Hurwitz Spaces for Hyperelliptic Curve
Covers
—joint work with G. Frey

1. Introduction

Motivation: We want to study curve covers
f:C — P!
over a field K satistying the following conditions:
(i) C'is a smooth hyperelliptic curve of genus go = 3;
(ii) f has degree deg(f) = 4;
(iii) f has ramification type (2,2)%(2,1,1)%
(iv) f has monodromy group Gy =~ Sj.
Tasks: 1) Find explicit equations for such curve covers.
2) Describe the Hurwitz space of such covers, i.e., determine

the space which classifies equivalence classes of such covers.

Remark: 1) Covers of the above type are of interest in cryptog-
raphy in connection with Ben Smith’s attack on the security
of hyperelliptic genus 3 curves over F, (cf. G. Frey’s lecture).

2) If we drop the condition “hyperelliptic” in the above hy-
potheses, then the answer to Task 2 can be obtained from the
usual techniques of the theory of Hurwitz spaces (cf. Fried /Volklein)

However, these techniques do not easily extend to include the
above situation.



2. An example

Consider the polynomial
F(T,X) = 12TX* + 12T(2T — 1) X3 + (2872 4 27T — 88)X?
+18T(2T — 3)X — 3T(8T — 17).
Facts: (i) The equation F(T,X) = 0 defines a smooth curve

C'/Q of genus 3 which has good reduction C), at all primes
p > 5 except for

p € S = {11,13,17,19, 47,191}

(ii) The projection (T, X) +— T defines a cover f : C' — Pg, of
degree 4, as well as degree 4 covers f, : C) — Plle (for p > 5).
(iii) f has ramification type (2,2) at T" = 0,1,—1,2 and
simple ramification type (2,1,1) at 4 other points (over Q).
Moreover, the same is true for f, if p > 5 except for

peSy=5 U {7,31,379}

(iv) The Galois group of F over Q(T) is Gal(F) ~ Sy, i.e.,
the monodromy group of f is Gy ~ S;. Moreover, the same
is true for f, it p > 19, except when p € 5s.

Remark: By considering other examples, one can show that curve
covers satisfying conditions (i)—(iv) exist over K whenever

char(K) > 7.



3. Hyperelliptic Hurwitz spaces (General Theory)

Fix: an integer n > 3 and a field K, and consider K -covers
f:C— Py

satisfying the following conditions:

(i) C'/K is a smooth hyperelliptic curve of genus go = n — 1;
(ii) deg(f) = n, and fowe # f, where we is the hyperelliptic
involution of C.

Definition: The set H,,(K) of isomorphism classes of such covers
is called the Hurwitz space of hyperelliptic covers of degree
n (and of genus n — 1).

Rigidification: Consider the set H"8(K) of isomorphism classes
of triples (C, f, ) with (C, f) € H,(K) and a fixed hyperel-

liptic cover
m:C — Pk

Note: Since 7 is unique up to an automorphism of Aut(IP}.),
Ho(K) = Aut(P)\H5(K).
Observation: Given (C, f,7) € H"(K), 3! morphism
jo 1 C — Pl x P} such that f = priojo, @ = pryo jo,

where pr; : PL x PL. — PL is the i'" projection map. Also:
e jo is a closed immersion (so C' ~ j(C));

e D¢ = jo(C) is a divisor on the surface P} x Pl and

D¢ ~ Dy, = 2(P x Pi) + n(P x P), for P € P(K).



Proposition 1: The rule (C, f,7) — D¢ induces a bijection
K, - Hfzig<K) — [ Dol %"

where |Ds |37 C |Day| i denotes the subset of smooth divi-
sors in the linear system |Ds |5

Remarks: 1) Since |Dy,|x =~ P2 this means that we can
identify H"&(K') with a non-empty, open subset of P32,

2) If we fix homogeneous coordinates on P!, then each divisor
D € |Ds,| is given by an equation F'(Ty,T1; Xo, X1) = 0,
where F'is homogeneous of degree 2 in T, T} and of degree n
n )(07 Xl, i.e.,

n 2
F(Ty, Ty: Xo, X1) = Y Y vy XoX{ 715 7TY,
i=0 j=0

where 7;; € K. For simplicity, we write this polynomial n its
affine (de-homogenized) form

n 2
F(T,X) = ) ) ryX" 17,

i=0 j=0

Proposition 2: Let C' € | Dy ,| be given by F(Tp, T, Xy, X1). If
char(K') # 2, then C' € |D,|*" if and only if its discriminant

Dip(Xo, X1) = A7 — 4Ag Ay, where A; =Y riXiX{™,
1=0

is separable, i.e., Df} factors over K into 2n distinct linear
factors.



