ≥ 1. Then

(2) H(q) 6= ∅ ⇔ q ∈ Q ⇔ H(q) is an irreducible curve.

I Corollary: If N ≥ 1 and m 6= N2, then the rule q 7→ H(q)
defines a bijection

Q(N2,m)
∼→ Irr(HN2 ∩ Hm),

where Irr(V ) denotes the set of irreducible components of an
algebraic set V . Similarly, the above rule also induces a
bijection

Q ′(N2, x)
∼→ Irr(HN2 ∩ (

⋃
m≤x ,m 6=N2

Hm))

I Remark: This result allows us to translate problems about the
components of intersections of Humbert surfaces into
problems about binary quadratic forms.



2. Main Results I - 3

I Theorem 2: (a) If m ≡ 0, 1 (mod 4) and m 6= N2, then

|Irr(HN2 ∩ Hm)| ≥ min([N2/4], [m/4]).

(b) For any N ≥ 1 we have

|Irr(HN2 ∩ (
⋃

m≤x ,m 6=N2

Hm))| = cNx + O(1),

where cN = [N
2+4
8 ], if N is even, and cN = [N

2+1
8 ], if N is odd.

I Remark: The above result follows from the above Corollary
together with the reduction theory of binary quadratic forms.
By the same method one also obtains that

HN2 ∩ Hm ∩M2 6= ∅, if m > 1,N > 1.

This implies the validity of a conjecture of
Accola-Previato[AP].



2. Main Results I - 4
I Numerical Examples: By the Corollary of Theorem 1 and the

reduction theory of binary quadratic forms, we obtain

H1 ∩ H4 = H[1, 0, 4],

H1 ∩ H5 = H[1, 0, 4],

H4 ∩ H5 = H[1, 0, 4] ∪ H[4, 0, 5] ∪ H[4, 4, 5],

H9 ∩ H5 = H[4, 0, 5] ∪ H[5, 2, 9] ∪ H[5, 4, 8].

and the number of irreducible components of HN2 ∩ Hm is:

N2\m 1 4 5 8 9 12 13 16 17 20 21 24 25

1 ∗ 1 1 2 1 2 2 2 3 3 2 3 3
4 1 ∗ 3 4 3 4 5 5 5 6 5 6 6
9 1 3 3 5 ∗ 6 5 6 8 7 7 9 9
16 2 5 5 6 6 9 9 ∗ 9 12 10 11 12
25 3 6 6 8 9 9 10 12 15 13 11 13 ∗

I Remark: Enea Milio wrote me that he/she was also able to
derive the above table by factoring suitable theta-series.



3. Main Results II

I Theorem 3: Let q ∈ Q(N2). If disc(q) = −16d , where
(d ,N) = 1, then the normalization H̃(q) of H(q) is the Fricke
modular curve X0(d)+, i.e.

H̃(q) ' X0(d)+ := X0(d)/〈wd〉, where wd =
(

0 −1
d 0

)
,

except possibly when q is a (so-called) ambiguous form. In
the exceptional cases we have that

H̃(q) ' X0(d)+/〈α〉,

for some Atkin-Lehner involution α.

I Remark: See [MS] (2016) for the precise characterization of
the exceptional cases (and for the recipe for determining α.)



3. Main Results II - 2

I Theorem 4: If q ∈ Q(N2), then ∃! m|N and d ≥ 1 such that

disc(q) = −16m2d and (N/m, d) = 1.

Moreover, we have a finite surjective morphism

βq,N : X0(N, d) → H(q),

where X0(N, d) denotes the affine modular curve

X0(N, d) := (Γ(N) ∩ Γ0(Nd))\H.

I Remark: It is easy to see that Theorem 4 ⇒ Theorem 1.



4. The Refined Humbert Invariant

I Key Observation: The Néron-Severi group
NS(A) = Div(A)/≡ of a p.p. abelian variety (A, λ) comes
equipped with a canonical integral quadratic form q(A,λ)

(called the refined Humbert invariant).

