Tensor Products of Galois Representations

Ernst Kani

Queen's University Kingston, Ontario

A Scientific Celebration in Honour of Professor M. Ram Murty CRM, Montreal, 15 – 17 October, 2013.

Tensor Products of Galois Representations

1. Introduction

Motivation 1: The Hasse-Weil ζ -Function of Products

Recall: The zeta function $\zeta_{X/K}(s)$ of a smooth, projective variety X over a number field K is given (up to finitely many Euler factors) by the zeta function

$$\zeta_{\mathcal{X}}(s) := \prod_{x \in |\mathcal{X}|} (1 - N(x)^{-s})^{-1},$$

of any projective model $\mathcal{X}/\mathfrak{O}_K$ of X/K. (This product converges for $\Re(s) > \dim X + 1$.) Write: $\zeta_{X/K}(s) \sim \zeta_{\mathcal{X}}(s)$.

- **Example:** If $X = \operatorname{Spec}(K)$, then $\zeta_{X/K}(s) \sim \zeta_{\operatorname{Spec}(\mathfrak{O}_K)}(s) = \zeta_K(s)$, the Dedekind ζ -function of K.
- Main Principle: $\zeta_{X/K}(s)$ "encodes the arithmetic" of X: this is expressed in terms of specific conjectures (see below).
- Fact (Grothendieck/Artin/Serre): We have the factorization

$$\zeta_{X/K}(s) \sim \prod_{m=0}^{2d} L_m(X,s)^{(-1)^m} = \frac{L_0(X,s)\cdots L_{2d}(X,s)}{L_1(X,s)\cdots L_{2d-1}(X,s)}$$

where $d = \dim X$ and each $L_m(X, s) = L(\rho_m, s)$ is the *L*-function associated to a suitable (rational) compatible system $\rho_m = \{\rho_{m,\ell}\}_{\ell}$ of ℓ -adic Galois representations

 $\rho_{m,\ell} = \rho_{X,m,\ell} : G_K = \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Q}_\ell}(V_{X,m,\ell}).$ (Explicitly: $V_{X,m,\ell} = H^m_{et}(\overline{X}, \mathbb{Q}_\ell).$)

Example 1: If X/K is a curve, then

 $\zeta_{X/K}(s) \sim \zeta_K(s) \zeta_K(s-1) L_1(X,s)^{-1}.$

Here $L_1(X, s) = L(\rho_{J_X/K}, s)$ is the *L*-function associated to the system $\rho_{J_X/K} = \{\rho_{J_X/K,\ell}\}_{\ell}$ of Galois representations

$$\rho_{J_X/K,\ell}: G_K \to \operatorname{Aut}_{\mathbb{Q}_\ell}(V_\ell(J_X))$$

afforded by the Tate space of the Jacobian J_X/K of X:

$$V_{\ell}(J_X) = T_{\ell}(J_X) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}, \text{ where } T_{\ell}(J_X) = \lim_{\leftarrow} J_X[\ell^n].$$

Example 2: If $X = X_1 \times X_2$ is a product surface, then (by the Künneth formula) we have

$$\zeta_{X/K}(s) \sim \frac{\zeta_{X_1}(s)\zeta_{X_2}(s)\zeta_{X_1}(s-1)\zeta_{X_2}(s-1)}{\zeta_K(s)\zeta_K(s-1)^2\zeta_K(s-2)}L(\rho_1 \otimes \rho_2, s).$$

Here $\rho_1 \otimes \rho_2 = \{\rho_{J_{X_1}/K,\ell} \otimes \rho_{J_{X_2}/K,\ell}\}_{\ell}$ is the system of Galois representations afforded by the ℓ -adic tensor product modules

 $V_{\ell}(J_{X_1}, J_{X_2}) := V_{\ell}(J_{X_1}) \otimes_{\mathbb{Q}_{\ell}} V_{\ell}(J_{X_1}).$

Thus, the "new contribution" of the ζ -function $\zeta_X(s)$ is the part coming from the *L*-function $L(\rho_1 \otimes \rho_2, s)$ associated to the tensor product representation $\rho_1 \otimes \rho_2$.

