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1. Introduction

Much of Herbert Lange’s early work concerns the following topic:

• Describe the set of curves X/C which admit a non-rational
subcover.

Thus, he was interested in studying:

• the set Mg (g ′, n) of curves X of genus g with a subcover
f : X → Y of degree n to some curve Y of genus g ′ ≥ 1

inside the moduli space of curves genus g , i.e.,

Mg = {isomorphism classes 〈X 〉 of curves of genus g}.

This was the subject both of his dissertion (the case g = 2) and of
his habilitation (for arbitrary g ≥ 2), and of at least 5 publications.



1. Introduction - 2

I Theorem 1 (Lange, 1977) (a) If g > g ′ ≥ 1 and n ≥ 2,
then the set Mg (g ′, n) is a closed subset of Mg .
(b) The subscheme Mg (g ′, n) is equidimensional of dimension

dim Mg (g ′n) = g − (n − 2)(g ′ − 1),

provided that either g ′ ≥ 2 and

g + 1

g ′ + 1
≤ n ≤ g + 1

g ′ − 1
or g ′ = 1 and n >

g + 1

2
.

Moreover, Mg (g ′, n) = ∅ in all other cases (except possibly
the case n = g+1

2 when g ′ = 1).



1. Introduction - 3

I The beautiful results of Lange naturally lead to further
questions about about the geometric structure of the
subschemes Mg (g ′, n). For example:

I Questions: 1) How many irreducible components does
Mg (g ′, n) have? When is Mg (g ′, n) irreducible?

2) What is the “geometric type” of each irreducible
component? When are they all rational or of general type?

3) Is Mg (g ′, n) connected? (Accola/Previato for g = 2)

4) What can be said about the intersection of Mg (g ′, n) with
one or more Mg (g ′′, n′)’s?

I These and other questions will be investigated in the case
g = 2.



2. Automorphisms of curves

Throughout, X denotes a projective complex curve (or compact
Riemann surface) of genus g ≥ 2. Recall:

I (Schwarz, 1879) |Aut(X )| <∞.

Theorem 1.
Let g ≥ 2 and put N(g) = maxX∈Mg |Aut(X )|. Then:

(a) (Hurwitz, 1891) N(g) ≤ 84(g − 1).

(b) (Accola, 1968; Maclachlan, 1969) N(g) ≥ 8(g + 1).

Theorem 2.
(a) (Macbeath, 1961) ∃∞g ≥ 2 such that N(g) = 84(g − 1).

(b) (Accola, 1968; Maclachlan, 1969) ∃∞g ≥ 2 such that
N(g) = 8(g + 1).



2. Automorphisms of curves – 2

Question: How can we characterize the set of curves with
non-trivial automorphisms as a subset of Mg?

Theorem 3 (Rauch, 1962). If gX = g ≥ 4, then

|Aut(X )| 6= 1 ⇔ 〈X 〉 ∈ Msing
g

Remarks: 1) There is a similar (but more complicated) description
of Msing

g when g = 2, 3.

2) Since Mg is normal and irreducible of dimension 3g − 3, we see

that dim Msing
g ≤ 3g − 1.

Question: What is the exact dimension of Msing
g ? What are its

irreducible components?



2. Automorphisms of curves – 3

This question is partially answered by:

Theorem 4 (Kravetz, 1959; Baily, 1962; Kuribayashi, 1966). Fix a
finite group G, and integers g ′, r ≥ 0. Then the set

Mg (G ; g ′, r) = {〈X 〉 ∈ Mg : G ≤ Aut(X ), gX/G = g ′, r = |Br(πG )|}

is a closed subset of Mg . Here πG : X → X/G denotes the quotient
map, and Br(πG ) ⊂ X/G the branch locus of πG . Moreover,

dim Mg (G ; g ′, r) = 3(g ′ − 1) + r ,

provided that Mg (G ; g ′, r) 6= ∅.



