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1. Introduction

> Let:
E/K be an elliptic curve over a number field K,
N >3 a prime number,

E[N] the group of N-torsion points of E
PE/kN G Gk = Gal(K/K) — Aut(E[N]) ~ GLy(Z/NZ)
the associated Galois representation.

» It turns out that the study of isomorphisms of such Galois
representations is closely related to many important problems
and conjectures in Diophantine Geometry.

» Aim: To use various moduli spaces attached to such
isomorphisms in order to illuminate these conjectures.



2. Some Conjectures

» The basic conjecture concerning isomorphisms of Galois
representations is the following.

» Conjecture 1 (Frey, 1984). If E/K is an elliptic curve, then
there is a constant cg/k such that V prime numbers
N > cg/k and all elliptic curves E'/K

(1) Pe/kN =~ PErjkn =  E o~k EL

» Remark: Frey (1995) proved that Conjecture 1 for K =Q is
equivalent to the asymptotic Fermat Conjecture.



2. Some Conjectures — 2

» Asymptotic Fermat Conjecture: For integers a, b, ¢ with
abc # 0 and a prime N let C, , ..y denote the twisted Fermat
curve defined by

Coben: aXV—bYN =czN

Then for every finite set S of primes we have that

U U Ca,b,c;N(@) < o0.

N>5 a,b,c:sup(abc)CS

Here sup(n) = {p|n: p is prime}.

» Remark: It is easy to see that the ABC-Conjecture implies the
Asymptotic Fermat Conjecture.



2. Some Conjectures — 3

» Frey's Conjecture can be generalized as follows.

» Conjecture 2 (Darmon, 1995). There is a constant ¢k such
that for all elliptic curves E/K and E’'/K and all prime
numbers N > cx

(2) PE/kN =~ PErjkn =  E o~k EL

» Remarks: 1) Conjecture 2 is often called the Frey-Mazur
Conjecture. Better: Darmon-Frey-Mazur Conjecture.
2) There is some numerical evidence for the validity of this
conjecture for K = Q (see below). Another is the following.

» Theorem 1: Conjecture 2 is true when restricted to pairs of
elliptic curves with complex multiplication.



. Some Conjectures — 4

» The following conjecture is also due to Darmon.
» Conjecture 3 (Darmon, 1995). There is an absolute constant
No > 0 such that for every N > Ny and for every number field
K the implication
PE/kN =~ PEjkon = E~k E

holds for all except a finite number of pairs (E/K, E'/K) of
elliptic curves over K (up to simultaneous twists).

» Remark 1. The condition about simultaneous twists (which
was missing in Darmon’s formulation) is necessary because

PE/K.N =~ PE'JKIN = PEJKN = P(E')y/K,N-

for any (quadratic) twist x : Gk — {£1}.



2. Some Conjectures — 5

» Remark 2. Darmon’'s Conjecture 3 does not directly imply
Frey's Conjecture, and hence it also does not imply Conjecture
2. Similarly, Conjecture 2 does not imply Conjecture 3.

» Remark 3. In 1995 | refined Darmon’s Conjecture 3 as follows.

» Conjecture 3*. Conjecture 3 holds with Ny = 23.



3. Mazur's Question

» The above conjectures were perhaps motivated in part by the
following question posed by Mazur in 1978.

» Question (Mazur, 1978). Are there two non-isogenous elliptic
curves E/Q and E’/Q and a prime N > 7 such that pg /g n
and pgr /g,y are symplectically isomorphic?

» Answer: Yes! (Kraus/Oesterlé, 1992). In fact, 3 infinitely
many such pairs for N = 7 (Halberstadt/Kraus, 1997).
Moreover: the same is true for N = 11 (K./Rizzo, 1999).

» But: For N > 13, only finitely many such pairs are known via
computer calculations. Largest for N = 17 (Billerey, 2016).

» Note: This gives some computational evidence for the validity
of Conjecture 2.



3. Mazur's Question — 2

» The above results naturally lead to the following questions:

e Why did Mazur impose the bound N > 7 in his question?

e Why are there infinitely many pairs (E/Q, E'/Q) which solve
Mazur's Question for N = 7,11, but only finitely many (are
known to) exist for N > 117

» The answer to both questions: Diophantine properties of
certain Moduli spaces!



