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1. Introduction

I Let:
E/K be an elliptic curve over a number field K ,
N ≥ 3 a prime number,

E [N] the group of N-torsion points of E

ρ̄E/K ,N : GK = Gal(K/K ) → Aut(E [N]) ' GL2(Z/NZ)

the associated Galois representation.

I It turns out that the study of isomorphisms of such Galois
representations is closely related to many important problems
and conjectures in Diophantine Geometry.

I Aim: To use various moduli spaces attached to such
isomorphisms in order to illuminate these conjectures.



2. Some Conjectures

I The basic conjecture concerning isomorphisms of Galois
representations is the following.

I Conjecture 1 (Frey, 1984). If E/K is an elliptic curve, then
there is a constant cE/K such that ∀ prime numbers
N > cE/K and all elliptic curves E ′/K

(1) ρ̄E/K ,N ' ρ̄E ′/K ,N ⇒ E ∼K E ′.

I Remark: Frey (1995) proved that Conjecture 1 for K = Q is
equivalent to the asymptotic Fermat Conjecture.



2. Some Conjectures – 2

I Asymptotic Fermat Conjecture: For integers a, b, c with
abc 6= 0 and a prime N let Ca,b,c;N denote the twisted Fermat
curve defined by

Ca,b,c;N : aXN − bY N = cZN .

Then for every finite set S of primes we have that∣∣∣∣∣∣
⋃
N≥5

⋃
a,b,c:sup(abc)⊂S

Ca,b,c;N(Q)

∣∣∣∣∣∣ < ∞.

Here sup(n) = {p|n : p is prime}.
I Remark: It is easy to see that the ABC-Conjecture implies the

Asymptotic Fermat Conjecture.



2. Some Conjectures – 3

I Frey’s Conjecture can be generalized as follows.

I Conjecture 2 (Darmon, 1995). There is a constant cK such
that for all elliptic curves E/K and E ′/K and all prime
numbers N > cK

(2) ρ̄E/K ,N ' ρ̄E ′/K ,N ⇒ E ∼K E ′.

I Remarks: 1) Conjecture 2 is often called the Frey-Mazur
Conjecture. Better: Darmon-Frey-Mazur Conjecture.
2) There is some numerical evidence for the validity of this
conjecture for K = Q (see below). Another is the following.

I Theorem 1: Conjecture 2 is true when restricted to pairs of
elliptic curves with complex multiplication.



2. Some Conjectures – 4

I The following conjecture is also due to Darmon.

I Conjecture 3 (Darmon, 1995). There is an absolute constant
N0 > 0 such that for every N > N0 and for every number field
K the implication

ρ̄E/K ,N ' ρ̄E ′/K ,N ⇒ E ∼K E ′

holds for all except a finite number of pairs (E/K ,E ′/K ) of
elliptic curves over K (up to simultaneous twists).

I Remark 1. The condition about simultaneous twists (which
was missing in Darmon’s formulation) is necessary because

ρ̄E/K ,N ' ρ̄E ′/K ,N ⇒ ρ̄Eχ/K ,N ' ρ̄(E ′)χ/K ,N .

for any (quadratic) twist χ : GK → {±1}.



2. Some Conjectures – 5

I Remark 2. Darmon’s Conjecture 3 does not directly imply
Frey’s Conjecture, and hence it also does not imply Conjecture
2. Similarly, Conjecture 2 does not imply Conjecture 3.

I Remark 3. In 1995 I refined Darmon’s Conjecture 3 as follows.

I Conjecture 3*. Conjecture 3 holds with N0 = 23.



3. Mazur’s Question

I The above conjectures were perhaps motivated in part by the
following question posed by Mazur in 1978.

I Question (Mazur, 1978). Are there two non-isogenous elliptic
curves E/Q and E ′/Q and a prime N ≥ 7 such that ρ̄E/Q,N
and ρ̄E ′/Q,N are symplectically isomorphic?