2. Automorphisms of curves – 4

Remarks. 1) Kuribayashi only treats the case that G = Z/pZ,
where p is prime. In this case r = 2(g − pg ′)/(p − 1) + 2.

2) The hyperelliptic locus is Hg = Mg (Z/2Z; 0; 2g + 2), which has
dimension 2g − 1 by Theorem 4.

Accola: called the sets Mg (G ; g ′, r) G-loci and studied these:

I for G = Z/2Z and g arbitrary;

I for G = (Z/2Z)t , t ≤ 4 and g = 3 or g = 5;

I for G = Z/3Z and g = 2 or g ≥ 5.

Accola’s aim: to find relations between the G-loci and the θ-loci.
The latter are defined by the vanishing (to a certain order) of the
theta-null values.
⇔ the existence of special 1

2 -canonical divisors.



2. Automorphisms of curves – 5

Remark. One consequence of Bob’s work was that he disproved
the so-called g − 2 conjecture (for g = 5) and offered an
alternative.

Key Tools: 1) A theorem of Castelnuovo (1893) on special
divisors.

2) A relation between the genera of intermediate covers of
πG : X → X/G when G is non-cyclic. (Accola, 1970, 1971).

Remark. Accola’s relations were generalized by me in 1985. After
seeing this result, Bob suggested to Mike Rosen and me that these
relations should hold on the level of Jacobians, and this turned out
to be true; cf. K-Rosen, 1989. We asked him to be a joint author,
but unfortunately he declined.



3. Subcovers of curves

Definition. A subcover of X is a finite morphism f : X → X ′,
where X ′ is a curve of genus g ′ ≥ 0. Its genus is g ′ = gX ′ .
Two subcovers fi : X → X ′

i are equivalent if f1 = ϕ ◦ f2, for some
isomorphism ϕ : X ′

2
∼→ X ′

1.

Remark. There is a 1-1 correspondence between the set of
equivalence classes of subcovers of X and the set of subfields of
the function field F = M(X ) which properly contain C.

A partial generalization of Schwarz’s theorem is:

Theorem 5. (a) (de Franchis, 1913) There are only finitely many
(equivalence classes of) subcovers of X of genus g ′ ≥ 2.

(b) (Tamme, 1972) There are only finitely many equivalence
classes of subcovers of X of genus g ′ ≥ 1 and of bounded degree.

Remark. It can be shown that the number N(X ) of equivalence
classes of subcovers of genus ≥ 2 satisfies N(X ) < 3g2

(K., 1986).



3. Subcovers of curves - 2

The G -loci of Mg were generalized by H. Lange as follows. Put:

Mg (g ′, n) = {〈X 〉 ∈ Mg : ∃ f : X → X ′, gX ′ = g ′, deg(f ) = n}.

Theorem 6 (Lange, 1977). Let g ≥ 2 and n ≥ 2.
(a) If either g ′ = 1 or g > g ′ > 1 and n ≤ g−1

g ′−1 , then Mg (g ′, n) is
a closed equidimensional subset of Mg of dimension

dim Mg (g ′, n) = 2g − 2− (2n − 3)(g ′ − 1).

Moreover, Mg (g ′, n) = ∅ when n > g−1
g ′−1 .

(b) The set Mg (0, n) is a constructible subset of Mg , and⋃n
k=2 Mg (0, k) is a closed subset of Mg . Moreover,

dim Mg (0, n) ≤ 2g − 2 + (2n − 3).



3. Subcovers of curves - 3

Remarks. 1) It is clear that the G-loci are contained in Lange’s
loci. Indeed, Mg (G ; g ′, r) ⊂ Mg (g ′, |G |).
2) Lange also considers the sets

Mg (g ′, n, r) = {〈X 〉 ∈ Mg : ∃f : X → X ′, gX ′ = g ′,
deg(f ) = n, |Br(f )| = r}.

