Tensor Products of Galois Representations

Ernst Kani Queen's University

CMS Winter Meeting, Montreal 9 December 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

- 1. Introduction
- 2. Main Results
- 3. Analysis of Condition (1)
- 4. Abelian Varieties of Generalized GL2-type

- 5. Representation Theory: non-CM Case
- 6. Representation Theory: CM Case

• Let: *K* be a number field, $G_K = \operatorname{Gal}(\overline{K}/K)$, A/K an abelian variety over *K*, $d = \dim(A)$, $T_{\ell}(A) = \lim_{\leftarrow} A[\ell^n]$, the ℓ -adic Tate-module, $V_{\ell}(A) = \widetilde{T_{\ell}}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$, viewed as a $\mathbb{Q}_{\ell}[G_K]$ -module, $\rho_{A/K,\ell} : G_K \to \operatorname{Aut}(T_{\ell}(A)) \subset \operatorname{Aut}(V_{\ell}(A)) \simeq \operatorname{GL}_{2d}(\mathbb{Q}_{\ell})$, $\overline{\rho}_{A/K,\ell} : G_K \to \operatorname{Aut}(A[\ell]) \simeq \operatorname{GL}_{2d}(\mathbb{F}_{\ell})$, the associated Galois representations.

• Faltings (1983): The homomorphism

 $\tau_{\mathcal{A}/\mathcal{K},\ell}:\mathsf{End}_{\mathcal{K}}(\mathcal{A})\otimes\mathbb{Q}_{\ell}\to\mathsf{End}_{\mathbb{Q}_{\ell}[\mathcal{G}_{\mathcal{K}}]}(V_{\ell}(\mathcal{A}))$

is an isomorphism. In particular, the intertwining number

 $(\rho_{A/K,\ell},\rho_{A/K,\ell})_{G_K} := \dim_{\mathbb{Q}_\ell} \operatorname{End}_{\mathbb{Q}_\ell[G_K]}(V_\ell(A))$

is independent of the choice of ℓ (and equals dim_Q End⁰_K(A)).

• Zarhin (1977), (1985); Faltings (1984): For almost all ℓ

 $\overline{ au}_{A,\ell}: \operatorname{End}_{\mathcal{K}}(A)\otimes \mathbb{F}_{\ell} o \operatorname{End}_{\mathbb{F}_{\ell}[G_{\mathcal{K}}]}(A[\ell])$

is an isomorphism. Thus

 $(\overline{\rho}_{A/K,\ell},\overline{\rho}_{A/K,\ell})_{G_K} := \dim_{\mathbb{F}_{\ell}} \mathsf{End}_{\mathbb{F}_{\ell}[G_K]}(A[\ell])$

does not depend on ℓ , if $\ell >> 0$.

• Question 1: Let B/K be another abelian variety. Are there analogous results for $\rho_{A,B,K,\ell} := \rho_{A/K,\ell} \otimes \rho_{B/K,\ell}$ and for $\overline{\rho}_{A,B,K,\ell} := \overline{\rho}_{A/K,\ell} \otimes \overline{\rho}_{B/K,\ell}$?

 Remark: This question arises naturally when one studies the Hasse-Weil zeta function of a product of two curves, and is closely connected with the Tate Conjecture.
 For this, recall that if X/K is a smooth, projective variety, then the Tate Conjecture T^r(X) states that the cycle map

 $cyc_X^r: \mathfrak{A}^r(X)\otimes \mathbb{Q}_\ell \to (H^{2r}_{et}(\overline{X},\mathbb{Q}_\ell)(r))^{\mathcal{G}_K}$

is an isomorphism, where $\mathfrak{A}^{r}(X)$ denotes the group of cycles of codimension r on X, modulo homological equivalence. Indeed, $T^{2}(A \times B \times A^{*} \times B^{*}) \Rightarrow$ the analogue of Faltings' Theorem holds for $\rho_{A,B,K,\ell} = \rho_{A/K,\ell} \otimes \rho_{B/K,\ell}$. In this, the ring $\operatorname{End}_{K}(A)$ is replaced by a certain (abstract) ring of correspondences which contains $\operatorname{End}_{K}(A) \otimes \operatorname{End}_{K}(B)$. This leads to the following question:

• Question 2: Let $\tau_{A,B,K,\ell} = \tau_{A/K,\ell} \otimes \tau_{B/K,\ell}$, so

 $\tau_{A,B,K,\ell}: \mathsf{End}_{K}(A) \otimes \mathsf{End}_{K}(B) \otimes \mathbb{Q}_{\ell} \to \mathsf{End}_{\mathbb{Q}_{\ell}[G_{K}]}(V_{\ell}(A,B)),$

where $V_{\ell}(A, B) = V_{\ell}(A) \otimes_{\mathbb{Q}_{\ell}} V_{\ell}(B)$. When is $\tau_{A,B,K,\ell}$ an isomorphism? In other words, when is

