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Tensor Products of (Galois Representations

1. Introduction

Motivation 1: The Hasse-Weil (-Function of Products

Recall: The zeta function Cx/x(s) of a smooth, projective variety
X over a number field K is given (up to finitely many Euler
factors) by the zeta function

Cel(s) =[] 1= N(z)™),
re|X|

of any projective model X /Ox of X/K. (This product con-
verges for Jt(s) > dim X + 1.) Write: Cx/x(s) ~ Cx(s).

Example: If X = Spec(K), then C(x/x(5) ~ (gpec(0y)(8) =
Ck(s), the Dedekind (-function of K.

Main Principle: (x/x(s) “encodes the arithmetic” of X: this
is expressed in terms of specific conjectures (see below).

Fact (Grothendieck/Artin/Serre): We have the factorization

2d
N (—1)m L()(X, S) Tt LQd(Xv 8)
Cx/k(8) nl__[OLm(X, s) O Ly(X,8) - Lag 1(X, 8)

where d = dim X and each L,,(X,s) = L(pn, s) is the L-
function associated to a suitable (rational) compatible system
Pm = {pm.c}e of L-adic Galois representations

Pmit = PXml " Grg = Gal(F/K) — Ath€<VX7m7g).
(Explicitly: Ve = HH(X,Qy).)



Example 1: If X/K is a curve, then

Cxr(s) ~ Crl(s)Cr(s — 1)Ly (X, s) "

Here Li(X,s) = L(py, /K, 5s) is the L-function associated to
the system p;, /x = {ps /K. }e of Galois representations

Py G — Autg,(Vi(Jx))
afforded by the Tate space of the Jacobian Jyx /K of X:
W(Jx> — Tg(])d ®Z€ Qg, where Tg(Jx> — lgn wan]

Example 2: If X = X; x X} is a product surface, then (by the
Kiinneth formula) we have

Sxi(8)Cxy(8)¢x, (s — 1)Cxy (s — 1>L
Cr(8)Cr (s — 1)%Ce(s —2)

Here p1 ® p2 = {psy. /50 @ Py /it is the system of Galois

representations afforded by the P-adic tensor product modules

VE(JXU ‘]XQ) = ‘/f(‘])ﬁ) ®q, Vf(‘])ﬁ)'

Thus, the “new contribution” of the (-function (x(s) is the
part coming from the L-function L(p; ® po, s) associated to
the tensor product representation p; ® ps.

Cx/k(8) (p1 @ pa, 5).

Remark: In the case that X; = Xy = F is an elliptic curve, then
VI(E,E) ~ S*(V)(E)) @ det(Vy(E)), so p1 @ p; is essentially

the symmetric square representation.



Motivation 2: The Tate Conjectures

Conjecture 1 (Hasse/Weil): (x/x(s) has ameromorphic con-
tinuation to the entire complex plane C.
Refinement: Each L,, (X, s) has a meromorphic continuation
to C. (Note: L,,(X, s) converges for $(s) > 1+ 7.)

Conjecture 2 (Tate): The order of the pole of Lo, (X, s) at
s = m+1 equals the rank of the group A"(X/K) = Z™(X)/ =
of codimension m-cycles on X /K modulo numerical equiva-
lence:

—0rdg—pmi1Lom(X, s) = rk(A™(X/K)).

Furthermore, for all primes ¢,
(T"(X))  tk(A™(X/K)) = dimg,(H"(X, Q¢)(m))“*.

Remarks: 1) Tate (1963) also has a conjectural interpetation of
ords—1 L1(X, s) which generalizes the Birch/Swinnerton-Dyer
Conjecture.

2) In the case that X = A x A, where A/K is an abelian
variety and A is its dual, Conjecture T (A x A) is equivalent to
the following statement which was proved by Faltings (1983).

Theorem 0 (Faltings): If A/K is an abelian variety, then
(1) tk(Endg(A)) = dimg, Endg,,(Vi(A)), V primes £,
More precisely, we have a natural Q,-linear ring isomorphism

(2) TA/K (L EndK(A) 0% Qg = Eﬂng[GKKVK(A))-



2. Some Questions

Notation: If p; : G — Autg,(V;) are two f-adic Galois repre-
sentations, then put

(/01, p?)GK = dlm@g HOIHQ@[G}(](‘/M ‘/2>
This is often called the intertwining number of p; and ps.

Example: If A/K is an abelian variety, then by Faltings
(Paj.es PA/K )G, = Tk(Endg (A)).
Notation: If A/K and B/K are two abelian varieties, let
Vi(A, B) = Vi(A) ®q, Vi(B)
be the tensor product of the Tate spaces and let
PABEL = PajEe D pp/ie: Gk — AUth(VdA» B))
be the associated tensor product representation.

Question 1: Is there a “Faltings Theorem” for pa gy, 1.€., is
there an arithmetic interpretation of (pa g i, PAB.K.0)Gx

Observation: The Tate Conjecture (TQ(A x Bx Ax B)) implies:
3 a subgroup A4 px < A*((A x B x A x B)/K) such that

(paBxs PABK )G, = TKR&apk), VL.
In particular, the left hand side is independent of £.