He proves that they are constructible subsets of Mg of dimension

dim Mg (g ′, n, r) = r + 3(g ′ − 1),

whenever Mg (g ′, n, r) 6= ∅.
3) Lange uses the methods of Mumford (Geometric Invariant
Theory) in his proof of these facts. He also uses the above
Theorem of de Franchis/Tamme.



4. Hurwitz spaces

Hurwitz spaces: these classify isomorphism classes of curve
covers f : Z → Y , where Y is fixed.

Their study often sheds light on Mg and on the subsets Mg (g ′, n).

Theorem 7. (a) (Klein, 1882; Hurwitz, 1891) The Hurwitz set

Hs
g ,n = {〈f 〉 : f : X → P1 is simply branched, gX = g , deg(f ) = n}

has a natural structure of a connected complex manifold of
dimension

dim Hs
g ,n = 2g − 2 + 2n, if n ≥ 3.

(b) (Fulton, 1969) Hs
g ,n represents the Hurwitz functor of iso-

morphism classes of simply branched covers of P1 of type (g , n).



4. Hurwitz spaces - 2

Remark. By Fulton’s result we see immediately that the “forget
map” 〈f : X → P1〉 7→ 〈X 〉 defines a morphism µs

g ,n : Hs
g ,n → Mg .

Since µs
g ,n is surjective for n > 2g − 2, it follows that Mg is

irreducible. (This argument is due to Klein, 1882.)

Theorem 8 (Fried/Völklein, 1991). Let G be a finite group and
let g ≥ 0 and r ≥ 2 be integers. If the set

Hg (G ; r) = {〈f , α〉 :f : X → P1 is a G -cover with gX = g ,
|Br(f )| = r , and α : G

∼→ Aut(f )}

is nonempty, then it has a natural structure of a smooth complex
analytic space which is equidimensional of dimension r .



4. Hurwitz spaces - 3

Remarks: 1) Fried/Völklein give a description of the components
of Hg (G ; r) in terms of the action of the so-called braid group Br .

2) They also consider Hurwitz spaces of covers f : X → P1 with a
fixed degree n, fixed r = |Br(f )| and fixed monodromy group Gf .
This is includes the Klein/Hurwitz case of simple covers (where
Gf = Sn).

3) Wewers, 1997 pointed out in his thesis that Hg (G ; r) represents
the associated Hurwitz functor of G -covers when Z (G ) = 1. In
general, however, it is just a coarse moduli scheme for this functor.
But this suffices to see that the “forget map” induces a morphism

µG ;g ,r : Hg (G ; r) → Mg

whose image is clearly the G-locus Mg (G ; 0, r).



4. Hurwitz spaces - 4

Remark. By comparing dimensions, we see that the above map

µG ;g ,r : Hg (G ; r) → Mg (G ; 0, r) ⊂ Mg

has relative dimension 3.
To get a “Hurwitz space” that is closer to to Mg (G ; 0, r), note
that the the group PGL2 = Aut(P1) acts on Hg (G ; r) via
(α, 〈f 〉) 7→ 〈α ◦ f 〉, and that µG ;g ,r is invariant under this action.
Thus, µG ;g ,r factors over the quotient, and so we obtain an
induced map

µG ;g ,r : Hg (G ; r) := PGL2 \Hg (G ; r) → Mg (G ; 0, r)

which is generically finite. (Bertin, 1996 ⇒ µG ;g ,r is finite.)



5. The case g = 2: Humbert surfaces

In their nice and very interesting joint paper (2006), Accola and
Previato study many of the above loci in the case that g = 2. Here
I want to add some further comments to their study.

One of these concerns the role of Humbert surfaces.

Humbert surfaces: these naturally live in the moduli space

A2 = {〈A, λθ〉}

of isomorphism classes of principally polarized abelian surfaces.

Note. Via the Torelli map 〈X 〉 7→ 〈JX , λX 〉 we can (and will) view
M2 as a subset of A2, i.e. M2 ⊂ A2.

