Intersections of Humbert Surfaces and Binary Quadratic Forms

> Ernst Kani Queen's University

Québec-Maine Conference, Laval University 9 October 2016

Outline

- 1. Introduction
- 2. Main Results I
- 3. Main Results II
- 4. The Refined Humbert Invariant
- 5. Generalized Humbert Schemes
- 6. The Modular Construction
- 7. Appendix: The basic construction

8. References

1. Introduction

Let:

- M_g/\mathbb{C} be the moduli space of genus g curves $/\mathbb{C}$, i.e. $M_g(\mathbb{C})$ corresponds to isomorphism classes of such curves.
- Question: What is the dimension (and structure) of subvarieties (subschemes) of M_g defined by "special properties" of curves?
- Examples: 1) Curves with extra automorphims;
 2) Curves with non-constant morphisms to non-rational curves;

- 3) Curves *C* whose Jacobians J_C have non-trivial endomorphisms, i.e. $End(J_C) \neq \mathbb{Z}$.
- Note: Example 2 is a special case of Example 3.

1. Introduction – 2

- ▶ Remark: Via the map $C \mapsto \langle C \rangle = (J_C, \lambda_\theta)$, where $\lambda_\theta : J_C \xrightarrow{\sim} \hat{J}_C$ is the θ -polarization, we can view $M_g(\mathbb{C}) \subset A_g(\mathbb{C})$, where A_g is the moduli space which classifies isomorphism classes of principally polarized (p.p.) abelian varieties (A, λ) of dimension g. Thus, Example 3 can be transported to A_g .
- Humbert (1900): For each positive integer n ≡ 0, 1 (mod 4), ∃ a surface H_n ⊂ A₂ (called a Humbert surface) such that:
 (i) End(A) ≠ Z ⇔ (A, λ) ∈ H_n, for some n;
 (ii) M₂ = A₂ \ H₁;
 (iii) ∃f : C → E ⇔ (J_C, λ_θ) ∈ H_{N²}, for some N ≥ 2.
- ▶ Remark: In [ECAS], property (iii) was refined to: (iii') $(J_C, \lambda_\theta) \in H_{N^2} \Leftrightarrow \exists f : C \to E, \deg(f) = N, f$ minimal.

1. Introduction – 3

- Questions: 1) How can we describe/analyze the components of the intersection H_n ∩ H_m of two distinct Humbert surfaces? (Of particular interest: the case n = N².)
 2) How many such components are there?
- Basic idea: As will be explained below, each integral, positive definite quadratic form q defines a closed subscheme

 $H(q) \subset A_2,$

called a generalized Humbert scheme.

1. Introduction – 4

Properties: 1) H(q) depends only on the GL_r-equivalence class of the quadratic form q = q(x₁,...,x_r).
 2) We have that H(q) ≠ A₂, but H(q) may be empty.
 3) The usual Humbert surface is H_n := H(nx²).
 4) It follows easily from the definition of H(q) (given below) that if n ≠ m, then

(1)
$$H_n \cap H_m = \bigcup_{q \to n,m} H(q),$$

where the union is over all integral, positive definite binary quadratic forms q which represent both n and m primitively. Note: Up to equivalence, there are only finitely many forms q with this property because $|\operatorname{disc}(q)| \leq 4mn$.

1. Introduction - 5

Questions: 1) When is H(q) ≠ Ø?
2) What is the (birational) structure of H(q)?
3) For a given q, how can we construct the p.p. abelian surfaces (A, λ) in H(q)? Is there a "modular construction"?

2. Main Results I

• Notation: Write q = [a, b, c] for a binary quadratic form

$$q(x,y) = ax^2 + bxy + cy^2.$$

Let Q denote the set of $GL_2(\mathbb{Z})$ -equivalence classes of integral binary quadratic forms q which satisfy: (i) q is positive-definite; (ii) $q(x, y) \equiv 0, 1 \pmod{4}, \forall x, y \in \mathbb{Z}$. Moreover, for $n, m \in \mathbb{N}$ and $m \neq n$ put

 $Q(n) = \{q \in Q: q \rightarrow n\}$ and $Q(n,m) := Q(n) \cap Q(m),$

and for $x \ge 1$ put

$$Q'(n,x):=\bigcup_{m\leq x,m\neq n}Q(n,m).$$

- 2. Main Results I 2
 - ▶ Theorem 1: Let q be an integral binary quadratic form such that $q \rightarrow N^2$, for some $N \ge 1$. Then

(2) $H(q) \neq \emptyset \Leftrightarrow q \in Q \Leftrightarrow H(q)$ is an irreducible curve.