4. Special hyperelliptic covers of genus 3.
Assume henceforth: char(K) # 2.

Notation: Fix coordinates on Pk.. Let Py, = (0 : 1), and write
P, = (1:a) for a € K. Moreover, put

P, = (P, P) € (P' xPY)(K), fora,be K=K U/{x}.

Furthermore, let Hff% denote the subset of curves C' € | Dy 4|
satisfying the following conditions:

(1) fo(Py) = 2Py + 2P,
(2) fé(Pﬂ = 2P1’1 + 2P1,04, for some o € K, 87 ?é 1
(3) fo(P-1) = 2D, for some D € Div(C),
D #P.i o+ P1g,D#2PYP
Here fo = (pri)c : C — Py is the induced degree 4 cover.

Thus: Each C' € HZ% is smooth of genus 3, and the cover fq is
ramified of type (2,2) at the points Py, P, P_; € PL(K).

Moreover: For t € K \ {0,1,—1}, let Hﬁ,t denote the subset
of those C' € 'H};3 which are also ramified of type (2,2) at P :

(4) fg(Pt> — 2Dt, with Dt # 2P, for alny P e C(f)

Theorem 1: The Hurwitz space H,5 is a smooth, rational vari-

ety of dimension. More precisely, Hff% is covered by two open
subsets which are isomorphic to open subsets of A”.

Remark: The curves C' € Hff% can be described explicitly in
terms of their associated equations F(T, X)) = 0.



Notation: Let
Mg ={C €M, Pois ¢ C, P & C}.

Theorem 2: The Hurwitz space Hj 4, consists of two disjoint
rational components:

* L * ' *
H4,3,t = H4,3,t,1 U H4,3,t,2

Moreover, all the covers in 'H 5, ; factor over a quadratic cover,
whereas in general the covers in Hj 5,5 do not admit such a
factorization.

Remarks: 1) A similar result should also be true for H}%, (in
place of ijgjt), but this has not been proved yet.

2) Due to the presence of certain exceptional (lower-dimensional)
subvarieties, the proof of Theorem 2 is rather complicated.



5. Explicit equations.

Notation: For rg1,r11,r12,t € K, put

ap = 1 —2ry as = Toi1r11 + To1712 — 11
ay = T2 — 711 as = (1 —ro)t + 7o

ay = T2+ 711 ag = 7ot + 111

a = —5(rn+ri2+2)

For agas # 0, let
F(T,X)=AX"+ BX’ 4+ CX? +aBX + a*A,

in which
A = A(T) = 7”01T + <1 — T01>T2,
B = B(T) — 7’11T—|—7“12T2,
C = C(T) = rg+raT + (a* +4a+1—1ry —ry)T?
with
ta3 4ag(4 1)?) — a?
4@0@5 8&0

Moreover, if also dg # 0, where d = 4aagpas and
q = CLQ(2T01CL2 -+ &1(2t — 3a5) — 2&57“11> -+ 2<t — 1)7“%1,
then put
(T, X) = F(T,X) +4G(T, X), where
G(T,X) = (co(1 —=T?%) 4+ agT(1 —T))X?
+csT(1—T)X + 4T (1 —=1T),
with
tas ai1ag _ ia1a2a5a6

CQ — — & = 57—, € =
a 20 q
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Theorem 3: Let t € K* := K\ {0,1,-1}. If C € Hj3,,
then 4! roi,r11, 712 € K such that the associated equation
Fi(T, X) = 0 gives C. Moreover, the discriminant

4
Dp, (X) = A% — 4A0As, where A; = Z Tinll—i
i=0

is separable of degree 8 and the following inequalities hold:
(5) a#1, af #16%ia and a} # 16aia.