(1) $(\rho_{A,B,K,\ell}, \rho_{A,B,K,\ell})_{G_K} := \dim_{\mathbb{Q}_\ell}(\operatorname{End}_{\mathbb{Q}_\ell[G_K]}(V_\ell(A,B)))$ $\stackrel{?}{=} \dim_{\mathbb{Q}}\operatorname{End}^0_K(A)\dim_{\mathbb{Q}}\operatorname{End}^0_K(B)?$

Similarly: when is

(2) $(\overline{\rho}_{A,B,\ell},\overline{\rho}_{A,B,\ell})_{G_{\mathcal{K}}} = \dim_{\mathbb{Q}} \operatorname{End}_{\mathcal{K}}^{0}(A) \dim_{\mathbb{Q}} \operatorname{End}_{\mathcal{K}}^{0}(B)?$

A first (naive) guess is that the following holds.

- Hypothesis H_{A,B,K}: The following are equivalent:
 (i) Formula (1) holds for all primes ℓ;
 (i') Formula (1) holds for one prime ℓ;
 (ii) Hom_K(A, B) = 0.
- Observation: While *H*_{A,B,K} holds for some abelian varieties *A*/*K* and *B*/*K*, it is not true in general. There are (at least) two classes of counterexamples:

(i) A/\mathbb{Q} and B/\mathbb{Q} are modular abelian varieties which have a common internal twist (in the sense of Ribet);

(ii) A/K and B/K are CM elliptic curves which are defined over \mathbb{Q} and K is a suitable real quadratic field.

Thus, a better guess is the following:

• Hypothesis $\overline{H}_{A,B}$: The hypothesis $H_{A,B,K}$ holds whenever K is large enough, i.e., whenever

 $\operatorname{End}_{\overline{K}}(A) = \operatorname{End}_{K}(A)$ and $\operatorname{End}_{\overline{K}}(B) = \operatorname{End}_{K}(B)$.

• Observation: If $\overline{H}_{A,B}$ holds for A/K and B/K, and if (ii) holds, then for every finite extension L/K and prime ℓ we have an induced isomorphism

 $\tilde{\tau}_{A,B,L}: (\mathsf{End}_{\overline{K}}(A) \otimes \mathsf{End}_{\overline{K}}(B))^{\mathcal{G}_L} \otimes \mathbb{Q}_\ell \xrightarrow{\sim} \mathsf{End}_{\mathbb{Q}_\ell[\mathcal{G}_L]}(V_\ell(A,B)).$

Thus, $H_{A,B,L}$ holds if and only if

 $(\operatorname{End}_{\overline{K}}(A) \otimes \operatorname{End}_{\overline{K}}(B))^{G_L} = \operatorname{End}_L(A) \otimes \operatorname{End}_L(B).$

2. Main Results

- Theorem 1. If A and B are isogenous (over $\overline{\mathbb{Q}}$) to products of elliptic curves, then $\overline{H}_{A,B}$ holds.
- Definition: A modular abelian variety A/K is a quotient of the Jacobian variety J₁(N)_K of the modular curve X₁(N)/K, for a suitable N.
- Theorem 2. If A and B are modular abelian varieties, then $\overline{H}_{A,B}$ holds.
- Remark: Both Theorem 1 and Theorem 2 are special cases of a more general theorem. For this, I introduce the class of abelian varieties of *generalized* GL₂-*type* (see below). These include:
 - products of elliptic curves

2. Main Results - 2

- K. Murty's abelian varieties of type (T) (1983)
- K. Ribet's abelian varieties A/\mathbb{Q} of GL₂-type (1992); these include the Shimura quotients A_f , where $f \in S_2(\Gamma_1(N))^{new}$.
- Theorem 3. If A and B are abelian varieties of generalized GL_2 -type, then $\overline{H}_{A,B}$ holds.
- Corollary 1: If A/K and B/K are abelian varieties of generalized GL₂-type, then H_{A,B,K} holds ⇔

 $(\operatorname{End}_{\overline{K}}(A)\otimes\operatorname{End}_{\overline{K}}(B))^{G_{K}}=\operatorname{End}_{K}(A)\otimes\operatorname{End}_{K}(B).$

 Corollary 2: If A/K and B/K are abelian varieties of generalized GL₂-type whose Q
 —endomorphisms are defined over K, then H_{A,B,K} holds.