▶ Corollary: If $N \ge 1$ and $m \ne N^2$, then the rule $q \mapsto H(q)$ defines a bijection

$$Q(N^2, m) \xrightarrow{\sim} \operatorname{Irr}(H_{N^2} \cap H_m),$$

where Irr(V) denotes the set of irreducible components of an algebraic set V. Similarly, the above rule also induces a bijection

$$Q'(N^2, x) \xrightarrow{\sim} \operatorname{Irr}(H_{N^2} \cap (\bigcup_{m \leq x, m \neq N^2} H_m))$$

Remark: This result allows us to translate problems about the components of intersections of Humbert surfaces into problems about binary quadratic forms.

2. Main Results I - 3

• Theorem 2: (a) If $m \equiv 0, 1 \pmod{4}$ and $m \neq N^2$, then

 $|\operatorname{Irr}(H_{N^2} \cap H_m)| \geq \min([N^2/4], [m/4]).$

(b) For any $N \ge 1$ we have

 $|\operatorname{Irr}(H_{N^2} \cap (\bigcup_{m \leq x, m \neq N^2} H_m))| = c_N x + O(1),$

where c_N = [^{N²+4}/₈], if N is even, and c_N = [^{N²+1}/₈], if N is odd.
 ▶ Remark: The above result follows from the above Corollary together with the reduction theory of binary quadratic forms. By the same method one also obtains that

 $H_{N^2} \cap H_m \cap M_2 \neq \emptyset$, if m > 1, N > 1.

This implies the validity of a conjecture of Accola-Previato[AP].

- 2. Main Results I 4
 - Numerical Examples: By the Corollary of Theorem 1 and the reduction theory of binary quadratic forms, we obtain

 $\begin{array}{rcl} H_1 \cap H_4 &=& H[1,0,4], \\ H_1 \cap H_5 &=& H[1,0,4], \\ H_4 \cap H_5 &=& H[1,0,4] \cup H[4,0,5] \cup H[4,4,5], \\ H_9 \cap H_5 &=& H[4,0,5] \cup H[5,2,9] \cup H[5,4,8]. \end{array}$

and the number of irreducible components of $H_{N^2} \cap H_m$ is:

$N^2 \setminus m$	1	4	5	8	9	12	13	16	17	20	21	24	25
1	*	1	1	2	1	2	2	2	3	3	2	3	3
4	1	*	3	4	3	4	5	5	5	6	5	6	6
9	1	3	3	5	*	6	5	6	8	7	7	9	9
9 16	2	5	5	6	6	9	9	*	9	12	10	11	12
25	3	6	6	8	9	9	10	12	15	13	11	13	*

Remark: Enea Milio wrote me that he/she was also able to derive the above table by factoring suitable theta-series.

3. Main Results II

► Theorem 3: Let q ∈ Q(N²). If disc(q) = -16d, where (d, N) = 1, then the normalization H̃(q) of H(q) is the Fricke modular curve X₀(d)⁺, i.e.

 $ilde{H}(q) \ \simeq \ X_0(d)^+ := X_0(d)/\langle w_d
angle, \quad ext{where} \quad w_d = \left(egin{array}{c} 0 & -1 \ d & 0 \end{array}
ight),$

except possibly when q is a (so-called) ambiguous form. In the exceptional cases we have that

 $\tilde{H}(q) \simeq X_0(d)^+ / \langle \alpha \rangle,$

for some Atkin-Lehner involution α .

Remark: See [MS] (2016) for the precise characterization of the exceptional cases (and for the recipe for determining α.) 3. Main Results II - 2

▶ Theorem 4: If $q \in Q(N^2)$, then $\exists ! m | N$ and $d \ge 1$ such that

disc $(q) = -16m^2d$ and (N/m, d) = 1.