Remark: In the case that $X_1 = X_2 = E$ is an elliptic curve, then $V_{\ell}(E, E) \simeq S^2(V_{\ell}(E)) \oplus \det(V_{\ell}(E))$, so $\rho_1 \otimes \rho_1$ is essentially the symmetric square representation.

Motivation 2: The Tate Conjectures

Conjecture 1 (Hasse/Weil): $\zeta_{X/K}(s)$ has a meromorphic continuation to the entire complex plane \mathbb{C} .

Refinement: Each $L_m(X, s)$ has a meromorphic continuation to \mathbb{C} . (Note: $L_m(X, s)$ converges for $\Re(s) > 1 + \frac{m}{2}$.)

Conjecture 2 (Tate): The order of the pole of $L_{2m}(X, s)$ at s = m+1 equals the rank of the group $\mathfrak{A}^m(X/K) = Z^m(X)/\equiv$ of codimension *m*-cycles on X/K modulo numerical equivalence:

 $-\operatorname{ord}_{s=m+1}L_{2m}(X,s) = \operatorname{rk}(\mathfrak{A}^m(X/K)).$

Furthermore, for all primes ℓ ,

 $(T^m(X))$ $\operatorname{rk}(\mathfrak{A}^m(X/K)) = \dim_{\mathbb{Q}_\ell}(H^{2m}_{et}(\overline{X}, \mathbb{Q}_\ell)(m))^{G_K}.$

Remarks: 1) Tate (1963) also has a conjectural interpetation of $\operatorname{ord}_{s=1}L_1(X, s)$ which generalizes the Birch/Swinnerton-Dyer Conjecture.

2) In the case that $X = A \times \hat{A}$, where A/K is an abelian variety and \hat{A} is its dual, Conjecture $T^1(A \times \hat{A})$ is equivalent to the following statement which was proved by Faltings (1983).

Theorem 0 (Faltings): If A/K is an abelian variety, then

(1) $\operatorname{rk}(\operatorname{End}_{K}(A)) = \dim_{\mathbb{Q}_{\ell}}\operatorname{End}_{\mathbb{Q}_{\ell}[G_{K}]}(V_{\ell}(A)), \quad \forall \text{ primes } \ell.$

More precisely, we have a natural \mathbb{Q}_{ℓ} -linear ring isomorphism

(2) $\tau_{A/K,\ell} : \operatorname{End}_K(A) \otimes \mathbb{Q}_\ell \xrightarrow{\sim} \operatorname{End}_{\mathbb{Q}_\ell[G_K]}(V_\ell(A)).$

2. Some Questions

Notation: If $\rho_i : G_K \to \operatorname{Aut}_{\mathbb{Q}_\ell}(V_i)$ are two ℓ -adic Galois representations, then put

 $(\rho_1, \rho_2)_{G_K} := \dim_{\mathbb{Q}_\ell} \operatorname{Hom}_{\mathbb{Q}_\ell[G_K]}(V_1, V_2).$

This is often called the intertwining number of ρ_1 and ρ_2 .

Example: If A/K is an abelian variety, then by Faltings

 $(\rho_{A/K,\ell}, \rho_{A/K,\ell})_{G_K} = \operatorname{rk}(\operatorname{End}_K(A)).$

Notation: If A/K and B/K are two abelian varieties, let

 $V_{\ell}(A,B) = V_{\ell}(A) \otimes_{\mathbb{Q}_{\ell}} V_{\ell}(B)$

be the tensor product of the Tate spaces and let

 $\rho_{A,B,K,\ell} := \rho_{A/K,\ell} \otimes \rho_{B/K,\ell} : G_K \to \operatorname{Aut}_{\mathbb{Q}_\ell}(V_\ell(A,B))$

be the associated tensor product representation.

Question 1: Is there a "Faltings Theorem" for $\rho_{A,B,K,\ell}$, i.e., is there an arithmetic interpretation of $(\rho_{A,B,K,\ell}, \rho_{A,B,K,\ell})_{G_K}$?