I Answer: Yes! (Kraus/Oesterlé, 1992). In fact, ∃ infinitely
many such pairs for N = 7 (Halberstadt/Kraus, 1997).
Moreover: the same is true for N = 11 (K./Rizzo, 1999).

I But: For N ≥ 13, only finitely many such pairs are known via
computer calculations. Largest for N = 17 (Billerey, 2016).

I Note: This gives some computational evidence for the validity
of Conjecture 2.



3. Mazur’s Question – 2

I The above results naturally lead to the following questions:

• Why did Mazur impose the bound N ≥ 7 in his question?
• Why are there infinitely many pairs (E/Q,E ′/Q) which solve

Mazur’s Question for N = 7, 11, but only finitely many (are
known to) exist for N > 11?

I The answer to both questions: Diophantine properties of
certain Moduli spaces!



4. The Modular Curves XE ,N and XE ,N,ε

I In connection with Frey’s Conjecture and Mazur’s Question, it
is useful to fix the elliptic curve E/K and the integer N and
to consider for any extension field L/K the sets

XE/K ,N(L) := {(E ′/L, ψ)|ψ : ρ̄E/L,N
∼→ ρ̄E ′/L,N}/' .

I By viewing GL-isomorphisms of these Galois representations as
isomorphisms of the associated L-group schemes E [N] and
E ′[N], it is easy to see that this extends to a functor

XE/K ,N : (Sch/K ) → (Sets)

from the category (Sch/K ) of K -schemes to the category
(Sets) of sets.



4. The Modular Curves XE ,N and XE ,N,ε – 2

I Proposition 1. If N ≥ 3, then XE/K ,N is represented by a
smooth affine curve XE/K ,N/K . Moreover,

XE/K ,N =
∐

ε∈(Z/NZ)×

XE/K ,N,ε

I Remark. Each component XE/K ,N,ε/K represents the
subfunctor XE/K ,N,ε of XE/K ,N which is defined by

XE/K ,N,ε(L) = {(E ′, ψ) ∈ XE/K ,N(L) : det(ψ) = ε}.

Here ε = det(ψ) is the unique ε ∈ (Z/NZ)× such that

eE ′
N (ψ(x), ψ(y)) = eE

N (x , y)det(ψ), ∀x , y ∈ E [N](K̄ ),

where eE
N (·, ·) denotes the (Weil) eN -pairing on E [N].



4. The Modular Curves XE ,N and XE ,N,ε – 3

I Addendum. Each component XE/K ,N,ε is a twist of the
(affine) modular curve X (N) = Γ(N)\H and hence is
geometrically irreducible. Thus, the genus of its
compactification X̄E/K ,N is ≥ 3 when N ≥ 7 and is ≤ 1 when
N < 7.

I Consequence: The fact that XE/K ,N represents the functor
XE/K ,N implies that we have for each extension field L/K a
bijection

XE/K ,N(L)
∼→ XE/K ,N(L)

when N ≥ 3. Thus, by the Theorem of Faltings we know that
for each N ≥ 7 the set XE/K ,N(K ) is finite! On the other
hand, if N < 7, then we expect XE/K ,N(K ) to be infinite.

I Similar assertions hold for XE/K ,N,ε and XE/K ,N,ε.



4. The Modular Curves XE ,N and XE ,N,ε – 4

I Note that Mazur’s Question concerns the sets

XE/Q,N,1(Q)
∼→ XE/Q,N,1(Q),

for all elliptic curves E/Q and all N ≥ 7. Thus, the above
Consequence explains in part why Mazur focused on the case
N > 7.

I Remark. Proposition 1 follows easily from the general results
presented in the book Arithmetic Moduli of Elliptic Curves by
Katz and Mazur (1985).



5. The Modular Surfaces ZN and ZN,ε

I In view of Darmon’s Conjectures and Mazur’s Question, it is
natural to consider for a fixed N and field K the set

ZN(K ) := {(E ,E ′, ψ)}/'

of K -isomorphism classes of triples (E ,E ′, ψ) consisting of
two elliptic curves E/K and E ′/K and an isomorphism
ψ : E [N]

∼→ E ′[N] of K -group schemes.
Again, this extends to a functor ZN : (Sch/Q) → (Sets).