I Notation: Let A/K be an abelian surface over an algebraically
closed field K . If λ : A → Â is a p.p., then λ = φθ for some
(unique) θ ∈ NS(A). Put

q̃(A,λ)(D) = (D.θ)2 − 2(D.D), ∀D ∈ NS(A).

Then by the Hodge Index Theorem q̃(A,λ) defines a positive
definite quadratic form q(A,λ) on the quotient group

NS(A, λ) := NS(A)/Zθ.



4. The Refined Humbert Invariant - 2

I Definition: We call q(A,λ) the refined Humbert invariant of
(A, λ).

I Remark: If D̄ ∈ NS(A, λ) is primitive (i.e., if NS(A, λ)/ZD̄ is
torsionfree), then it was shown in [ECAS] (1994) that

N = q(A,λ)(D̄)

is the classical Humbert invariant of A (which Humbert
defined in the case K = C via the period matrix of A).
Note that if rank(NS(A)) > 2, then (A, λ) has infinitely many
different (classical) Humbert invariants N associated to it.



5. Generalized Humbert Schemes

I Observation: The refined Humbert invariant q(A,λ) can be
used to define closed subschemes H(q) of the moduli space
A2.

I Definition: If (M1, q1) and (M2, q2) are two quadratic
Z-modules, then we say that (M1, q1) primitively represents
(M2, q2) if there exists a linear injection f : M2 → M1 such
that

q1 ◦ f = q2 and M1/f (M2) is torsionfree.

If this is the case, then we write q1 → q2.

I Notation: If q is an integral, positive-definite quadratic form
(on Zr ), then we put

H(q) := {(A, λ) ∈ A2(K ) : q(A,λ) → q}.



5. Generalized Humbert Schemes

I Proposition 1: H(q) is a closed subscheme of A2, provided
that char(K )2 6 | disc(q).

I Example: As was already mentioned, the classical Humbert
surface is Hn = H(nx2) (when K = C).

I Remark: It is possible to generalize the refined Humbert
invariant q(A,λ) to p.p. abelian varieties (A, λ) of arbitrary
dimension g ≥ 2. Then the above definition of H(q) extends
to define closed subschemes of Ag .



6. The Modular Construction: Step 1

I Step 1: The Basic Construction ([FK])

I Theorem 5: Let char(K ) - N ≥ 1, and let X (N)/K denote the
affine modular curve of level N. Then there is a finite
surjective morphism

βN : X (N)× X (N) → HN2 .

Moreover, the normalization H̃N2 of HN2 is isomorphic to the
quotient surface (X (N)× X (N))/Aut(βN).

I Remarks: 1) The morphism βN is a variant of the “basic
construction” of [FK].
2) We have that deg(βN) = |Aut(βN)| and that

Aut(βN) ' SL2(Z/NZ)/{±1}o Z/2Z.

In particular, |Aut(βN)| = |SL2(Z/NZ)|, if N ≥ 3.



6. The Modular Construction: Step 1 (cont’d)

I Remarks: 3) The morphism βN is constructed by using the
modular interpretation of the curve X (N), i.e., the fact that
X (N) represents the functor X (N) which classifies
isomorphism classes of elliptic curves with (symplectic)
level-N-structure. In particular,

X (N)(K ) = {〈E/K , α〉},

where E/K is an elliptic curve and

α : E [N]
∼→ (Z/NZ)2

is a level-N-structure (of fixed determinant), and 〈·, ·〉 denotes
the isomorphism class of the pair (E/K , α).



6. The Modular Construction: Step 2

I Step 2: The Modular Curve XA,N

I Notation: For d ≥ 1, let Md denote the set of primitive
matrices of determinant d , so

Md = Γ(1)αdΓ(1), where Γ(1) = SL2(Z), αd =
(

1 0
0 d

)
.

