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Hurwitz Spaces for Hyperelliptic Curve
Covers

–joint work with G. Frey

1. Introduction

Motivation: We want to study curve covers

f : C → P1

over a field K satisfying the following conditions:

(i) C is a smooth hyperelliptic curve of genus gC = 3;

(ii) f has degree deg(f ) = 4;

(iii) f has ramification type (2, 2)4(2, 1, 1)4;

(iv) f has monodromy group Gf ' S4.

Tasks: 1) Find explicit equations for such curve covers.

2) Describe the Hurwitz space of such covers, i.e., determine
the space which classifies equivalence classes of such covers.

Remark: 1) Covers of the above type are of interest in cryptog-
raphy in connection with Ben Smith’s attack on the security
of hyperelliptic genus 3 curves over Fq (cf. G. Frey’s lecture).

2) If we drop the condition “hyperelliptic” in the above hy-
potheses, then the answer to Task 2 can be obtained from the
usual techniques of the theory of Hurwitz spaces (cf. Fried/Völklein).
However, these techniques do not easily extend to include the
above situation.
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2. An example

Consider the polynomial

F (T, X) = 12TX4 + 12T (2T − 1)X3 + (28T 2 + 27T − 88)X2

+18T (2T − 3)X − 3T (8T − 17).

Facts: (i) The equation F (T, X) = 0 defines a smooth curve
C/Q of genus 3 which has good reduction Cp at all primes
p > 5 except for

p ∈ S1 := {11, 13, 17, 19, 47, 191}.

(ii) The projection (T, X) 7→ T defines a cover f : C → P1
Q of

degree 4, as well as degree 4 covers fp : Cp → P1
Fp

(for p > 5).

(iii) f has ramification type (2, 2) at T = 0, 1,−1, 2 and
simple ramification type (2, 1, 1) at 4 other points (over Q).
Moreover, the same is true for fp if p > 5 except for

p ∈ S2 = S1 ∪ {7, 31, 379}.

(iv) The Galois group of F over Q(T ) is Gal(F ) ' S4, i.e.,
the monodromy group of f is Gf ' S4. Moreover, the same
is true for fp if p > 19, except when p ∈ S2.

Remark: By considering other examples, one can show that curve
covers satisfying conditions (i)–(iv) exist over K whenever
char(K) > 7.
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3. Hyperelliptic Hurwitz spaces (General Theory)

Fix: an integer n ≥ 3 and a field K, and consider K-covers

f : C → P1
K

satisfying the following conditions:

(i) C/K is a smooth hyperelliptic curve of genus gC = n− 1;

(ii) deg(f ) = n, and f ◦ωC 6= f, where ωC is the hyperelliptic
involution of C.

Definition: The setHn(K) of isomorphism classes of such covers
is called the Hurwitz space of hyperelliptic covers of degree
n (and of genus n− 1).

Rigidification: Consider the setHrig
n (K) of isomorphism classes

of triples (C, f, π) with (C, f) ∈ Hn(K) and a fixed hyperel-
liptic cover

π : C → P1
K.

Note: Since π is unique up to an automorphism of Aut(P1
K),

Hn(K) = Aut(P1
K)\Hrig

n (K).

Observation: Given (C, f, π) ∈ Hrig
n (K),∃! morphism

jC : C → P1
K × P1

K such that f = pr1 ◦ jC, π = pr2 ◦ jC,

where pri : P1
K × P1

K → P1
K is the ith projection map. Also:

• jC is a closed immersion (so C ' jC(C));

• DC := jC(C) is a divisor on the surface P1
K × P1

K and

DC ∼ D2,n := 2(P × P1
K) + n(P1

K × P ), for P ∈ P1(K).
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Proposition 1: The rule (C, f, π) 7→ DC induces a bijection

κn : Hrig
n (K)

∼→ |D2,n|smK ,

where |D2,n|smK ⊂ |D2,n|K denotes the subset of smooth divi-
sors in the linear system |D2,n|K.

Remarks: 1) Since |D2,n|K ' P3n+2, this means that we can
identify Hrig

n (K) with a non-empty, open subset of P3n+2.

2) If we fix homogeneous coordinates on P1, then each divisor
D ∈ |D2,n| is given by an equation F (T0, T1; X0, X1) = 0,
where F is homogeneous of degree 2 in T0, T1 and of degree n
in X0, X1, i.e.,

F (T0, T1; X0, X1) =

n∑
i=0

2∑
j=0

rijX
i
0X

n−i
1 T 2−j

0 T j
1 ,

where rij ∈ K. For simplicity, we write this polynomial in its
affine (de-homogenized) form

F (T, X) =

n∑
i=0

2∑
j=0

rijX
n−iT j.