4. The Modular Curves Xg y and Xg n -

» In connection with Frey's Conjecture and Mazur's Question, it
is useful to fix the elliptic curve E/K and the integer N and
to consider for any extension field L/K the sets

Xejkn(L) = {(E" /L)Y < pejin = PEjNt/ -

» By viewing G;-isomorphisms of these Galois representations as
isomorphisms of the associated L-group schemes E[N] and
E’[N], it is easy to see that this extends to a functor

XE/K,N : (SCh/K) — (Sets)

from the category (Sch/K) of K-schemes to the category
(Sets) of sets.



4. The Modular Curves Xg y and Xegn- — 2

» Proposition 1. If N > 3, then X,k y is represented by a
smooth affine curve Xg/x /K. Moreover,

Xe/KN = H XE/K,N,e
ce(Z/NZ)*

» Remark. Each component Xg/x v /K represents the
subfunctor Xg/k n . of Xe/k n which is defined by

Xe/kne(L) = {(E', ) € Xg/kn(L) - det(yp) = e}
Here ¢ = det(¢) is the unique € € (Z/NZ)* such that
el (V(x), U(y)) = ef(x, )W), ¥x,y € EIN)(K),

where e (-, ) denotes the (Weil) ey-pairing on E[N].



4. The Modular Curves Xg y and Xen- — 3

» Addendum. Each component Xg/k n . is a twist of the
(affine) modular curve X(N) =T (N)\$ and hence is
geometrically irreducible. Thus, the genus of its
compactification )_(E/K,N is >3 when N >7 and is < 1 when
N <T7.

» Consequence: The fact that Xg /i y represents the functor
Xe/k,n implies that we have for each extension field L/K a
bijection

Xekn(L) = Xeron(L)
when N > 3. Thus, by the Theorem of Faltings we know that

for each N > 7 the set Xk n(K) is finite! On the other
hand, if N <7, then we expect Xg/x n(K) to be infinite.

» Similar assertions hold for Xg,x n . and Xg/k n.c-



4. The Modular Curves Xg y and Xg . — 4

» Note that Mazur's Question concerns the sets

Xeona(Q) = Xejoni(Q),

for all elliptic curves E/Q and all N > 7. Thus, the above

Consequence explains in part why Mazur focused on the case
N>T.

» Remark. Proposition 1 follows easily from the general results
presented in the book Arithmetic Moduli of Elliptic Curves by
Katz and Mazur (1985).



5. The Modular Surfaces Zy and Zy .

» In view of Darmon’s Conjectures and Mazur's Question, it is
natural to consider for a fixed NV and field K the set

Zn(K) ={(E, E",{)}/~

of K-isomorphism classes of triples (E, E’, 1)) consisting of

two elliptic curves E/K and E’/K and an isomorphism

¥ E[N] = E'[N] of K-group schemes.

Again, this extends to a functor Zy : (Sch/Q) — (Sets).
» Moreover, for each ¢ € (Z/NZ)* put

Zne(K) = {(E, E',¢) : det(y) = e}/,

and extend this to a functor Zy . : (Sch/Q) — (Sets).



5. The Modular Surfaces Zy and Zy . - 2

» Proposition 2. The functors Zy and Zp . are coarsely
represented by affine normal surfaces Zy/Q and Zy./Q,
respectively, and we have

v = I 2Zne

£€(Z/NZ)*

Each Zy . ® C is a finite quotient of the product surface
X(N) x X(N) and hence Zy . is geometrically irreducible.

» Remark. The fact that Zy coarsely represents Zp implies that
we have maps

pnk  Zn(K) — Zn(K)

which are compatible with field extensions and which are
bijections when K is algebraically closed.



5. The Modular Surfaces Zy and Zpy . - 3

» Proposition 3 (K./Rizzo, 1999). If K is a number field, then
unk : Zn(K) — Zn(K) is surjective. On the other hand,
[N K 1S never injective but it is injective modulo simultaneous
twists.

> The geometric nature of the surfaces Zy . is fairly well
understood:

» Theorem 2 (Hermann, 1991; K./Schanz, 1997). Let Zy . be
the compactification of the affine surface ZN; and let 2,\/7E
denote its desingularization. Then ZN@ is of general type if
and only if N > 13. Furthermore, 27,1 is a rational surface and
211,1 is an elliptic surface.