Here, JX is the Jacobian surface of X , and λX = φθX : JX
∼→ ĴX is

the polarizarion induced by the theta-divisor θX .



5. The case g = 2: Humbert surfaces - 2

Theorem 9 (Humbert, 1900). For each positive integer
n ≡ 0, 1 (mod 4), ∃ an irreducible surface Hn ⊂ A2 (now called a
Humbert surface) such that:

(a) End(A) 6= Z ⇔ (A, λ) ∈ Hn, for some n;

(b) M2 = A2 \ H1;

(c) ∃f : X → E , gE = 1,⇔ 〈JX , λX 〉 ∈ HN2 , for some N ≥ 2.

Remarks: 1) Each Humbert surface Hn is a closed subset of A2.

2) Part (c) had already been stated and proved by Biermann,
1883, but perhaps Humbert did not know this.

3) A cover f : X → E is called minimal if it doesn’t factor over an
isogeny of E . In K., 1994, property (c) was refined to:

(c′) (JX , λX ) ∈ HN2 ⇔ ∃f : X → E , deg(f ) = N, f minimal.



5. The case g = 2: Humbert surfaces - 3

Corollary. For any n ≥ 2 we have

M2(1, n) =
⋃

1<N|n

HN2 ∩M2

Thus, M2(1, n) is equidimensional of dimension 2, and has
d(n)− 1 irreducible components, where d(n) = |{d ≥ 1 : d |n}|.
Proof. Each subcover f : X → E factors as f = h ◦ fmin, where
fmin : X → E ′ is minimal, so the formula follows from (c’). The
other assertions follow from this formula and Theorem 9, together
with the fact that HN2 ∩M2 6= ∅ when N > 1.

Question ([AP]): Is M2(1, n) always connected?

Answer: YES! (See below.)



6. The case g = 2: Hurwitz spaces

In [AP], there is a lengthy discussion of the Hurwitz spaces which
are related to subspaces of M2. They discuss two approaches:

Approach 1: via group theory (Riemann’s Existence Theorem).

In this, one uses Hurwitz theory to construct covers f : P1 → P1

which, after base change with E , yield the desired covers
f : X → E ; cf. Kuhn, 1988; Frey, 1995; Shaska, 2001.

Approach 2: The “modular approach”.

Here one shows that a certain Hurwitz functor HN is coarsely
representable by an open subset of the modular diagonal quotient
surface

ZN = GN\(X (N)× X (N)),

where X (N) = Γ(N)\H is the usual modular curve of level N and
GN := Γ(1)/(±Γ(N)) acts in a twisted diagonal fashion on the
product surface X (N)× X (N).



6. The case g = 2: Hurwitz spaces - 2

Remark. The geometry of ZN and other modular diagonal
quotient surfaces was determined by Hermann, 1991 and by
K.-Schanz, 1998.

Observation. If f : X → E is a minimal cover, then we can choose
0E such that f is “ normalized” (i.e., the divisor f∗WX on E has a
certain shape, where WX is the Weierstrass divisor on X ).

Theorem 10 (K., 2003; Frey-K., 2009) If N ≥ 3, then the functor
HN which classifies equivalence classes of normalized (minimal)
covers f : X → E of degree N is coarsely represented by an open
subset UN of the modular diagonal quotient surface ZN .

Remark. The proof of the above theorem rests on two key ideas.

1) The modular description of ZN .

2) The “basic construction” of Frey-K., 1991.



6. The case g = 2: Hurwitz spaces - 3

The modular description: The surface ZN is a coarse moduli
scheme for the functor ZN which classifies isomorphism classes of
triples (E ,E ′, ψ), where E and E ′ are elliptic curves and
ψ : E [N]

∼→ E ′[N] is an anti-isometry (wrt. the Weil-pairings).

The basic construction: If (E ,E ′, ψ) is a triple as above, then
the abelian surface Jψ := (E × E ′)/Graph(ψ) has a canonical
principal polarization λψ (which is induced from the product
polarization on E × E ′).