Proposition 2: Let C ∈ |D2,n| be given by F (T0, T1, X0, X1). If
char(K) 6= 2, then C ∈ |D2,n|sm if and only if its discriminant

Dh
F (X0, X1) = A2

1 − 4A0A2, where Aj =

n∑
i=0

rijX
i
0X

n−i
1 ,

is separable, i.e., Dh
F factors over K into 2n distinct linear

factors.
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4. Special hyperelliptic covers of genus 3.

Assume henceforth: char(K) 6= 2.

Notation: Fix coordinates on P1
K. Let P∞ = (0 : 1), and write

Pa = (1 : a) for a ∈ K. Moreover, put

Pa,b = (Pa, Pb) ∈ (P1 × P1)(K), for a, b ∈ K∞ = K ∪ {∞}.

Furthermore, letHrig
4,3 denote the subset of curves C ∈ |D2,4|sm

satisfying the following conditions:

f ∗C(P0) = 2P0,∞ + 2P0,0,(1)

f ∗C(P1) = 2P1,1 + 2P1,α, for some α ∈ K, α 6= 1(2)

f ∗C(P−1) = 2D, for some D ∈ Div(C),(3)

D 6= P−1,∞ + P−1,0, D 6= 2P, ∀P.

Here fC = (pr1)|C : C → P1
K is the induced degree 4 cover.

Thus: Each C ∈ Hrig
4,3 is smooth of genus 3, and the cover fC is

ramified of type (2, 2) at the points P0, P1, P−1 ∈ P1
K(K).

Moreover: For t ∈ K \ {0, 1,−1}, let Hrig
4,4,t denote the subset

of those C ∈ Hrig
4,3 which are also ramified of type (2, 2) at Pt :

(4) f ∗C(Pt) = 2Dt, with Dt 6= 2P, for any P ∈ C(K).

Theorem 1: The Hurwitz space Hrig
4,3 is a smooth, rational vari-

ety of dimension. More precisely, Hrig
4,3 is covered by two open

subsets which are isomorphic to open subsets of A5.

Remark: The curves C ∈ Hrig
4,3 can be described explicitly in

terms of their associated equations F (T, X) = 0.
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Notation: Let

H∗
4,4,t = {C ∈ Hrig

4,3,t : P−1,∞ /∈ C, Pt,∞ /∈ C}.

Theorem 2: The Hurwitz space H∗
4,4,t consists of two disjoint

rational components:

H∗
4,3,t = H∗

4,3,t,1 ∪̇ H∗
4,3,t,2

Moreover, all the covers inH∗
4,3,t,1 factor over a quadratic cover,

whereas in general the covers in H∗
4,3,t,2 do not admit such a

factorization.

Remarks: 1) A similar result should also be true for Hrig
4,3,t (in

place of H∗
4,3,t), but this has not been proved yet.

2) Due to the presence of certain exceptional (lower-dimensional)
subvarieties, the proof of Theorem 2 is rather complicated.
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5. Explicit equations.

Notation: For r01, r11, r12, t ∈ K, put

a0 = 1− 2r01 a3 = r01r11 + r01r12 − r11

a1 = r12 − r11 a5 = (1− r01)t + r01

a2 = r12 + r11 a6 = r12t + r11

α = −1
2(r11 + r12 + 2)

For a0a5 6= 0, let

F1(T, X) = AX4 + BX3 + CX2 + αBX + α2A,

in which

A = A(T ) = r01T + (1− r01)T
2,

B = B(T ) = r11T + r12T
2,

C = C(T ) = r20 + r21T + (α2 + 4α + 1− r20 − r21)T
2,

with

r20 =
ta2

3

4a0a5
and r21 =

4a0(4αr01 + (α + 1)2)− a2
1

8a0
.

Moreover, if also dq 6= 0, where d = 4αa0a3 and

q = a2(2r01a2 + a1(2t− 3a5)− 2a5r11) + 2(t− 1)r2
11,

then put

F2(T, X) = F1(T, X) + d
qG(T, X), where

G(T, X) = (c2(1− T 2) + a6T (1− T ))X2

+c3T (1− T )X + c4T (1− T ),
with

c2 =
ta3

a0
, c3 =

a1a6

2a0
, c4 = −αa1a2a5a6

q
.
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Theorem 3: Let t ∈ K• := K \ {0, 1,−1}. If C ∈ H∗
4,3,t,1,

then ∃! r01, r11, r12 ∈ K such that the associated equation
F1(T, X) = 0 gives C. Moreover, the discriminant

DF1(X) := A2
1 − 4A0A2, where Aj =

4∑
i=0

rijX
4−i

is separable of degree 8 and the following inequalities hold:

(5) α 6= 1, a2
1 6= 162a2

0α and a2
6 6= 16a2

5α.