» Remark. Since surfaces of general type are expected to have
fewer K-rational points than other surfaces, this gives a partial
answer to the question of why there were many isomorphisms
of Galois representations for N = 7,11 and few for N > 13.



6. Modular Correspondences

» The surfaces Zy and Zy . give us a geometric framework for
studying isomorphisms of elliptic Galois representations.
However, in order to understand Darmon’s Conjectures 2 and
3 in this context, we also need to have a geometric description
of when two elliptic curves are isogenous. For this, recall:

» Fact: Let Xp(m) : (Sch/Q) — (Sets) denote the functor of
cyclic m-isogenies, i.e.,

Xo(m)(K) ={(E, E', )}/ ~

where f : E — E’ is a cyclic K-isogeny of degree m. Then the
modular curve Xp(m)/Q is a coarse moduli space for the
functor Xp(m).



6. Modular Correspondences - 2

» Observation. If gcd(km, N) = 1, then the rule
(E,E',f) — (E, E', kfgin) defines a morphism of functors

TN, m,k . Xo(m) — ZN

and hence a morphism of Q-schemes 7n m « : Xo(m) — Zy

which is birational onto its image Ty m i := Tn,m k(Xo(m)).
» Remarks. 1) Tnmk C Zy mk2 C Zn-

2) Recall that the product surface X(N) x X(N) comes

equipped a with distinguished set of curves called modular

correspondences. Via the quotient map

Do X(N) x X(N) — Zy. ®C,

these give curves on Zy . ® C C Zy @ C which we'll call
modular correspondences on Zy. It turns out that the curves
TN, m,k are such modular correspondences on Z).



6. Modular Correspondences - 3

» Observation. The genus of the curve Xo(m) has the following
property:

g(Xo(m) <1 < m <27 and m # 22,23, 26.

Thus, if K is sufficiently large, then each of these curves has
infinitely K-rational points and so the same is true for the
TN,m,kis-

» Thus: by Proposition 3 these lead to infinitely many pairs of
isomorphic Galois representations over K. However, these all
belong to pairs of isogenous elliptic curves.

» Can we expect many other pairs?



7. Further Conjectures

» Recall: The key ingredient for understanding the arithmetic of
the 1-dimensional moduli problem Xg / y was Mordell's
Conjecture (= Theorem of Faltings). The analogue of this
conjecture/theorem for higher dimensions is Lang’s
Conjecture. For surfaces, this can be stated as follows.

» Conjecture 4 (Lang). If Z/K is a surface of general type,
then:

(a) The surface Z® Q contains only finitely many curves C of
genus g(C) < 1, so their union Zg, is a closed subset of Z.

(b) For every number field L O K, the set Z(L) \ Zexc(L) is
finite.
» Question. What is the exceptional set (Zy)exc of Zn?



7. Further Conjectures - 2

» Proposition 4. If T is any modular correspondence on Zy,
then g(T) <1< T = Ty mk, for some m < 27 with
m # 22,23, 26.

» This and other considerations led me in 1995 to make the
following conjecture.

» Conjecture 5 (K., 1995). If N > 23 is prime, then every curve
C C Zy of genus 0 or 1 is modular; i.e., C = Ty mk with
m < 27 and m # 22,23, 26.

» Proposition 5. If Lang’'s Conjecture holds for the Zy's and if
Conjecture 5 holds, then the refined Darmon’s Conjecture 3*
is true.



7. Further Conjectures - 3

» Recently Bakker and Tsimerman proved the following amazing
result.

» Theorem (Bakker/Tsimerman, 2013) There exists an N such
that if N > Ny is prime, then (Zy)exc consists only of modular
correspondences.

» Corollary. Lang's Conjecture implies Darmon’s Conjecture 3.

» Unfortunately: it is unknown how large the constant Ny in the
BT-Theorem is.



8. The Basic Construction

» By construction, the surface Zy . is the coarse moduli space
of the functor Zy . of isomorphisms of elliptic Galois
representations of determinant ¢ € (Z/NZ)*.

But in the case that ¢ = —1 (mod N), the surface Zy _; also
has another interpretation in terms of Hurwitz spaces, as we
shall see. The basis for this is:

» The basic construction (Frey/K., 1991). Let
(E,E',¢) € Zn—1(K), so ¢ : E[N] = E'[N] is an
anti-isometry. Put

Ay = (E x E')/Graph(¢).
Then Ay carries a unique (K-rational) principal polarization
)\w . ATZJ :> /2\1/,

such that its pull-back to E x E’ is a multiple of the product
polarization on E x E’.