2. Main Results - 3

- Theorem 4: If A/K and B/K are elliptic curves without CM, then the following conditions are equivalent:
 (i) Formula (1) holds for all primes ℓ;
 (i') Formula (1) holds for one prime ℓ;
 (ii) Hom_K(A, B) = 0;
 (iii) Formula (2) holds for almost all primes ℓ.
- Remarks: 1) The equivalence of the first 3 conditions is a special case of Corollary 2 above.

2) The proof of the equivalence of (i) and (iii) uses a result of Frey/Jarden (2002), together with a modification of the representation theoretic results of $\S5$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. Analysis of Condition (1)

- Notation: If V is a Q_ℓ[G_K]-module, let V = V ⊗_{Qℓ} Q_ℓ denote the associated Q_ℓ[G_K]-module. Here Q_ℓ denotes an algebraic closure of Q_ℓ.
- Lemma 1: τ_{A,B,K,ℓ} is an isomorphism (i.e., condition (1) holds for A, B, K, ℓ) if and only if the following two conditions hold:
 (i) (Irreducibility) If V ⊂ V_ℓ(A) and W ⊂ V_ℓ(B) are irreducible Q_ℓ[G_K]-submodules, then V ⊗ W is also irreducible.

(ii) (Multiplicity 1) If $V_i \subset \overline{V}_{\ell}(A)$ and $W_i \subset \overline{V}_{\ell}(B)$ are irreducible $\overline{\mathbb{Q}}_{\ell}[G_{\mathcal{K}}]$ -submodules (for i = 1, 2), then

 $V_1 \otimes W_1 \simeq V_2 \otimes W_2 \quad \Leftrightarrow \quad V_1 \simeq V_2 \text{ and } W_1 \simeq W_2.$

3. Analysis of Condition (1) - 2

• Counterexamples to $H_{A,B,K}$:

1) Let E_i/\mathbb{Q} be two elliptic curves with CM by F_i , where $F_1 \neq F_2$. If $K = (F_1F_2)^+$, then $H_{E_1,E_2,K}$ does not hold. Here $\operatorname{Hom}_{\overline{\mathbb{Q}}}(E_1, E_2) = 0$, but (1) does not hold (for any ℓ) because $\dim_{\mathbb{Q}} \operatorname{End}_K(E_i) = 1$ and $(\rho_{E_1,E_2,K,\ell}, \rho_{E_1,E_2,K,\ell})_{G_K} = 2 \neq 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Here $V_{\ell}(E_1, E_2)$ is reducible, so Property (i) fails.)

3. Analysis of Condition (1) - 3

• Counterexamples to $H_{A,B,K}$:

2) Let E_i/\mathbb{Q} be two modular (non-CM) elliptic curves with associated newforms $f_i \in S_2(\Gamma_0(N_i))$, and assume that E_1 and E_2 are not $\overline{\mathbb{Q}}$ -isogenous.

Moreover, let χ be a Dirichlet character of order m > 2, and let g_i be the newform associated to the twist $(f_i)_{\chi}$ of f_i by χ . If $A_i = A_{g_i}/\mathbb{Q}$ is the Shimura quotient associated to g_i , then $H_{A_1,A_2,\mathbb{Q}}$ does not hold.

Indeed, $A_i \otimes \overline{\mathbb{Q}} \sim E_i^{\phi(m)} \otimes \overline{\mathbb{Q}}$, so $\operatorname{Hom}_{\overline{\mathbb{Q}}}(A_1, A_2) = 0$, but (1) does not hold. (Here Property (i) holds, but (ii) fails because A_1 and A_2 have "simultaneous inner twists").

4. Abelian Varieties of Generalized GL₂-type

Definition: A Q_ℓ[G_K]-module V has restricted GL₂-type if V = ⊕V_i is a direct sum of two-dimensional Q_ℓ[G_K]-modules V_i such that each V_i is of one of the following two types:
(I) V_i is irreducible and

$$\det V_i = \chi_\ell,$$

where χ_{ℓ} is the cyclotomic ℓ -adic character on G_K . (II) $V_i \simeq \overline{V}_{\ell}(E_i)$, for some CM elliptic curve E_i/K .

Definition: An abelian variety A/K has generalized GL₂-type if there is a finite extension L/K such that

 (i) End⁰_L(A) = End⁰_Q(A);
 (ii) V(A) has matrixed Classical Comparison Compared by M

(ii) $\overline{V}_{\ell}(A)$ has restricted GL₂-type as a G_L -module, $\forall \ell$.