Conversely, if F1(T, X) is as above (including (5) and the dis-
criminant condition), then the equation F(7T, X) = 0 defines
acurve C' € Hj g, .

Theorem 4: (a) Let ¢t € K*® and let 7o, 711,72 € K satisfy
apasdq # 0 and the inequalities
(6) «a#1, a% £ 162a(2)(oz — 0), a% £ 16a§(0¢ — (t—=1)p),

where 3 = %. Then the associated equation Fh(T, X) = 0
defines a curve €' € Hj 3,5, provided that its discriminant
Dp,(X) is separable of degree 8.

(b) The set of curves C' obtained by the equations of part (a)
form an open subset H 3, 5 of Hj 3, 5. The complement

1 Ak /
1302 =Hiz12\ Higso
consists of two disjoint rational varieties of dimension 2.

Remark: In our paper we give the explicit equations for the two
families which describe the two components of H/ 5, ,.
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Remark: The proofs of the above theorems are very computa-
tional and use MAPLE to simplify complicated algebraic ex-
pressions. They also use the following technical fact which
allows us to analyze the (2, 2)-ramification condition.

Lemma: Let Q(X) = AX*+ BX3+CX?*+ DX +FE € K[X],
where A # 0. The following are equivalent:

(i) Q(X) = Aq(X)?, for some ¢(X) = X? +bX +¢;
(ii) 8A*D = BA and 64FE A% = A? where A = 4AC — B2,
Moreover, if this holds, then
b=B/(24) and c=A/(8A%),
and so ¢(X) has distinct roots in K if and only if
B* — 2AN = 3B* —8AC #0.
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6. Ramification types.

Definition: A curve cover f : C' — () has ramification type
(61,...,67a) at By € Co(K> if e; > D 11\/’1’6}1 e; > 1
and if there exist distinct points Py, ..., P, € C(K) such that

r

fH(Ry) = Z e, b

i=1
The list of ramification types of all points is called the ramifi-
cation type of the cover.

Example: If C' € Hj‘i’g&t, then the associated cover fo : C' — P!
has ramification type (2, 2) at the points Py, P;, P_1 and P; €
PH(K).

Notation: If F(T,X) € K|T, X]| is a polynomial, then let
DF’X(T> = dlSCX(D<F>> c K[T]
denote the discriminant of F' (viewed as a polynomial in X).

Proposition 3: If (T, X) = 0 describes a curve C' in Hf’%,t,
then degp(Dr x) = 12 and

Dix(T) = Dpx(T)/(T(T° = 1)(T - t))* € K[T].

Moreover, fc has ramification type (2,2)%(2,1,1)* if and only
if D% y(T') is a separable polynomial, which is equivalent to

(7) discr(Dr x) # 0.

Thus, the set of C' & Hff%,t with fc of ramification type
(2,2)*(2,1,1)" is an open subset of H}% .
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7. Monodromy groups.

Recall: By field theory, each separable cover f : C — (Cj has a
Galois hull o
f O — C().
This a Galois cover which factors over f, ie., f = fo ', for

some f’: C' — C, and which is minimal with these properties.
The Galois group

Gy = Gal(f)
is called the monodromy group of the cover f.
Proposition 4: Let F(T,X) = 0 define a curve C' € Hff%,t,

and let G = G, be the monodromy group of the associated
cover. Then the following are equivalent:

(i) Gp >~ Dyor Gp ~ Sy;

(ii) D% x(T) is not a square (in K(T)).

On the other hand, if D7, (T) is a square, then either G ~
Ayor Gp ~ 7./27 x Z/27. In particular, Gr can never be a

cyclic group.

Remark: A usetul method for distinguishing between the D, and
the Sy case is to study the Lagrange resolvent (or cubic resol-
vent) of F.
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8. The Lagrange Resolvent
Definition: The Lagrange resolvent of a general quartic
f(x) = ax* + bz’ + ca® +dax +e
is the monic cubic polynomial r¢(x) which is defined by
ri(r) = a° —cx® + (bd — 4ae)x + a(dce — d°) — be.
Remarks: 1) If f is monic, then this definition of r; agrees with
the usual definition. In general case we have (when a # 0) the

relation
rilax) = a’rx),

where f(z) = f(x)/a is the associated monic polynomial .