I Moreover, for each ε ∈ (Z/NZ)× put

ZN,ε(K ) := {(E ,E ′, ψ) : det(ψ) = ε}/',

and extend this to a functor ZN,ε : (Sch/Q) → (Sets).



5. The Modular Surfaces ZN and ZN,ε - 2

I Proposition 2. The functors ZN and ZN,ε are coarsely
represented by affine normal surfaces ZN/Q and ZN,ε/Q,
respectively, and we have

ZN =
∐

ε∈(Z/NZ)×

ZN,ε.

Each ZN,ε ⊗ C is a finite quotient of the product surface
X (N)× X (N) and hence ZN,ε is geometrically irreducible.

I Remark. The fact that ZN coarsely represents ZN implies that
we have maps

µN,K : ZN(K ) → ZN(K )

which are compatible with field extensions and which are
bijections when K is algebraically closed.



5. The Modular Surfaces ZN and ZN,ε - 3

I Proposition 3 (K./Rizzo, 1999). If K is a number field, then
µN,K : ZN(K ) → ZN(K ) is surjective. On the other hand,
µN,K is never injective but it is injective modulo simultaneous
twists.

I The geometric nature of the surfaces ZN,ε is fairly well
understood:

I Theorem 2 (Hermann, 1991; K./Schanz, 1997). Let Z̄N,ε be
the compactification of the affine surface Z̄N,ε and let Z̃N,ε

denote its desingularization. Then Z̃N,ε is of general type if
and only if N ≥ 13. Furthermore, Z̃7,1 is a rational surface and
Z̃11,1 is an elliptic surface.

I Remark. Since surfaces of general type are expected to have
fewer K -rational points than other surfaces, this gives a partial
answer to the question of why there were many isomorphisms
of Galois representations for N = 7, 11 and few for N ≥ 13.



6. Modular Correspondences

I The surfaces ZN and ZN,ε give us a geometric framework for
studying isomorphisms of elliptic Galois representations.
However, in order to understand Darmon’s Conjectures 2 and
3 in this context, we also need to have a geometric description
of when two elliptic curves are isogenous. For this, recall:

I Fact: Let X0(m) : (Sch/Q) → (Sets) denote the functor of
cyclic m-isogenies, i.e.,

X0(m)(K ) = {(E ,E ′, f )}/'

where f : E → E ′ is a cyclic K -isogeny of degree m. Then the
modular curve X0(m)/Q is a coarse moduli space for the
functor X0(m).



6. Modular Correspondences - 2

I Observation. If gcd(km,N) = 1, then the rule
(E ,E ′, f ) 7→ (E ,E ′, kf|E [N]) defines a morphism of functors

τN,m,k : X0(m) → ZN

and hence a morphism of Q-schemes τN,m,k : X0(m) → ZN

which is birational onto its image TN,m,k := τN,m,k(X0(m)).

I Remarks. 1) TN,m,k ⊂ ZN,mk2 ⊂ ZN .
2) Recall that the product surface X (N)× X (N) comes
equipped a with distinguished set of curves called modular
correspondences. Via the quotient map

ΦN,ε : X (N)× X (N) → ZN,ε ⊗ C,

these give curves on ZN,ε ⊗ C ⊂ ZN ⊗ C which we’ll call
modular correspondences on ZN . It turns out that the curves
TN,m,k are such modular correspondences on ZN .



6. Modular Correspondences - 3

I Observation. The genus of the curve X0(m) has the following
property:

g(X0(m) ≤ 1 ⇔ m ≤ 27 and m 6= 22, 23, 26.

Thus, if K is sufficiently large, then each of these curves has
infinitely K -rational points and so the same is true for the
TN,m,k ’s.

I Thus: by Proposition 3 these lead to infinitely many pairs of
isomorphic Galois representations over K . However, these all
belong to pairs of isogenous elliptic curves.

I Can we expect many other pairs?