Conversely, if F1(T, X) is as above (including (5) and the dis-
criminant condition), then the equation F1(T, X) = 0 defines
a curve C ∈ H∗

4,3,t,1.

Theorem 4: (a) Let t ∈ K• and let r01, r11, r12 ∈ K satisfy
a0a5dq 6= 0 and the inequalities

(6) α 6= 1, a2
1 6= 162a2

0(α− β), a2
6 6= 16a2

5(α− (t− 1)β),

where β = da6
a0q

. Then the associated equation F2(T, X) = 0
defines a curve C ∈ H∗

4,3,t,2, provided that its discriminant
DF2(X) is separable of degree 8.

(b) The set of curves C obtained by the equations of part (a)
form an open subset H′

4,3,t,2 of H∗
4,3,t,2. The complement

H′′
4,3,t,2 = H∗

4,3,t,2 \ H′
4,3,t,2

consists of two disjoint rational varieties of dimension 2.

Remark: In our paper we give the explicit equations for the two
families which describe the two components of H′′

4,3,t,2.
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Remark: The proofs of the above theorems are very computa-
tional and use MAPLE to simplify complicated algebraic ex-
pressions. They also use the following technical fact which
allows us to analyze the (2, 2)-ramification condition.

Lemma: Let Q(X) = AX4 + BX3 + CX2 + DX + E ∈ K[X ],
where A 6= 0. The following are equivalent:

(i) Q(X) = Aq(X)2, for some q(X) = X2 + bX + c;

(ii) 8A2D = B∆ and 64EA3 = ∆2, where ∆ = 4AC −B2.

Moreover, if this holds, then

b = B/(2A) and c = ∆/(8A2),

and so q(X) has distinct roots in K if and only if

B2 − 2A∆ = 3B2 − 8AC 6= 0.
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6. Ramification types.

Definition: A curve cover f : C → C0 has ramification type
(e1, . . . , er) at P0 ∈ C0(K) if e1 ≥ . . . , er ≥ 1 with e1 > 1
and if there exist distinct points P1, . . . , Pr ∈ C(K) such that

f ∗(P0) =

r∑
i=1

eiPi.

The list of ramification types of all points is called the ramifi-
cation type of the cover.

Example: If C ∈ Hrig
4,3,t, then the associated cover fC : C → P1

has ramification type (2, 2) at the points P0, P1, P−1 and Pt ∈
P1(K).

Notation: If F (T, X) ∈ K[T, X ] is a polynomial, then let

DF,X(T ) = discX(D(F )) ∈ K[T ]

denote the discriminant of F (viewed as a polynomial in X).

Proposition 3: If F (T, X) = 0 describes a curve C in Hrig
4,3,t,

then degT (DF,X) = 12 and

D∗
F,X(T ) := DF,X(T )/(T (T 2 − 1)(T − t))2 ∈ K[T ].

Moreover, fC has ramification type (2, 2)4(2, 1, 1)4 if and only
if D∗

F,X(T ) is a separable polynomial, which is equivalent to

(7) discT (D∗
F,X) 6= 0.

Thus, the set of C ∈ Hrig
4,3,t with fC of ramification type

(2, 2)4(2, 1, 1)4 is an open subset of Hrig
4,3,t.
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7. Monodromy groups.

Recall: By field theory, each separable cover f : C → C0 has a
Galois hull

f̃ : C̃ → C0.

This a Galois cover which factors over f, i.e., f̃ = f ◦ f ′, for
some f ′ : C̃ → C, and which is minimal with these properties.
The Galois group

Gf = Gal(f )

is called the monodromy group of the cover f.

Proposition 4: Let F (T, X) = 0 define a curve C ∈ Hrig
4,3,t,

and let GF = GfC
be the monodromy group of the associated

cover. Then the following are equivalent:

(i) GF ' D4 or GF ' S4;

(ii) D∗
F,X(T ) is not a square (in K(T )).

On the other hand, if D∗
F,X(T ) is a square, then either GF '

A4 or GF ' Z/2Z× Z/2Z. In particular, GF can never be a
cyclic group.