2) It is a remarkable and useful fact that
disc(ry) = disc(f).

Proposition 5: Let F/(T, X) = 0 define a curve C' € Hf’%’t, and
suppose that Dy (T') is not a square. Then

Gp~ Sy < rp(X) is irreducible over K(T).

Lemma: If f(X) € k[X] is an irreducible quartic of the form
f(X) = aX'"+bX° +cX* + abX + o’a,
then Galy ~ Dy or Galy ~ Z/AZ or Galy ~ Z /27 x Z]2Z.

Proof. r¢(2ac) = 0, so 7 is reducible. Thus, the assertion fol-
lows from Proposition 4.11 of Hungerford’s Algebra, p. 273.
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Corollary: Let C' € 'Hj ,, ; with associated polynomial Fy (7T, X).

Then
Grp ~ Dy < Dy isnot asquare.

On the other hand, if D7 y is a square, then Gy >~ Z /27 X
7./27.

Theorem 5: Let C' € ‘H3,,, be defined by a polynomial equa-
tion F5(X,T) = 0, with F5 as in Theorem 4. Suppose that
D, x 1s separable, i.e, the discriminant condition (7) holds.
Then

Gp, ~ S & aa #0.

Corollary: If char(K) = 0 or char(K) > 7, then there is a non-
empty open subset Us 4 ; of H§,47t72 such that each C' € U with
its associated cover fo : C' — P! satisfies the conditions (i) —
(iv) of the introduction.

Remark: However, Us 4, is not the full (rigid) Hurwitz space of
such covers because one of the two components of the comple-
ment H3 ;5 also produces examples of curve covers satisfying

(i) — (iv).
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9. The associated (2,3)-cover.

Proposition 5: Let f : C' — PL be a curve cover satisfying con-
ditions (i) — (iv), and let F'(T', X') = 0 be its defining equation.
Let (T, X) be the Lagrange resolvent of F' over K (T').

(a) The curve C,, : 7p(T,X) = 0 is rational. If we fix a
parametrization (T(U), X(U)) of C,,., then the rational func-

rEo

tion T'(U) € K(U) defines a cubic cover
fs: Pl — Pl
(b) Let C” be the (hyperelliptic) curve defined by the equation
Y? = X(U) - 4A(T(U))E(T(U)),

where A(T') and E(T') are the highest and constant coefficients
of F(T,X).If fo: C" — P! denotes the associated hyperellip-
tic cover, then C” has genus 3, and the Galois hull f : C' — P!
factors over f30 fo. Moreover, f is also the Galois hull of f50 fo.

Remarks: 1) MAPLE has a nice program which computes a
parametrization of any rational plane curve g(z,y) = 0.

2) We thus have:

C
!
C//
/ N\
/ o
C | f
N\ P!
N 3
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10. Connection with the attack of Ben Smith.
Given: A hyperelliptic cover fy : O — ]P’Ilgq,

Construct: a curve C'/FF, of genus 3 and a (3, 2)-correspondence

C" between C' and C’

C//
3 2
SN
C C’
such that the induced homomorphism on the Jacobians is an
1SOgeny:
TC” : JC/ — Jc.

Note: If C'is NOT hyperelliptic, then the attack is successful (the
cryptosystem based on C” is not secure).

Method (Donagi/Livné/Smith): Use the trigonal construc-
tion: comstruct a cubic (sub)cover f3 : P* — P! such that
f3 o fo has a “special” ramification structure. Smith gives a
geometric construction for obtaining C' from f3 and fo.

Main idea (via Galois theory): The hypotheses imply that
J6 == f3 0 f2 has monodromy group Sy. If fg : €' — P! is the
Galois hull, then C' := (C'/S; is the associated genus 3 curve.

Thus: The construction of §9 is inverse to that of Ben Smith.