7. Further Conjectures

I Recall: The key ingredient for understanding the arithmetic of
the 1-dimensional moduli problem XE/K ,N was Mordell’s
Conjecture (= Theorem of Faltings). The analogue of this
conjecture/theorem for higher dimensions is Lang’s
Conjecture. For surfaces, this can be stated as follows.

I Conjecture 4 (Lang). If Z/K is a surface of general type,
then:

(a) The surface Z ⊗ Q̄ contains only finitely many curves C of
genus g(C ) ≤ 1, so their union Zexc is a closed subset of Z .

(b) For every number field L ⊃ K , the set Z (L) \ Zexc(L) is
finite.

I Question. What is the exceptional set (ZN)exc of ZN?



7. Further Conjectures - 2

I Proposition 4. If T is any modular correspondence on ZN ,
then g(T ) ≤ 1 ⇔ T = TN,m,k , for some m ≤ 27 with
m 6= 22, 23, 26.

I This and other considerations led me in 1995 to make the
following conjecture.

I Conjecture 5 (K., 1995). If N ≥ 23 is prime, then every curve
C ⊂ ZN of genus 0 or 1 is modular; i.e., C = TN,m,k with
m ≤ 27 and m 6= 22, 23, 26.

I Proposition 5. If Lang’s Conjecture holds for the ZN ’s and if
Conjecture 5 holds, then the refined Darmon’s Conjecture 3*
is true.



7. Further Conjectures - 3

I Recently Bakker and Tsimerman proved the following amazing
result.

I Theorem (Bakker/Tsimerman, 2013) There exists an N0 such
that if N > N0 is prime, then (ZN)exc consists only of modular
correspondences.

I Corollary. Lang’s Conjecture implies Darmon’s Conjecture 3.

I Unfortunately: it is unknown how large the constant N0 in the
BT-Theorem is.



8. The Basic Construction

I By construction, the surface ZN,ε is the coarse moduli space
of the functor ZN,ε of isomorphisms of elliptic Galois
representations of determinant ε ∈ (Z/NZ)×.
But in the case that ε ≡ −1 (modN), the surface ZN,−1 also
has another interpretation in terms of Hurwitz spaces, as we
shall see. The basis for this is:

I The basic construction (Frey/K., 1991). Let
(E ,E ′, ψ) ∈ ZN,−1(K ), so ψ : E [N]

∼→ E ′[N] is an
anti-isometry. Put

Aψ = (E × E ′)/Graph(ψ).

Then Aψ carries a unique (K -rational) principal polarization

λψ : Aψ
∼→ Âψ

such that its pull-back to E × E ′ is a multiple of the product
polarization on E × E ′.



8. The Basic Construction - 2

I Notation. Let A2 : (Sch/Q) → (Sets) denote the moduli
functor of principally polarized abelian surfaces, i.e.,

A(K ) = {(A, λ)}/',

where A/K is an abelian surface and λ : A
∼→ Â is a

K -rational principal polarization.

I Proposition 5. The basic construction defines a morphism of
functors

βN : ZN,−1 → A2,

and the induced morphism βN : ZN,−1 → A2 on the coarse
moduli spaces is a finite morphism.

I Remark. The image of βN is the Humbert surface HumN2

with Humbert invariant N2.



8. The Basic Construction - 3

I In the case of Jacobians, the basic construction also yields
curve covers.

I Proposition 6. Let (E ,E ′, ψ) ∈ ZN,−1(K ). If
(Aψ, λψ) ' (JC , λC ) is the Jacobian of a curve C/K , then
there exists a K -cover f : C → E of degree N.
Moreover, f is minimal (i.e., f does not factor over an isogeny
of E of degree > 1), and the equivalence class of f is uniquely
determined by the condition that f ∗ : E ' JE → JC equals
π ◦ iE , where π : E × E ′ → Aψ ' JC is the quotient map and
iE : E ↪→ E × E ′ the canonical inclusion.

I Definition. Two curve covers fi : Xi → Y are equivalent if
there exists an isomorphism ϕ : X1

∼→ X2 and an
automorphism α ∈ Aut(Y ) such that α ◦ f1 = f2 ◦ ϕ.
If this holds with α = 1Y , then the covers are isomorphic.