8. The Basic Construction - 2

» Notation. Let Ay : (Sch/Q) — (Sets) denote the moduli
functor of principally polarized abelian surfaces, i.e.,

A(K) = {(AN}/ =,

where A/K is an abelian surface and A\ : A = Als a
K-rational principal polarization.

» Proposition 5. The basic construction defines a morphism of
functors

By Zn-1 — A,
and the induced morphism By : Zy 1 — A> on the coarse
moduli spaces is a finite morphism.

» Remark. The image of Sy is the Humbert surface Hump.
with Humbert invariant N2,



8. The Basic Construction - 3

» In the case of Jacobians, the basic construction also yields
curve covers.

» Proposition 6. Let (E,E’',¥) € Zy _1(K). If
(A, Ay) = (Jc, Ac) is the Jacobian of a curve C/K, then
there exists a K-cover f : C — E of degree N.

Moreover, f is minimal (i.e., f does not factor over an isogeny
of E of degree > 1), and the equivalence class of f is uniquely
determined by the condition that * : E ~ Jg — J¢ equals
moig, where m: E x E' — Ay, ~ Jc is the quotient map and
i : E < E x E’ the canonical inclusion.

» Definition. Two curve covers f; : X; — Y are equivalent if
there exists an isomorphism ¢ : X3 = X5 and an
automorphism « € Aut(Y') such that «o f; = 0 .

If this holds with o« = 1y, then the covers are isomorphic.



9. Hurwitz Spaces

» Recall: Let Y/C be a curve. Hurwitz showed in 1898 that the
set of isomorphism classes of curve covers f : X — Y of
bounded degree and genus can be identified with the points of
an analytic space (now called a Hurwitz space.)

Here we construct a (restricted) Hurwitz space of genus 2
covers of an elliptic curve.

» Definition. Let E/K be an elliptic curve and C/K a curve of
genus 2. A cover f : C — E of degree N is said to be
normalized if
(i) f is minimal;

(i) [-1]g o f = f owc, where wc is the hyperelliptic
involution on C;

(iii) deg(f*(0g) N Wc¢) = 3rem(N, 2), where W¢ = Fix(wc¢) is
the divisor of Weierstral3 points.

» Lemma. If f: C — E is a minimal K-cover, then there exists
a unique x € E(K) such that T o f is normalized.



9. Hurwitz Spaces - 2

» Fix an elliptic curve E/K and an integer N. If L/K is an
extension field, put

He/kn(L) :=A{C L, E is a normalized L-cover of degree N} /=~

By using the basic construction one obtains:

> Theorem 2 (K., 2003). The assignment L — Hg/x n(L)
extends to a functor Hg/k n @ (Sch/K) — (Sets).
If N > 3, then this functor is represented by an open subset
HE/K,N of the curve XE/K,N,—I-
In particular, Hg/x n @ C is an open subset of X(N), and
HE /i n is @ smooth, affine curve which is geometrically
irreducible.

» Corollary. If E/K is an elliptic curve a number field K, then
there are only finitely many normalized K-covers f : C — E of
fixed degree N > 7.



9. Hurwitz Spaces - 3

» In the above Hurwitz space we had fixed the base elliptic
curve E/K. We now consider the case that we allow E/K to
vary. In this case we have to consider equivalence classes of
covers: (A: G —E)~(h:G—EB)e3p: G G,a:
Et 5 E:aofi=foo.

If L is any extension field of Q, put

Hn(L) := {f : C — E is a normalized L-cover of degree N}/ ~

Similar to before, the assignment L — Hy/(L) extends to a
functor Hy : (Sch/Q) — (Sets).

» Theorem 3 (Frey/K., 2009). If N > 3, then Hyy is coarsely
represented by an open subset Hy of Zy 1.



9. Hurwitz Spaces - 4

» Remark. The “boundary” OHpy := Zy,_1 \ Hn can be
described explictly since it is always a union of modular
correspondences on Zy _1.

In the case that N is prime, the components of OHy are the
curves Ty m k with m = s(’\gs), where 1 < s < % and

t?|s(N — s), and ks = 41 (mod N).