4. Abelian Varieties of Generalized GL₂-type - 2

- Remark: The class (genGL₂)_K of abelian varieties A/K of generalized GL₂-type is closed under products. Moreover, if A ∈ (genGL₂)_K and if B ⊂ A, then B, A/B ∈ (genGL₂)_K.
- Lemma 2: If A ∈ (genGL₂)_K, then there is a decomposition A ~ A^{nCM} × A^{CM} such that for any L/K with (i) we have that (a) A^{CM} ⊗ L ~ product of CM elliptic curves E_i/L, and V_ℓ(A^{CM}) is a direct sum of 1-dimensional G_L-modules;
 (b) Each G_L-irreducible component V of V_ℓ(A^{nCM}) has dimension 2 and is strongly irreducible, i.e. V_{|U} is irreducible, ∀ open U ≤ G_L. Moreover, V_ℓ(A^{nCM}) has no internal twists, i.e., if V_i are two irreducible submodules of V_ℓ(A^{nCM}), then

 $V_1 \simeq V_2 \otimes \chi$, for some $\chi \in \operatorname{Hom}(\mathcal{G}_L, \overline{\mathbb{Q}}_\ell^{\times}) \quad \Rightarrow \quad \chi = 1.$

5. Representation Theory: non-CM Case

- Let: k = Q
 ℓ and G = GK. Here we study k[G]-modules V satisfying the following property:
 - (3) V is strongly irreducible of dimension 2.

(Recall: this means that $V_{|U}$ is irreducible, \forall open $U \leq G$.)

Theorem 5 (Irreducibility Criterion): If V, W satisfy (3), then
 V ⊗ W is irreducible ⇔

(4) $V \not\simeq W \otimes \chi$, for all $\chi \in \text{Hom}(G, k^{\times})$.

• Remark: By using Schur's Lemma, this follows easily from a result of D. Ramakrishnan (2000) on adjoint representations.

5. Representation Theory: non-CM Case - 2

• Theorem 6 (Cancellation Criterion): If V_i , W_i satisfy (3) for i = 1, 2, and if

(5) $V_i \otimes W_j$ is irreducible, for all $i, j \in 1, 2$,

then $V_1 \otimes W_1 \simeq V_2 \otimes W_2 \Leftrightarrow \exists \chi \in Hom(G, k^{\times})$ such that

(6) $V_1 \simeq V_2 \otimes \chi$ and $W_1 \simeq W_2 \otimes \chi^{-1}$.

Remarks: 1) In view of Lemmas 1 and 2, Theorems 5 and 6 imply Theorem 3 in the non-CM case (i.e., when A ~ A^{nCM}.)
2) The proof of Theorem 6 uses the following identity (which was also used in Ramakrishnan's proof):

 $\wedge^2(V\otimes W) \simeq (S^2V\otimes \wedge^2 W) \oplus (\wedge^2 V\otimes S^2 W).$

(As usual, S^2V denotes the symmetric square of V.)

6. Representation Theory: CM Case

• Recall: If E/K is a CM elliptic curve with $F := \operatorname{End}_{K}^{0}(E) \neq \mathbb{Q}$, then $F \subset K$ and F is an imaginary quadratic field. Moreover,

 $\overline{V}_{\ell}(E) \simeq \psi_1 \oplus \psi_2$, with $\psi_i \in \operatorname{Hom}(G_{\mathcal{K}}, \overline{\mathbb{Q}}_{\ell}^{\times})$.

In addition, $\psi_1\psi_2 = \chi_\ell$.

• Lemma 3: Let E_i/K be an elliptic curve with CM by $F_i \subset K$, and let $\overline{V}_{\ell}(E_i) = \psi_{i1} \oplus \psi_{i2}$, where i = 1, 2. Assume that $F_1 \neq F_2$. If p is a prime which splits completely in K, then

 $\mathbb{Q}(\psi_{1i}\psi_{2j}(\sigma_{\mathfrak{P}})) \simeq F_1F_2, \quad \forall i, j = 1, 2,$

where $\sigma_{\mathfrak{P}} \in G_{\mathcal{K}}$ is a Frobenius element at $\mathfrak{P} \mid p$.

6. Representation Theory: CM Case - 2

• Remarks: 1) Using Lemma 3, it follows easily that Property (ii) holds if $A = A^{CM}$ and $B = B^{CM}$. Since Property (i) is trivial, we thus see that Theorem 3 holds in this case. Combining this with the results of §5, this proves Theorem 3 because it is easy to verify Properties (i) and (ii) for the "mixed terms" $V_i \otimes \psi_j$.

2) By using a more general version of the Irreducibility Criterion (Theorem 5) and the results of Ribet (1980), one can also show:

Theorem 7: If A/Q and B/Q are modular abelian varieties with Hom_☉(A, B) = 0, then Property (i) holds, i.e.,

 $V \otimes W$ is $G_{\mathbb{Q}}$ -irred., if $V \subset \overline{V}_{\ell}(A), W \subset \overline{V}_{\ell}(B)$ are $G_{\mathbb{Q}}$ -irred.