Subproblem: Can 24 p ¢ be interpreted in terms of endomor-
phisms of abelian varieties?
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Remark: It is not difficult to see that we have a natural embed-

d
e EndK(A) &) EndK(B) — Q[A,B,K-

This naturally raises the following question.
Question 2: When is rk(Endx(A) ® Endg(B)) = tk(A4 5.x)?
Combining Questions 1 and 2 leads to:

Question 3: Let 74 k¢ = Ta/k 0 @, TB/K 0> SO TA,B,K,¢ Can be
viewed as a ring homomorphism

Taprie: Endg(A) ® Endg(B) @ Qp — End@g[GK](Vg(A, B))
via the identification
Endg, (Vi(A4, B)) ~ Endg,(Vi(A)) ®q, Endg, (Vi(B))-

When is 74 p i ¢ an isomorphism? In other words, when is
3)  (pasice pasisey = k(Endg(A)) k(Endy(B)?

A first (naive) guess is that the following holds.

Hypothesis H4 p i : The following are equivalent:
(i) Formula (3) holds for all primes ¢;
(i) Formula (3) holds for one prime /;
(ii) Homz(A, B) = 0.
Observation: While H 4 g i holds for some abelian varieties A/ K

and B/K, it is not true in general. There are (at least) two
classes of counterexamples.



Counterexamples to Hypothesis H p x

1) A/Q and B/Q are modular abelian varieties which have a
common internal twist (in the sense of Ribet);

2) A/K and B/K are CM elliptic curves which are defined
over Q and K is a suitable real quadratic field.

Remark: Note that Endg(A) # Endg(A) in both cases. Thus,
a better guess is the following:

Hypothesis HA, g : The hypothesis H4 p g holds whenever K
is large enough, i.e., whenever

End%(A) = Endg(A) and Endz(B) = Endg(B).

Observation: If H 4 p holds for A/ K and B/K, and if (ii) holds
(i.e., if Homz(A, B) = 0), then for every finite extension L/K
and prime £ we have an induced isomorphism

Fap.r : (Endg(A) ® Endz=(B))"t @ Q; = Endg,q,)(Vi(4, B)).
From this it follows that
Aapr ®Q = (Endi(4) ® EndF(B))GL ® Q,

and so we obtain a solution of our subproblem in this case. In
particular, H4 g holds if and only if

(End(A) ® End(B))“r ® Q = End;(A) ® End(B) ® Q.



3. Main Results.

Theorem 1. If A and B are isogenous (over Q) to products of
elliptic curves, then H 4 g holds.

Definition: A modular abelian variety A/K is an abelian va-

riety which is isogenous to a quotient of the Jacobian variety
J1(N) g of the modular curve X1(NV)g, for a suitable V.

Theorem 2. It A and B are modular abelian varieties, then
HA,B holds.

Remark: Both Theorem 1 and Theorem 2 are special cases of a
more general theorem. For this, I introduce the class of abelian
varieties of generalized GLa-type (see below). These include:

e products of elliptic curves
e [{. Murty’s abelian varieties of type (T) (1983)

e [{. Ribet’s abelian varieties A/Q of GLo-type (1992); these
include the Shimura quotients Ay, where f € So(I'1(IN))"".

Theorem 3. If A and B are abelian varieties of generalized GLg-
type, then H 4 p holds.

Corollary 1: If A/K and B/K are abelian varieties of general-
ized GLo-type, then Hy p i holds <

(End7(A) ® End(B))“" = Endg(A) ® Endg(B).
Corollary 2: If A/K and B/K are abelian varieties of gener-

alized GLo-type whose Q-endomorphisms are defined over K,
then H 4 p i holds.
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Example: If A/K and B/ K are isogenous to products of elliptic
curves without CM, then H 4 p i holds by Corollary 2. In other
words, the following conditions are equivalent:

(i) Formula (3) holds for all primes ¢;
(i) Formula (3) holds for one prime /;
(ii) Homz(A, B) = 0;
Remark: Recall that formula (3) was the following identity:

(pa,B k0, pAB K )G = th(Endg(A)) tk(End g (B)).



4. Analysis of Condition (3).

Notation: If V is a Q/[GkJ-module, let V' =V ®q, Q, denote
the associated Q|G x]-module. Here @, denotes an algebraic
closure of Qy.

Lemma 1: 74 p g is an isomorphism (i.e., condition (3) holds
for A, B, K, ¢) if and only if the following two conditions hold:
(1) (Irreducibility) If V- C V¢(A) and W C V(B) are irre-
ducible Q|G x]-submodules, then V' @ W is also irreducible.
(2) (Multiplicity 1) If V; € V(A) and W; C V(B) are irre-
ducible Q|G k]-submodules (for i = 1,2), then

VieW, ~ VoW, < Vi~V, and W; ~W,.