10. The Discriminant

» In the classical theory of Hurwitz spaces, which classifies
covers up to isomorphism, the discriminant divisor disc(f) of
the cover f plays an important role. In our situation we have:

» Proposition 7. Let E/K be an elliptic curve and let
me : E — E/{[~1]g) ~ Pk be the (WeierstraB) quotient map.
If N > 3 is an integer, then there exists a morphism

Se/n : Hepw — P

such that diSC(fX) = TFE(5E/K,N(X))1 for all x € HE/K,N(K)r
where f, : CX_—> E is the cover corresponding to x. In
particular, if P € PL(K), then

0g/k n(P)(K) = {x € Hg ke n(K) : disc(f) = m£(P)}.

> It is much more difficult is to determine the degree of d¢ /k -



10. The Discriminant - 2

> Theorem 3 (K., 2006). If N > 3, then dg/k p is unramified
outside of mg(E[2]) and its degree is

deg(0g/kn) = 15(N —1)sI(N),

where

sI(N) = | SLa(Z/NZ)| = Np(N) =NJ[a-5
PN
» Remark. This is proved (in K. 2006) by compactifying the
universal cover

fuZC—>EXHE7K

and interpreting deg(dg /) as an intersection number on the
compactified surface C. The key ingredients for computing
this intersection number are (i) a detailed study of the
degenerate fibres of the (semi-stable) fibration p: C — X(N)
and (ii) certain identities due to Noether and Mumford
between the Faltings height hc'/)'((N) and other invariants of

the fibration (called dp and 7).



10. The Discriminant - 3

» Corollary. If D € Div(E) is a effective divisor of degree 2, and
if N> 3 is an integer, the_n the number of minimal genus 2
covers of degree N of E/K with discriminant D is

(min) 1 pp —1
’COVE/KND‘ %(N—l)— 6N SI(N)7

where up = 1 if D is reduced and pup = 2 otherwise.

» Remark. It is also possible to deduce from this the weighted
number Ce.p = > rc oy, p L/ Aut(f)] of genus 2 covers of

E/K of degree N with discriminant D:

15 (93(N) = No1(N)) — #522(7a3(N) — (6N + 1)o1(N))),

CE\D = 3,5

where ox(n) = 3_, d*. This formula (for D reduced) was
derived by by Dijkgraaf (1995) by using mirror symmetry (and
group theory).



11. The Discriminant Stratification of Hy

» While the discriminant disc(f) € Div(E) is clearly an invariant
of the isomorphism class of the cover f, this is no longer the
case when we pass to the equivalence class of f. Thus, we
cannot naturally “extend” the discriminant morphism g,k n
on Hg/k n to a morphism on Hy.

» However: certain properties of disc(f) (for normalized covers)
are preserved under equivalence:

e disc(f) is reduced,;

e disc(f) = 20¢;

e disc(f) = 2P, where P € E[2] \ {0g}.
These, therefore, give rise to subsets H,(Vred), H,(\?) and H,(V2),
respectively, and Hyy is the disjoint union of these. Thus we

have the stratification
Hy = HUD T HD 11 HP

» Proposition 8. H™? is an open affine subset of Hy, and H,(\?)

and H/(\/2) are (reducible) curves.



The Discriminant Stratification of Hy - 2

» Remark. Certain irreducible components of H,(\?) and of H,(\,z)
have been studied extensively from the point of view of
Teichmiiller curves which occur in the dynamics of billards (in
polygons) and are described by square-tiled surfaces (and their
deformations).

» For example: in the notation of McMullen (2005), we have
the following (irreducible) Teichmiiller curves Wp,:
o If N >4 iseven: Wy C H(2);
o If N> 5is odd: W0, ¢ H{ and WL, ¢ HY.



The Discriminant Stratification of Hy - 3

» Remark. It follows from the work of Hubert/Lelievre (2006)
that (for N > 5 prime) none of these Teichmiiller curves can
be modular correspondences because they are quotients of §
by non-congruence subgroups of SL»(Z).

Moreover, it follows from Lelievre/Royer (2006) and the
above Corollary of Theorem 3 that the curves H(®) and H®
cannot be Teichmtller curves; i.e., there is at least one
non-Teichmiller component.

» Proposition 9*. If N > 11, then every Teichmiiller curve on
Zn,—1 has genus > 3.

» Remark. This can be seen as further evidence for my
Conjecture 5.
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