Moreover, if the theta-divisor Xψ of λψ is irreducible, then we have
a (minimal) cover fψ : Xψ → E of degree N, and every (minimal)
cover f : X → E of degree N arises this way.



6. The case g = 2: Hurwitz spaces - 4

Theorem 11. The rule (E ,E ′, ψ) 7→ (Jψ, λψ) defines a finite
morphism

βN : ZN → A2

whose image is the Humbert surface HN2 . Moreover, the
normalization of HN2 is the symmetric modular diagonal quotient
surface

Z sym
N := 〈τ〉\ZN ,

where τ ∈ Aut(ZN) is induced from the map that interchanges the
factors of X (N)× X (N).

Remark. The geometry of the surfaces Z sym
N (for N prime) was

investigated by Hermann, 1992.



7. The refined Humbert invariant

We next want to study 1-dimensional subvarieties of M2 and of A2.
These arise when we consider intersections of Humbert surfaces, or
when we study G-loci. They are defined by considering a
refinement of the Humbert invariant.

Definition. Let A be an abelian surface with a principal
polarization λ given by θ ∈ Div(A), i.e., λ = φθ. Put

NS(A) := Div(A)/ ≡ and NS(A, λ) = NS(A)/Zθ.

The refined Humbert invariant is defined by

q(A,λ)(D) = (D.θ)2 − 2(D.D), ∀D ∈ NS(A),

where ( . ) denotes the intersection pairing on the Neron-Severi
group NS(A). It is easy to see that q(A,λ) defines a positive-definite
quadratic form on NS(A, λ); cf. K., 1994.



7. The refined Humbert invariant - 2

Remark. If D̄ ∈ NS(A, λ) is primitive (i.e., if NS(A, λ)/ZD̄ is
torsionfree), then it was shown in K., 1994 that n := q(A,λ)(D̄) is
the classical Humbert invariant of A (which Humbert defined via
the period matrix of A).

Notation: If q : Zr → Z is an integral, positive-definite quadratic
form in r variables, then we put

H(q) := {(A, λ) ∈ A2 : q(A,λ) → q}.

Here, the symbol q(A,λ) → q means that q(A,λ) primitively
represents q, i.e., there exists an injective homomorphism
h : Zr ↪→ NS(A, λ) such that q(A,λ) ◦ h = q and such that
NS(A, λ)/h(Zr ) is torsionfree.

Remark. It follows from the above remark that Hn = H(nx2).



8. Generalized Humbert varieties

Theorem 12. If q is a positive quadratic form in r variables, then
the generalized Humbert variety H(q) is a closed subset of A2 of
dimension

dim H(q) = 3− r ,

provided that H(q) 6= ∅. If this is the case and if q′ is another
positive quadratic form, then

H(q) = H(q′) ⇔ q ∼GLr q′.

Question: When is H(q) 6= ∅?

Remark. This question can be answered completely for binary
quadratic forms q = [a, b, c], i.e., for

q(x , y) = ax2 + bxy + cy2.



8. Generalized Humbert varieties - 2

Notation. If n,m, d ≥ 1 are integers with (n, d) = 1, then let

T (n,m, d) = {q = [a, b, c] ∈ Z3 : conditions (i)-(iii) below hold}

(i) disc(q) := b2 − 4ac = −16m2d ;
(ii) q → (mn)2;
(iii) q ≡ 0, 1 (mod 4).

Theorem 13. Let q be an integral binary quadratic form such that
q → N2, for some N ≥ 1. Then

H(q) 6= ∅ ⇔ H(q) is an irreducible curve

⇔ q ∈ T (N/m,m, d), for some m|N, d ≥ 1
with (N/m, d) = 1.

Remark. The hypothesis q → N2 implies that H(q) ⊂ HN2 . Thus,
the above theorem classifies the 1-dimensional H(q)’ s which lie on
the Humbert surface HN2 .