Observation: The Tate Conjecture $(T^2(A \times B \times \hat{A} \times \hat{B}))$ implies: \exists a subgroup $\mathfrak{A}_{A,B,K} \leq \mathfrak{A}^2((A \times B \times \hat{A} \times \hat{B})/K)$ such that

 $(\rho_{A,B,K,\ell},\rho_{A,B,K,\ell})_{G_K} = \operatorname{rk}(\mathfrak{A}_{A,B,K}), \quad \forall \ell.$

In particular, the left hand side is independent of ℓ .

Subproblem: Can $\mathfrak{A}_{A,B,K}$ be interpreted in terms of endomorphisms of abelian varieties?

Remark: It is not difficult to see that we have a natural embedding $End_{-}(A) \otimes End_{-}(B) \leftarrow \mathcal{O}(A)$

 $\operatorname{End}_{K}(A) \otimes \operatorname{End}_{K}(B) \hookrightarrow \mathfrak{A}_{A,B,K}.$

This naturally raises the following question.

- **Question 2:** When is $\operatorname{rk}(\operatorname{End}_{K}(A) \otimes \operatorname{End}_{K}(B)) = \operatorname{rk}(\mathfrak{A}_{A,B,K})$? Combining Questions 1 and 2 leads to:
- Question 3: Let $\tau_{A,B,K,\ell} = \tau_{A/K,\ell} \otimes_{\mathbb{Q}_{\ell}} \tau_{B/K,\ell}$, so $\tau_{A,B,K,\ell}$ can be viewed as a ring homomorphism

 $\tau_{A,B,K,\ell} : \operatorname{End}_{K}(A) \otimes \operatorname{End}_{K}(B) \otimes \mathbb{Q}_{\ell} \to \operatorname{End}_{\mathbb{Q}_{\ell}[G_{K}]}(V_{\ell}(A,B))$ via the identification

 $\operatorname{End}_{\mathbb{Q}_{\ell}}(V_{\ell}(A, B)) \simeq \operatorname{End}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \otimes_{\mathbb{Q}_{\ell}} \operatorname{End}_{\mathbb{Q}_{\ell}}(V_{\ell}(B)).$

When is $\tau_{A,B,K,\ell}$ an isomorphism? In other words, when is

(3) $(\rho_{A,B,K,\ell}, \rho_{A,B,K,\ell})_{G_K} = \operatorname{rk}(\operatorname{End}_K(A))\operatorname{rk}(\operatorname{End}_K(B))?$

A first (naive) guess is that the following holds.

Hypothesis $H_{A,B,K}$: The following are equivalent:

- (i) Formula (3) holds for all primes ℓ ;
- (i') Formula (3) holds for one prime ℓ ;
- (ii) $\operatorname{Hom}_{\overline{K}}(A, B) = 0.$
- **Observation:** While $H_{A,B,K}$ holds for some abelian varieties A/K and B/K, it is not true in general. There are (at least) two classes of counterexamples.

Counterexamples to Hypothesis $H_{A,B,K}$:

1) A/\mathbb{Q} and B/\mathbb{Q} are modular abelian varieties which have a common internal twist (in the sense of Ribet);

2) A/K and B/K are CM elliptic curves which are defined over \mathbb{Q} and K is a suitable real quadratic field.

- **Remark:** Note that $\operatorname{End}_{K}(A) \neq \operatorname{End}_{\overline{\mathbb{Q}}}(A)$ in both cases. Thus, a better guess is the following:
- **Hypothesis** $\overline{H}_{A,B}$: The hypothesis $H_{A,B,K}$ holds whenever K is large enough, i.e., whenever

 $\operatorname{End}_{\overline{K}}(A) = \operatorname{End}_{K}(A)$ and $\operatorname{End}_{\overline{K}}(B) = \operatorname{End}_{K}(B)$.