9. Hurwitz Spaces

I Recall: Let Y /C be a curve. Hurwitz showed in 1898 that the
set of isomorphism classes of curve covers f : X → Y of
bounded degree and genus can be identified with the points of
an analytic space (now called a Hurwitz space.)
Here we construct a (restricted) Hurwitz space of genus 2
covers of an elliptic curve.

I Definition. Let E/K be an elliptic curve and C/K a curve of
genus 2. A cover f : C → E of degree N is said to be
normalized if

(i) f is minimal;

(ii) [−1]E ◦ f = f ◦ ωC , where ωC is the hyperelliptic
involution on C ;

(iii) deg(f ∗(0E ) ∩WC ) = 3rem(N, 2), where WC = Fix(ωC ) is
the divisor of Weierstraß points.

I Lemma. If f : C → E is a minimal K -cover, then there exists
a unique x ∈ E (K ) such that Tx ◦ f is normalized.



9. Hurwitz Spaces - 2

I Fix an elliptic curve E/K and an integer N. If L/K is an
extension field, put

HE/K ,N(L) := {C f→ E is a normalized L-cover of degree N}/'

By using the basic construction one obtains:

I Theorem 2 (K., 2003). The assignment L 7→ HE/K ,N(L)
extends to a functor HE/K ,N : (Sch/K ) → (Sets).
If N ≥ 3, then this functor is represented by an open subset
HE/K ,N of the curve XE/K ,N,−1.
In particular, HE/K ,N ⊗ C is an open subset of X (N), and
HE/K ,N is a smooth, affine curve which is geometrically
irreducible.

I Corollary. If E/K is an elliptic curve a number field K , then
there are only finitely many normalized K -covers f : C → E of
fixed degree N ≥ 7.



9. Hurwitz Spaces - 3

I In the above Hurwitz space we had fixed the base elliptic
curve E/K . We now consider the case that we allow E/K to
vary. In this case we have to consider equivalence classes of
covers: (f1 : C1 → E1) ∼ (f2 : C2 → E2) ⇔ ∃ϕ : C1

∼→ C2, α :
E1

∼→ E2 : α ◦ f1 = f2 ◦ ϕ.
If L is any extension field of Q, put

HN(L) := {f : C → E is a normalized L-cover of degree N}/∼

Similar to before, the assignment L 7→ HN(L) extends to a
functor HN : (Sch/Q) → (Sets).

I Theorem 3 (Frey/K., 2009). If N ≥ 3, then HN is coarsely
represented by an open subset HN of ZN,−1.



9. Hurwitz Spaces - 4

I Remark. The “boundary” ∂HN := ZN,−1 \ HN can be
described explictly since it is always a union of modular
correspondences on ZN,−1.
In the case that N is prime, the components of ∂HN are the
curves TN,m,k with m = s(N−s)

t2 , where 1 ≤ s ≤ N−1
2 and

t2|s(N − s), and ks ≡ ±1 (modN).



10. The Discriminant

I In the classical theory of Hurwitz spaces, which classifies
covers up to isomorphism, the discriminant divisor disc(f ) of
the cover f plays an important role. In our situation we have:

I Proposition 7. Let E/K be an elliptic curve and let
πE : E → E/〈[−1]E 〉 ' P1

K be the (Weierstraß) quotient map.
If N ≥ 3 is an integer, then there exists a morphism

δE/K ,N : HE/K ,N → P1
K

such that disc(fx) = π∗E (δE/K ,N(x)), for all x ∈ HE/K ,N(K ),
where fx : Cx → E is the cover corresponding to x . In
particular, if P̄ ∈ P1

K (K ), then

δ−1
E/K ,N(P̄)(K ) = {x ∈ HE/K ,N(K ) : disc(fx) = π∗E (P)}.

I It is much more difficult is to determine the degree of δE/K ,N .