8. Generalized Humbert varieties - 3

Corollary: If m ≡ 0, 1 (mod 4) and m,N > 1, then

Hm ∩ HN2 ∩M2 6= ∅.

In particular, M2(1, n) is connected, for all n ≥ 2.

Proof. Wlog m > 1. Consider q = [N2, 2εN,m] ∈ T (1,N, m−ε
4 ),

where ε = rem(m, 4). Then H(q) 6= ∅ by Theorem 13. Since
q → N2 and q → m, we see that H(q) ⊂ Hm ∩ HN2 .
Moreover, since q(x , y) = (Nx + εy)2 + (m − ε2)y2 > 1 (when
N,m > 1), we see that q 6→ 1. Thus H(q) 6⊂ H1 = A2 \M2, and
hence H(q) ∩M2 6= ∅.



8. Generalized Humbert varieties - 4

Application: Irreducible components of Hm ∩ HN2 .

It follows immediately from the definitions that

Hm ∩ Hn =
⋃

q→m,n

H(q),

where the union is taken over the equivalence classes of all
integral, positive definite binary quadratic forms q which represent
both n and m primitively.

The above forms q can be computed by using the reduction theory
of binary quadratic forms (together with Theorem 13). For
example,

H5 ∩ H4 = H[1, 0, 4] ∪ H[4, 0, 5] ∪ H[4, 4, 5],

H5 ∩ H9 = H[4, 0, 5] ∪ H[5, 2, 9] ∪ H[5, 4, 8],



8. Generalized Humbert varieties - 5
Remark. The proof of Theorem 13 rests on the fact that the
H(q)’s can be obtained as the images of certain modular curves
TN,A lying on the modular diagonal quotient surface ZN . More
precisely, there are 3 steps involved:

I For each primitive matrix A ∈ M2(Z), there is an explicit
irreducible curve TA,N on ZN (which is induced by a modular
correspondence on X (N)× X (N)).

I If A = ( x y
z w ) is as above and d = det(A), then

βN(TA,N) = H(qA,N),

where

qA,N = [N2, 2m(x − w),m2(tr(A)2 − 4yz)/N2],

so qA,N ∈ T (n,N/m, d), with n = gcd(tr(A), y , z ,N).

I Every q ∈ T (n,N/n, d) is equivalent to qA,N , for some A.



8. Generalized Humbert varieties - 6

In some cases, the birational structure of H(q) is known:

Theorem 14 (K., 2016) If q ∈ T (N, 1, d), then the normalization
H̃(q) of H(q) is the Fricke curve

X+
0 (d) = X0(d)/〈wd〉, where wd =

(
0 −1
d 0

)
is the Fricke involution, except when q is a (so-called) ambiguous
form. In the latter case

H̃(q) ' X0(d)+/〈α〉,

for some (explicit) Atkin-Lehner involution α.



9. The G-loci for g = 2

We now come back to study the G-loci in M2.

Theorem 15. The G-loci in M2 of dimension ≥ 1 are all rational
varieties. Explicitly, they are:

M2(C2; 0, 6) = M2

M2(C2; 1, 2) = H2

M2(V4; 0, 5) = H2

M2(D4; 0, 6) = H ′[4, 0, 4]

M2(D6; 0, 6) = H ′[4, 4, 4]

where C2 = Z/2Z,V4 = C2 × C2, and Dn is the dihedral group of
order 2n. Moreover, H ′(q) = H(q) ∩M2.



9. The G-loci for g = 2 - 2

Remark. The curves belonging to H2, H ′[4, 0, 4] and to H ′[4, 4, 4]
have the following explicit equations:

(a) y2 = x(x − 1)(x − α)(x − β)(x − αβ) (Jacobi, 1832)

(b) y2 = x(1− x2)(1− κ2x2) (Legendre, 1832)

(c) y2 = x6 + ax3 + 1 (Bolza, 1888)

These families are also discussed in [AP], who also give the
associated period matrices for these curves.
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