Moreover, we have a finite surjective morphism

 $\beta_{q,N}: X_0(N,d) \rightarrow H(q),$

where $X_0(N, d)$ denotes the affine modular curve

 $X_0(N,d) := (\Gamma(N) \cap \Gamma_0(Nd)) \setminus \mathfrak{H}.$

• Remark: It is easy to see that Theorem $4 \Rightarrow$ Theorem 1.

4. The Refined Humbert Invariant

Key Observation: The Néron-Severi group NS(A) = Div(A)/≡ of a p.p. abelian variety (A, λ) comes equipped with a canonical integral quadratic form q_(A,λ) (called the refined Humbert invariant).

Notation: Let A/K be an abelian surface over an algebraically closed field K. If λ : A → Â is a p.p., then λ = φ_θ for some (unique) θ ∈ NS(A). Put

 $\tilde{q}_{(A,\lambda)}(D) = (D.\theta)^2 - 2(D.D), \quad \forall D \in \mathsf{NS}(A).$

Then by the Hodge Index Theorem $\tilde{q}_{(A,\lambda)}$ defines a positive definite quadratic form $q_{(A,\lambda)}$ on the quotient group

 $NS(A, \lambda) := NS(A)/\mathbb{Z}\theta.$

4. The Refined Humbert Invariant - 2

- Definition: We call q_(A,λ) the refined Humbert invariant of (A, λ).
- ▶ Remark: If $\overline{D} \in NS(A, \lambda)$ is primitive (i.e., if $NS(A, \lambda)/\mathbb{Z}\overline{D}$ is torsionfree), then it was shown in [ECAS] (1994) that

 $N = q_{(A,\lambda)}(\bar{D})$

is the classical Humbert invariant of A (which Humbert defined in the case $K = \mathbb{C}$ via the period matrix of A). Note that if rank(NS(A)) > 2, then (A, λ) has infinitely many different (classical) Humbert invariants N associated to it.

5. Generalized Humbert Schemes

- Observation: The refined Humbert invariant q_(A,λ) can be used to define closed subschemes H(q) of the moduli space A₂.
- ▶ Definition: If (M_1, q_1) and (M_2, q_2) are two quadratic Z-modules, then we say that (M_1, q_1) primitively represents (M_2, q_2) if there exists a linear injection $f : M_2 \to M_1$ such that

 $q_1 \circ f = q_2$ and $M_1/f(M_2)$ is torsionfree.

If this is the case, then we write $q_1 \rightarrow q_2$.

► Notation: If q is an integral, positive-definite quadratic form (on Z^r), then we put

$$H(q) := \{ (A, \lambda) \in A_2(\overline{K}) : q_{(A,\lambda)} \to q \}.$$

5. Generalized Humbert Schemes

- Proposition 1: H(q) is a closed subscheme of A₂, provided that char(K)² / disc(q).
- ► Example: As was already mentioned, the classical Humbert surface is $H_n = H(nx^2)$ (when $K = \mathbb{C}$).
- Remark: It is possible to generalize the refined Humbert invariant q_(A,λ) to p.p. abelian varieties (A, λ) of arbitrary dimension g ≥ 2. Then the above definition of H(q) extends to define closed subschemes of A_g.

6. The Modular Construction: Step 1

Step 1: The Basic Construction ([FK])

► Theorem 5: Let char(K) ∤ N ≥ 1, and let X(N)/K denote the affine modular curve of level N. Then there is a finite surjective morphism

$$\beta_N: X(N) \times X(N) \rightarrow H_{N^2}.$$

Moreover, the normalization \tilde{H}_{N^2} of H_{N^2} is isomorphic to the quotient surface $(X(N) \times X(N)) / \operatorname{Aut}(\beta_N)$.

Remarks: 1) The morphism β_N is a variant of the "basic construction" of [FK].

2) We have that $deg(\beta_N) = |Aut(\beta_N)|$ and that

 $\operatorname{Aut}(\beta_N) \simeq \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\} \rtimes \mathbb{Z}/2\mathbb{Z}.$

In particular, $|\operatorname{Aut}(\beta_N)| = |\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})|$, if $N \geq 3$.