10. The Discriminant - 2
I Theorem 3 (K., 2006). If N ≥ 3, then δE/K ,N is unramified

outside of πE (E [2]) and its degree is

deg(δE/K ,N) = 1
12(N − 1)sl(N),

where

sl(N) = |SL2(Z/NZ)| = Nφ(N)ψ(N) = N3
∏
P|N

(1− 1

p2
).

I Remark. This is proved (in K. 2006) by compactifying the
universal cover

fu : C → E × HE ,K

and interpreting deg(δE/k) as an intersection number on the
compactified surface C̄. The key ingredients for computing
this intersection number are (i) a detailed study of the
degenerate fibres of the (semi-stable) fibration p̄ : C̄ → X̄ (N)
and (ii) certain identities due to Noether and Mumford
between the Faltings height hC̄/X̄ (N) and other invariants of
the fibration (called δ0 and δ1).



10. The Discriminant - 3

I Corollary. If D ∈ Div(E ) is a effective divisor of degree 2, and
if N ≥ 3 is an integer, then the number of minimal genus 2
covers of degree N of E/K̄ with discriminant D is

|Cov
(min)

E/K̄ ,N,D
| = 1

3µD
(N − 1)− µD − 1

6N
sl(N),

where µD = 1 if D is reduced and µD = 2 otherwise.

I Remark. It is also possible to deduce from this the weighted
number c̄E ,D =

∑
f ∈CovE ,N,D

1/|Aut(f )| of genus 2 covers of

E/K̄ of degree N with discriminant D:

c̄E ,D = N
3µD

(σ3(N)− Nσ1(N))− µD−1
24 (7σ3(N)− (6N + 1)σ1(N))),

where σk(n) =
∑

d |n dk . This formula (for D reduced) was
derived by by Dijkgraaf (1995) by using mirror symmetry (and
group theory).



11. The Discriminant Stratification of HN

I While the discriminant disc(f ) ∈ Div(E ) is clearly an invariant
of the isomorphism class of the cover f , this is no longer the
case when we pass to the equivalence class of f . Thus, we
cannot naturally “extend” the discriminant morphism δE/K ,N
on HE/K ,N to a morphism on HN .

I However: certain properties of disc(f ) (for normalized covers)
are preserved under equivalence:
• disc(f ) is reduced;
• disc(f ) = 2OE ;
• disc(f ) = 2P, where P ∈ E [2] \ {0E}.

These, therefore, give rise to subsets H
(red)
N ,H

(0)
N and H

(2)
N ,

respectively, and HN is the disjoint union of these. Thus we
have the stratification

HN = H
(red)
N

∐
H

(0)
N

∐
H

(2)
N .

I Proposition 8. H red is an open affine subset of HN , and H
(0)
N

and H
(2)
N are (reducible) curves.



The Discriminant Stratification of HN - 2

I Remark. Certain irreducible components of H
(0)
N and of H

(2)
N

have been studied extensively from the point of view of
Teichmüller curves which occur in the dynamics of billards (in
polygons) and are described by square-tiled surfaces (and their
deformations).

I For example: in the notation of McMullen (2005), we have
the following (irreducible) Teichmüller curves W ∗

N2 :

• If N ≥ 4 is even: WN2 ⊂ H
(2)
N ;

• If N ≥ 5 is odd: W 0
N2 ⊂ H

(2)
N and W 1

N2 ⊂ H
(0)
N .



The Discriminant Stratification of HN - 3

I Remark. It follows from the work of Hubert/Lelièvre (2006)
that (for N ≥ 5 prime) none of these Teichmüller curves can
be modular correspondences because they are quotients of H

by non-congruence subgroups of SL2(Z).
Moreover, it follows from Lelièvre/Royer (2006) and the
above Corollary of Theorem 3 that the curves H(0) and H(2)

cannot be Teichmüller curves; i.e., there is at least one
non-Teichmüller component.

I Proposition 9*. If N ≥ 11, then every Teichmüller curve on
ZN,−1 has genus ≥ 3.

I Remark. This can be seen as further evidence for my
Conjecture 5.
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