Observation: If $\overline{H}_{A,B}$ holds for A/K and B/K, and if (ii) holds (i.e., if $\operatorname{Hom}_{\overline{K}}(A, B) = 0$), then for every finite extension L/K and prime ℓ we have an induced isomorphism

 $\tilde{\tau}_{A,B,L} : (\operatorname{End}_{\overline{K}}(A) \otimes \operatorname{End}_{\overline{K}}(B))^{G_L} \otimes \mathbb{Q}_{\ell} \xrightarrow{\sim} \operatorname{End}_{\mathbb{Q}_{\ell}[G_L]}(V_{\ell}(A,B)).$ From this it follows that

 $\mathfrak{A}_{A,B,K} \otimes \mathbb{Q} = (\operatorname{End}_{\overline{K}}(A) \otimes \operatorname{End}_{\overline{K}}(B))^{G_L} \otimes \mathbb{Q},$

and so we obtain a solution of our subproblem in this case. In particular, $H_{A,B,L}$ holds if and only if

 $(\operatorname{End}_{\overline{K}}(A) \otimes \operatorname{End}_{\overline{K}}(B))^{G_L} \otimes \mathbb{Q} = \operatorname{End}_L(A) \otimes \operatorname{End}_L(B) \otimes \mathbb{Q}.$

3. Main Results.

- **Theorem 1.** If A and B are isogenous (over $\overline{\mathbb{Q}}$) to products of elliptic curves, then $\overline{H}_{A,B}$ holds.
- **Definition:** A modular abelian variety A/K is an abelian variety which is isogenous to a quotient of the Jacobian variety $J_1(N)_K$ of the modular curve $X_1(N)_K$, for a suitable N.
- **Theorem 2.** If A and B are modular abelian varieties, then $\overline{H}_{A,B}$ holds.
- **Remark:** Both Theorem 1 and Theorem 2 are special cases of a more general theorem. For this, I introduce the class of abelian varieties of *generalized* GL_2 -*type* (see below). These include:
 - products of elliptic curves
 - K. Murty's abelian varieties of type (T) (1983)
 - K. Ribet's abelian varieties A/\mathbb{Q} of GL₂-type (1992); these include the Shimura quotients A_f , where $f \in S_2(\Gamma_1(N))^{new}$.
- **Theorem 3.** If A and B are abelian varieties of generalized GL_2 -type, then $\overline{H}_{A,B}$ holds.
- **Corollary 1:** If A/K and B/K are abelian varieties of generalized GL₂-type, then $H_{A,B,K}$ holds \Leftrightarrow

 $(\operatorname{End}_{\overline{K}}(A) \otimes \operatorname{End}_{\overline{K}}(B))^{G_K} = \operatorname{End}_K(A) \otimes \operatorname{End}_K(B).$

Corollary 2: If A/K and B/K are abelian varieties of generalized GL₂-type whose $\overline{\mathbb{Q}}$ -endomorphisms are defined over K, then $H_{A,B,K}$ holds. **Example:** If A/K and B/K are isogenous to products of elliptic curves without CM, then $H_{A,B,K}$ holds by Corollary 2. In other words, the following conditions are equivalent:

(i) Formula (3) holds for all primes ℓ ;

(i') Formula (3) holds for one prime ℓ ;

(ii) $\operatorname{Hom}_{\overline{K}}(A, B) = 0;$

Remark: Recall that formula (3) was the following identity:

 $(\rho_{A,B,K,\ell}, \rho_{A,B,K,\ell})_{G_K} = \operatorname{rk}(\operatorname{End}_K(A))\operatorname{rk}(\operatorname{End}_K(B)).$

4. Analysis of Condition (3).

- **Notation:** If V is a $\mathbb{Q}_{\ell}[G_K]$ -module, let $\overline{V} = V \otimes_{\mathbb{Q}_{\ell}} \overline{\mathbb{Q}}_{\ell}$ denote the associated $\overline{\mathbb{Q}}_{\ell}[G_K]$ -module. Here $\overline{\mathbb{Q}}_{\ell}$ denotes an algebraic closure of \mathbb{Q}_{ℓ} .
- **Lemma 1:** $\tau_{A,B,K,\ell}$ is an isomorphism (i.e., condition (3) holds for A, B, K, ℓ) if and only if the following two conditions hold: (1) (Irreducibility) If $V \subset \overline{V}_{\ell}(A)$ and $W \subset \overline{V}_{\ell}(B)$ are irreducible $\overline{\mathbb{Q}}_{\ell}[G_K]$ -submodules, then $V \otimes W$ is also irreducible. (2) (Multiplicity 1) If $V_i \subset \overline{V}_{\ell}(A)$ and $W_i \subset \overline{V}_{\ell}(B)$ are irreducible $\overline{\mathbb{Q}}_{\ell}[G_K]$ -submodules (for i = 1, 2), then