6. The Modular Construction: Step 1 (cont'd)

Remarks: 3) The morphism β_N is constructed by using the modular interpretation of the curve X(N), i.e., the fact that X(N) represents the functor X(N) which classifies isomorphism classes of elliptic curves with (symplectic) level-N-structure. In particular,

 $\mathcal{X}(N)(K) = \{ \langle E/K, \alpha \rangle \},\$

where E/K is an elliptic curve and

 $\alpha: \boldsymbol{E}[\boldsymbol{N}] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$

is a level-*N*-structure (of fixed determinant), and $\langle \cdot, \cdot \rangle$ denotes the isomorphism class of the pair $(E/K, \alpha)$.

- 6. The Modular Construction: Step 2
 - Step 2: The Modular Curve X_{A,N}
 - ► Notation: For d ≥ 1, let M_d denote the set of primitive matrices of determinant d, so

 $\mathcal{M}_d = \Gamma(1) \alpha_d \Gamma(1), \quad \text{where } \Gamma(1) = \mathsf{SL}_2(\mathbb{Z}), \alpha_d = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}.$

Moreover, for $A \in \mathcal{M}_d$ and $N \ge 1$, let $\mathcal{X}_{A,N}$ denote the moduli functor (or moduli problem) given by

 $\mathcal{X}_{A,N}(K) = \{ \langle E_1/K, \alpha_1; E_2/K, \alpha_2; h \rangle \},\$

where $\langle E_i/K, \alpha_i \rangle \in \mathcal{X}(N)(K)$ for i = 1, 2, and $h : E_1 \to E_2$ is a cyclic isogeny of degree $d = \det(A)$ such that

$$\alpha_2 \circ h_{|E_1[N]} = [A]_N \circ \alpha_1,$$

where $[A]_N \in \text{End}((\mathbb{Z}/N\mathbb{Z})^2)$ is defined by the matrix $A \pmod{N}$ (via the canonical basis of $(\mathbb{Z}/N\mathbb{Z})^2$).

6. The Modular Construction: Step 2 (cont'd)

▶ Proposition 2: If char(K) $\nmid Nd$ and $N \ge 3$, then the functor $\mathcal{X}_{A,N}$ is represented by an irreducible smooth affine curve

 $X_{A,N} \simeq X_0(N,d)_{/K}.$

6. The Modular Construction: Step 3

► Step 3: The Modular Correspondence *T*_{A,N}

Notation: Define the forget map

 $\tau_{A,N}: \mathcal{X}_{A,N} \to \mathcal{X}(N) \times \mathcal{X}(N)$

by the rule

 $\tau_{\mathcal{A},\mathcal{N}}(\langle \mathcal{E}_1/\mathcal{K},\alpha_1;\mathcal{E}_2/\mathcal{K},\alpha_2;\mathfrak{h}\rangle\})=\langle \mathcal{E}_1/\mathcal{K},\alpha_1;\mathcal{E}_2/\mathcal{K},\alpha_2\rangle\}.$

By the modular interpretation, this induces a morphism

$$au_{A,N}: X_{A,N} \to X(N) \times X(N).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Proposition 3: $\tau_{A,N}$: $X_{A,N} \rightarrow T_{A,N}$:= $\tau_{A,N}(X_{N,A})$ is the normalization of $T_{A,N}$.
- ► Remark: The curve T_{A,N} ⊂ X(N) × X(N) is the modular correspondence associated to the double coset Γ(N)AΓ(N).

6. The Modular Construction: Step 4

- **Step 4:** The Morphism $\beta_{A,N}$
- ► Notation: For A ∈ M_d and N ≥ 1, let β_{A,N} be the composition

$$\beta_{\mathcal{A},\mathcal{N}} := \beta_{\mathcal{N}} \circ \tau_{\mathcal{A},\mathcal{N}} : X_{\mathcal{A},\mathcal{N}} \to X(\mathcal{N}) \times X(\mathcal{N}) \to H_{\mathcal{N}^2}.$$

▶ Theorem 6: Let $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathcal{M}_d$, and put $A' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A = \begin{pmatrix} x & y \\ -z & -w \end{pmatrix}$ and $m := N/\gcd(\operatorname{tr}(A'), y, z, N)$. Then

$$\beta_{A,N}(X_{A,N}) = H(q_{A',N}),$$

where

$$q_{A',N} = [N^2, 2m \operatorname{tr}(A'), m^2(\operatorname{tr}(A')^2 + 4d)/N^2].$$

Remark: The proof uses the computations from [ESC].