Remark: A useful method for distinguishing between the D4 and
the S4 case is to study the Lagrange resolvent (or cubic resol-
vent) of F .
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8. The Lagrange Resolvent

Definition: The Lagrange resolvent of a general quartic

f (x) = ax4 + bx3 + cx2 + dx + e

is the monic cubic polynomial rf(x) which is defined by

rf(x) = x3 − cx2 + (bd− 4ae)x + a(4ce− d2)− b2e.

Remarks: 1) If f is monic, then this definition of rf agrees with
the usual definition. In general case we have (when a 6= 0) the
relation

rf(ax) = a3rf̃(x),

where f̃ (x) = f (x)/a is the associated monic polynomial .

2) It is a remarkable and useful fact that

disc(rf) = disc(f ).

Proposition 5: Let F (T, X) = 0 define a curve C ∈ Hrig
4,3,t, and

suppose that D∗
F,X(T ) is not a square. Then

GF ' S4 ⇔ rF (X) is irreducible over K(T ).

Lemma: If f (X) ∈ k[X ] is an irreducible quartic of the form

f (X) = aX4 + bX3 + cX2 + αbX + α2a,

then Galf ' D4 or Galf ' Z/4Z or Galf ' Z/2Z× Z/2Z.

Proof. rf(2aα) = 0, so rf is reducible. Thus, the assertion fol-
lows from Proposition 4.11 of Hungerford’s Algebra, p. 273.



13

Corollary: Let C ∈ H∗
3,4,t,1 with associated polynomial F1(T, X).

Then
GF1 ' D4 ⇔ D∗

F,X is not a square.

On the other hand, if D∗
F,X is a square, then GF1 ' Z/2Z ×

Z/2Z.

Theorem 5: Let C ∈ H′
3,4,t,2 be defined by a polynomial equa-

tion F2(X, T ) = 0, with F2 as in Theorem 4. Suppose that
D∗

F2,X
is separable, i.e, the discriminant condition (7) holds.

Then
GF2 ' S4 ⇔ αa1 6= 0.

Corollary: If char(K) = 0 or char(K) > 7, then there is a non-
empty open subset U3,4,t of H′

3,4,t,2 such that each C ∈ U with
its associated cover fC : C → P1 satisfies the conditions (i) –
(iv) of the introduction.

Remark: However, U3,4,t is not the full (rigid) Hurwitz space of
such covers because one of the two components of the comple-
ment H′′

3,4,t,2 also produces examples of curve covers satisfying
(i) – (iv).
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9. The associated (2,3)-cover.

Proposition 5: Let f : C → P1
K be a curve cover satisfying con-

ditions (i) – (iv), and let F (T, X) = 0 be its defining equation.
Let rF (T, X) be the Lagrange resolvent of F over K(T ).

(a) The curve CrF
: rF (T, X) = 0 is rational. If we fix a

parametrization (T (U), X(U)) of CrF
, then the rational func-

tion T (U) ∈ K(U) defines a cubic cover

f3 : P1 → P1.

(b) Let C ′ be the (hyperelliptic) curve defined by the equation

Y 2 = X(U)2 − 4A(T (U))E(T (U)),

where A(T ) and E(T ) are the highest and constant coefficients
of F (T, X). If f2 : C ′ → P1 denotes the associated hyperellip-
tic cover, then C ′ has genus 3, and the Galois hull f̃ : C̃ → P1

factors over f3◦f2. Moreover, f̃ is also the Galois hull of f3◦f2.

Remarks: 1) MAPLE has a nice program which computes a
parametrization of any rational plane curve g(x, y) = 0.

2) We thus have:
C̃
↓

C ′′

↙ ↘
↙ C ′

C ↓ f2

↘ P1

f ↘ ↙ f3

P1
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10. Connection with the attack of Ben Smith.

Given: A hyperelliptic cover f2 : C ′ → P1
Fq

,

Construct: a curve C/Fq of genus 3 and a (3, 2)-correspondence
C ′′ between C and C ′

C ′′

3

↙
2

↘
C C ′

such that the induced homomorphism on the Jacobians is an
isogeny:

TC ′′ : JC ′ → JC.

Note: If C is NOT hyperelliptic, then the attack is successful (the
cryptosystem based on C ′ is not secure).

Method (Donagi/Livné/Smith): Use the trigonal construc-
tion: construct a cubic (sub)cover f3 : P1 → P1 such that
f3 ◦ f2 has a “special” ramification structure. Smith gives a
geometric construction for obtaining C from f3 and f2.

Main idea (via Galois theory): The hypotheses imply that
f6 := f3 ◦ f2 has monodromy group S4. If f̃6 : C̃ → P1 is the
Galois hull, then C := C̃/S3 is the associated genus 3 curve.

Thus: The construction of §9 is inverse to that of Ben Smith.