Moreover, for A ∈Md and N ≥ 1, let XA,N denote the
moduli functor (or moduli problem) given by

XA,N(K ) = {〈E1/K , α1;E2/K , α2; h〉},

where 〈Ei/K , αi 〉 ∈ X (N)(K ) for i = 1, 2, and h : E1 → E2 is
a cyclic isogeny of degree d = det(A) such that

α2 ◦ h|E1[N] = [A]N ◦ α1,

where [A]N ∈ End((Z/NZ)2) is defined by the matrix
A (modN) (via the canonical basis of (Z/NZ)2).



6. The Modular Construction: Step 2 (cont’d)

I Proposition 2: If char(K ) - Nd and N ≥ 3, then the functor
XA,N is represented by an irreducible smooth affine curve

XA,N ' X0(N, d)/K .



6. The Modular Construction: Step 3

I Step 3: The Modular Correspondence TA,N

I Notation: Define the forget map

τA,N : XA,N → X (N)×X (N)

by the rule

τA,N(〈E1/K , α1;E2/K , α2; h〉}) = 〈E1/K , α1;E2/K , α2〉}.

By the modular interpretation, this induces a morphism

τA,N : XA,N → X (N)× X (N).

I Proposition 3: τA,N : XA,N → TA,N := τA,N(XN,A) is the
normalization of TA,N .

I Remark: The curve TA,N ⊂ X (N)× X (N) is the modular
correspondence associated to the double coset Γ(N)AΓ(N).



6. The Modular Construction: Step 4

I Step 4: The Morphism βA,N

I Notation: For A ∈Md and N ≥ 1, let βA,N be the
composition

βA,N := βN ◦ τA,N : XA,N → X (N)× X (N) → HN2 .

I Theorem 6: Let A = ( x y
z w ) ∈Md , and put

A′ =
(1 0
0 −1

)
A =

( x y
−z −w

)
and m := N/ gcd(tr(A′), y , z ,N).

Then
βA,N(XA,N) = H(qA′,N),

where

qA′,N = [N2, 2m tr(A′),m2(tr(A′)2 + 4d)/N2].

I Remark: The proof uses the computations from [ESC].



6. The Modular Construction: Step 4 (cont’d)

I Corollary: If q ∈ Q(N2), then ∃d ≥ 1 and a matrix A ∈Md

such that H(q) = βA,N(XA,N) = βN(TA,N). In particular,
H(q) is an irreducible curve, provided that char(K ) - Nd .

I Remark: This follows from Theorem 6 together with:

I Lemma: If q ∈ Q(N2), then ∃! m|N and d ≥ 1 such that

disc(q) = −16m2d and (N/m, d) = 1.

Moreover, there is a matrix A ∈Md such that

q ∼ qA′,N , where A′ =
(1 0
0 −1

)
A.

I Remarks: 1) Corollary ⇒ Theorem 4 ⇒ Theorem 1.
2) If char(K ) = 0, then the above results show that

{H(q) : q ∈ Q(N2)} = {βN(TA,N) : A ∈
⋃
d≥1

Md}.



7. Appendix: The basic construction βN

I Modular description: Define the morphism (of functors)

βN : X (N)×X (N) → A2

as follows. Let 〈Ei/K , αi 〉 ∈ X (N)(K ), where i = 1, 2, and
put

ψ := α−1
2 ◦

(1 0
0 −1

)
N
◦ α1 : E1[N] → E2[N].

Let

πψ : E1 × E2 → Aψ := (E1 × E2)/Graph(−ψ)

be the quotient map. Since ψ : E1[N] → E2[N] is an
anti-isometry, there is a unique p.p. λψ : Aψ → Âψ such that

π̂ψ ◦ λψ ◦ πψ = N(λE1 ⊗ λE2),

where λE1 ⊗ λE2 is the product polarization on E1 × E2.



7. The basic construction - 2

I Thus: (Aψ, λψ) ∈ A2(K ), and so the rule

βN,K (〈E1/K , α1;E2/K , α2〉) = 〈Aψ, λψ〉

defines a map

βN,K : (X (N)×X (N))(K ) → A2(K ).

Since this map is compatible with base-change (and extends
to all K -schemes S), we obtain the desired morphism

βN = {βN,S}S : X (N)×X (N) → A2
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