 $V_1 \otimes W_1 \simeq V_2 \otimes W_2 \quad \Leftrightarrow \quad V_1 \simeq V_2 \text{ and } W_1 \simeq W_2.$

Counterexamples to $H_{A,B,K}$: 1) Let E_i/\mathbb{Q} be two elliptic curves with CM by F_i , where $F_1 \neq F_2$. If $K = (F_1F_2)^+$, then $H_{E_1,E_2,K}$ does not hold. Here $\operatorname{Hom}_{\overline{\mathbb{Q}}}(E_1,E_2) = 0$, but (3) does not hold (for any ℓ) because $\dim_{\mathbb{Q}} \operatorname{End}_K(E_i) = 1$ and $(\rho_{E_1,E_2,K,\ell}, \rho_{E_1,E_2,K,\ell})_{G_K} = 2 \neq 1$. (Here Property (1) fails.) 2) Let E_i/\mathbb{Q} be two modular (non-CM) elliptic curves with associated newforms $f_i \in S_2(\Gamma_0(N_i))$, and assume that E_1 and E_2 are not $\overline{\mathbb{Q}}$ -isogenous. Moreover, let χ be a Dirichlet character of order m > 2, and let g_i be the newform associated to the twist $(f_i)_{\chi}$ of f_i by χ . If $A_i = A_{g_i}/\mathbb{Q}$ is the Shimura quotient associated to g_i , then $H_{A_1,A_2,\mathbb{Q}}$ does not hold.

Indeed, $A_i \otimes \overline{\mathbb{Q}} \sim E_i^{\phi(m)} \otimes \overline{\mathbb{Q}}$, so $\operatorname{Hom}_{\overline{\mathbb{Q}}}(A_1, A_2) = 0$, but (3) does not hold. (Here Property (1) holds, but (2) fails because A_1 and A_2 have "simultaneous inner twists").

5. Abelian Varieties of Generalized GL₂-type

Definition: A $\overline{\mathbb{Q}}_{\ell}[G_K]$ -module V has *restricted* GL₂-*type* if $V = \bigoplus V_i$ is a direct sum of two-dimensional $\overline{\mathbb{Q}}_{\ell}[G_K]$ -modules V_i such that each V_i is of one of the following two types:

(I) V_i is irreducible and det $V_i = \chi_{\ell}$, where χ_{ℓ} is the cyclotomic ℓ -adic character on G_K .

(II) $V_i \simeq \overline{V}_{\ell}(E_i)$, for some CM elliptic curve E_i/K .

- **Definition:** An abelian variety A/K has *generalized* GL₂-*type* if there is a finite extension L/K such that
 - (i) $\operatorname{End}_{L}^{0}(A) = \operatorname{End}_{\overline{\mathbb{O}}}^{0}(A);$
 - (ii) $\overline{V}_{\ell}(A)$ has restricted GL₂-type as a G_L -module, $\forall \ell$.
- **Remark:** The class $(\text{genGL}_2)_K$ of abelian varieties A/K of generalized GL_2 -type is closed under products. Moreover, if $A \in (\text{genGL}_2)_K$ and if $B \leq A$, then $B, A/B \in (\text{genGL}_2)_K$.
- **Lemma 2:** If $A \in (\text{genGL}_2)_K$, then there is a decomposition $A \sim A^{nCM} \times A^{CM}$ such that for any L/K with (i) we have that

(a) $A^{CM} \otimes L \sim$ product of CM elliptic curves E_i/L , and $\overline{V}_{\ell}(A^{CM})$ is a direct sum of 1-dimensional G_L -modules; (b) Each G_L -irreducible component V of $\overline{V}_{\ell}(A^{nCM})$ has dimension 2 and is *strongly irreducible*, i.e. $V_{|U}$ is irreducible, \forall open $U \leq G_L$. Moreover, $\overline{V}_{\ell}(A^{nCM})$ has no internal twists, i.e., if V_i are two irreducible submodules of $\overline{V}_{\ell}(A^{nCM})$, then

 $V_1 \simeq V_2 \otimes \chi$, for some $\chi \in \operatorname{Hom}(G_L, \overline{\mathbb{Q}}_{\ell}^{\times}) \Rightarrow \chi = 1.$

6. Representation Theory: non-CM Case.

Let: $k = \overline{\mathbb{Q}}_{\ell}$ and $G = G_K$. Here we study k[G]-modules V with:

(4) V is strongly irreducible of dimension 2.