6. The Modular Construction: Step 4 (cont'd)

- ► Corollary: If $q \in Q(N^2)$, then $\exists d \geq 1$ and a matrix $A \in \mathcal{M}_d$ such that $H(q) = \beta_{A,N}(X_{A,N}) = \beta_N(T_{A,N})$. In particular, H(q) is an irreducible curve, provided that char(K) $\nmid Nd$.
- Remark: This follows from Theorem 6 together with:
- ▶ Lemma: If $q \in Q(N^2)$, then $\exists ! m | N$ and $d \ge 1$ such that

disc $(q) = -16m^2d$ and (N/m, d) = 1.

Moreover, there is a matrix $A \in \mathcal{M}_d$ such that

 $q \sim q_{A',N}$, where $A' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A$.

▶ Remarks: 1) Corollary \Rightarrow Theorem 4 \Rightarrow Theorem 1. 2) If char(K) = 0, then the above results show that

$$\{H(q): q \in Q(N^2)\} = \{\beta_N(T_{A,N}): A \in \bigcup_{d \ge 1} \mathcal{M}_d\}.$$

7. Appendix: The basic construction β_N

Modular description: Define the morphism (of functors)

 $\beta_{N}: \mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{A}_{2}$

as follows. Let $\langle E_i/K, \alpha_i \rangle \in \mathcal{X}(N)(K)$, where i = 1, 2, and put

$$\psi := \alpha_2^{-1} \circ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_{\mathsf{N}} \circ \alpha_1 : \mathsf{E}_1[\mathsf{N}] \to \mathsf{E}_2[\mathsf{N}].$$

Let

$$\pi_{\psi}: E_1 \times E_2 \rightarrow A_{\psi}:= (E_1 \times E_2)/\mathsf{Graph}(-\psi)$$

be the quotient map. Since $\psi : E_1[N] \to E_2[N]$ is an anti-isometry, there is a unique p.p. $\lambda_{\psi} : A_{\psi} \to \hat{A}_{\psi}$ such that

$$\hat{\pi}_{\psi} \circ \lambda_{\psi} \circ \pi_{\psi} = \mathcal{N}(\lambda_{E_1} \otimes \lambda_{E_2}),$$

where $\lambda_{E_1} \otimes \lambda_{E_2}$ is the product polarization on $E_1 \times E_2$.

7. The basic construction - 2

• Thus: $(A_{\psi}, \lambda_{\psi}) \in \mathcal{A}_2(K)$, and so the rule

 $\beta_{N,K}(\langle E_1/K, \alpha_1; E_2/K, \alpha_2 \rangle) = \langle A_{\psi}, \lambda_{\psi} \rangle$

defines a map

 $\beta_{N,K}: (\mathcal{X}(N) \times \mathcal{X}(N))(K) \rightarrow \mathcal{A}_2(K).$

Since this map is compatible with base-change (and extends to all K-schemes S), we obtain the desired morphism

 $\beta_{N} = \{\beta_{N,S}\}_{S} : \mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{A}_{2}$

8. References

- [AP] R. Accola, E. Previato, Covers of Tori: Genus 2. Letters for Math. Phys. 76 (2006), 135–161.
- [FK] G. Frey, E.K., Curves of genus 2 and associated Hurwitz spaces. Contemp. Math. 487 (2009), 33–81.
- [ECAS] E. K., Elliptic curves on abelian surfaces. Manusc. math. 84 (1994), 199–223.
 - [MS] E. K., The moduli spaces of Jacobians isomorphic to a product of two elliptic curves. *Collect. Math.* **67** (2016), 21–54.
 - [ESC] E. K., Elliptic subcovers of a curve of genus 2. Preprint, 2016, 41pp.