Counterexamples to Hy g : 1) Let £;/Q be two elliptic curves

with CM by F;, where Fy} # F,. If K = (F\Fy)", then
Hpg, g,k does not hold. Here Hom@(El,Eg) = 0, but (3)
does not hold (for any ¢) because dimg Endg(FE;) = 1 and
(PEL By 0y PELEy K 0)G = 2 7 1. (Here Property (1) fails.)
2) Let E;/Q be two modular (non-CM) elliptic curves with
associated newforms f; € Sy(I'g(NNV;)), and assume that FEj
and E, are not Q-isogenous. Moreover, let y be a Dirichlet
character of order m > 2, and let g; be the newform associated
to the twist (fi), of f; by x. If A, = A, /Q is the Shimura
quotient associated to gz, then H 4, 4,0 does not hold.

Indeed, A; ® Q ~ E¢ ® Q, so Homg( A1, A2) = 0, but (3)
does not hold. (Here Property (1) holds but (2) fails because
Ay and As have “simultancous inner twists”).
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5. Abelian Varieties of Generalized GLsy-type

Definition: A @g[G x]-module V' has restricted GLy-type if V =
®V; is a direct sum of two-dimensional Q|G x]-modules V;
such that each V; is of one of the following two types:

(I) V; is irreducible and det V; = x/, where x/ is the cyclotomic
¢-adic character on G.

(I1) V; ~ V((E;), for some CM elliptic curve E;/K.

Definition: An abelian variety A/K has generalized GLo-type
if there is a finite extension L/K such that

(i) End} (A) = End%(A);
(ii) V¢(A) has restricted GLo-type as a G'z-module, V7.

Remark: The class (genGL,) i of abelian varieties A/ K of gen-
eralized GLo-type is closed under products. Moreover, if A €

(genGL,) i and if B < A, then B, A/B € (genGL,) .

Lemma 2: If A € (genGL,)g, then there is a decomposition

A~ APCM e ACM gich that for any L/K with (i) we have
that

(a) AM & I ~ product of CM elliptic curves E;/L, and
V(A“M) is a direct sum of 1-dimensional G'z-modules;

(b) Each G-irreducible component V' of V,(A"“M) has di-
mension 2 and is strongly irreducible, 1.e. Vi is irreducible, V

open U < Gp. Moreover, V(A"M) has no internal twists,
i.e., if V; are two irreducible submodules of V ,(A"“M), then

ViV ® vy, forsomexEHom(GL,@Z) = y=1
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6. Representation Theory: non-CM Case.
Let: k = Q, and G = G Here we study k[G]-modules V with:
(4) V' is strongly irreducible of dimension 2.

(Recall: this means that Vj;; is irreducible, V open U < G.)

Theorem 5 (Irreducibility Criterion): If V, W satisfy (4),
then V @ W is irreducible <

(5) VAW ®yx, forall x € Hom(G, k™).

Remark: By using Schur’s Lemma, this follows easily from a
result of D. Ramakrishnan (2000) on adjoint representations.

Theorem 6 (Cancellation Criterion): If V;, W; satisfy (4)
for s = 1,2, and if

(6) V; ® W; is irreducible, for all ¢, 5 € 1,2,
then Vi @ W, ~ Vo @ Wy < Iy € Hom(G, k) such that
(7) VieVo®y and Wi~ Wo® x L

Remarks: 1) In view of Lemmas 1 and 2, Theorems 5 and 6
imply Theorem 3 in the non-CM case (i.e, when A ~ A"CM)

2) The proof of Theorem 6 uses the following identity (which
was also used in Ramakrishnan’s proof):

NV W) ~ (S°V o ANW) & (ANV @ SW).
(As usual, S*V denotes the symmetric square of V)
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7. Representation Theory: CM Case.

Recall: If £/K is a CM elliptic curve with F := End).(F) # Q,
then F' C K and F'is an imaginary quadratic field. Moreover,

ViE) ~ 1 @y, with ¢ € Hom(Gx, @, ).
In addition, ’lewg = Xv.
Lemma 3: Let F;/K be an elliptic curve with CM by F; C K,

and let V(E;) = 1y @ 1), where i = 1,2. Assume that
Fy # F,. If p is a prime which splits completely in K, then

Q<¢1Z¢2J(O-q3>) = F1F27 \V/’L,] — 17 27
where o3 € G ¢ is a Frobenius element at 3 | p.

Remarks: 1) Using Lemma 3, it follows easily that Property (2)
holds if A = A“M and B = B“M. Since Property (1) is trivial,
we thus see that Theorem 3 holds in this case. Combining this
with the results of §6, this proves Theorem 3 because it is easy
to verify Properties (1) and (2) for the “mixed terms” V; ® ;.

2) By using a more general version of the Irreducibility Crite-
rion (Theorem 5) and the results of Ribet (1980), one can also
show:

Theorem 7: If A/Q and B/Q are modular abelian varieties
with Homg(A, B) = 0, then Property (1) holds, i.e.,

V @ W is Gg-irred., if V. C V(A), W C V(B) are Gg-irred.