(Recall: this means that $V_{|U}$ is irreducible, \forall open $U \leq G$.)

- **Theorem 5 (Irreducibility Criterion):** If V, W satisfy (4), then $V \otimes W$ is irreducible \Leftrightarrow
 - (5) $V \not\simeq W \otimes \chi$, for all $\chi \in \operatorname{Hom}(G, k^{\times})$.
- **Remark:** By using Schur's Lemma, this follows easily from a result of D. Ramakrishnan (2000) on adjoint representations.
- **Theorem 6 (Cancellation Criterion):** If V_i, W_i satisfy (4) for i = 1, 2, and if
 - (6) $V_i \otimes W_j$ is irreducible, for all $i, j \in 1, 2$,

then $V_1 \otimes W_1 \simeq V_2 \otimes W_2 \Leftrightarrow \exists \chi \in \operatorname{Hom}(G, k^{\times})$ such that

(7) $V_1 \simeq V_2 \otimes \chi \quad \text{and} \quad W_1 \simeq W_2 \otimes \chi^{-1}.$

Remarks: 1) In view of Lemmas 1 and 2, Theorems 5 and 6 imply Theorem 3 in the non-CM case (i.e, when A ~ A^{nCM}.)
2) The proof of Theorem 6 uses the following identity (which was also used in Ramakrishnan's proof):

 $\wedge^2(V \otimes W) \simeq (S^2 V \otimes \wedge^2 W) \oplus (\wedge^2 V \otimes S^2 W).$

(As usual, S^2V denotes the symmetric square of V.)

7. Representation Theory: CM Case.

Recall: If E/K is a CM elliptic curve with $F := \operatorname{End}_{K}^{0}(E) \neq \mathbb{Q}$, then $F \subset K$ and F is an imaginary quadratic field. Moreover,

 $\overline{V}_{\ell}(E) \simeq \psi_1 \oplus \psi_2$, with $\psi_i \in \operatorname{Hom}(G_K, \overline{\mathbb{Q}}_{\ell}^{\times})$.

In addition, $\psi_1\psi_2 = \chi_\ell$.

Lemma 3: Let E_i/K be an elliptic curve with CM by $F_i \subset K$, and let $\overline{V}_{\ell}(E_i) = \psi_{i1} \oplus \psi_{i2}$, where i = 1, 2. Assume that $F_1 \neq F_2$. If p is a prime which splits completely in K, then

 $\mathbb{Q}(\psi_{1i}\psi_{2j}(\sigma_{\mathfrak{P}})) \simeq F_1F_2, \quad \forall i, j = 1, 2,$

where $\sigma_{\mathfrak{P}} \in G_K$ is a Frobenius element at $\mathfrak{P} \mid p$.

- **Remarks:** 1) Using Lemma 3, it follows easily that Property (2) holds if $A = A^{CM}$ and $B = B^{CM}$. Since Property (1) is trivial, we thus see that Theorem 3 holds in this case. Combining this with the results of §6, this proves Theorem 3 because it is easy to verify Properties (1) and (2) for the "mixed terms" $V_i \otimes \psi_j$. 2) By using a more general version of the Irreducibility Criterion (Theorem 5) and the results of Ribet (1980), one can also show:
- **Theorem 7:** If A/\mathbb{Q} and B/\mathbb{Q} are modular abelian varieties with $\operatorname{Hom}_{\overline{\mathbb{Q}}}(A, B) = 0$, then Property (1) holds, i.e.,

 $V \otimes W$ is $G_{\mathbb{Q}}$ -irred., if $V \subset \overline{V}_{\ell}(A), W \subset \overline{V}_{\ell}(B)$ are $G_{\mathbb{Q}}$ -irred.