Hurwitz Spaces of Covers
of an Elliptic Curve

1. Introduction

Riemann’s Existence Theorem (RET) (1857):
Every compact Riemann surface X has a non-constant
meromorphic function, i.e. X admits a non-constant
holo. map to the Riemann sphere Coo = C U {00}
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Consequence: Every compact Riemann surface is a
complex algebraic curve X defined by an equation

F(z,y) = 0, where F' € C|z,y],

and the (holomorphic) map f : X — Cy corre-
sponds to a morphism f @ Xg — IP%: of complex
curves of the same degree (and conversely):

X Xc
fl = lf
Coo P,

Properties of f:

1) deg(f) := maxyec., (#(f (1)) < oo
2) The set

Ry = {y € Coo s #(f (1)) < deg(/)}

of ramification points of f is finite:

w = #Rp < o0.
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Problem Fix integers N and w,
and put ¥ = C.
1) Investigate the totality H(Y, N, w) of all covers
f: X — Y with deg(f) = N and #R; = w.
2) Calculate the number #H (Y, N, R) of such cov-
ers with fixed ramification locus Ry = R.

Remarks: 1) A cover is a non-constant holomorphic
map [ : X — Y. Throughout, we always consider

equivalence classes of covers: X1 i X9
f1 N\ 12
f /2 Yy
(X1 =Y)~(Xo=Y)

e 3Jp: X — X9 with frod = fi.

2) As observed, it is useful to the
above problems by fixing the ramification type of
the cover. For example, we might want to classify
(or count) all

A cover f: X — Y is called simple if
#(f " (y) = deg(f) — 1, forally €Y.
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Theorem A (Hurwitz, 1891): If Y = Cq,, then
(a) H(Y, N,w) is a “Riemannian space”.
(b) Hs"™Ple(y, N, w) is a connected manifold of di-
mension w (provided that w > 2N — 2 and 2|w).

(¢) The discriminant map

5 HSMPle(y, N w) — YW\ A,
is finite and unramified. Thus, #H5™Ple(Y, N, R)
depends only on w = #R.

Observation (Hurwitz): RET = the calculation
of #H (Y, N, R) is a purely group-theoretic problem,
albeit one that is “highly complicated” (Hurwitz):

H(Y,N,R) = Hom'(m(Y \ R), Sn)/Sx.

Hurwitz (1891/1901) found a “satisfactory solution”
for calculating npy ,, = #Hszmple((Coo, N, R):
now = 1
ngw = (3971 = 3),
Ny = %(2“}_2 —4)(3W=t = 3), ete.
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Question 1:Is there an intrinsic description of the
and /or of the Hurwitz
spaces H(Y, N, w)?

Recall: 1) The points of H(Y, N,w) correspond to
covers f : X — Y of degree N with w ramifica-
tion points.

2) The topology of HS™PLe(Y, N w) is induced by
the disciminant map
5 HSMPlE(Y, N ow) — YW\ A,

Thus: a of a cover f € H(Y, N,w)
consists (roughly) of those covers whose ramification
loci are that of f.

Question 2: Generalizations of Hurwitz spaces?

a) H(Y,N,w) for other Riemann sur-
faces/complex curves Y';

b) rationality conditions: over which ground
fields K' C C are the covers defined?



2. Intrinsic Description of Hurwitz Spaces

Key Observation (Grothendieck, 1960): A topolog-
ical (complex) space H is uniquely characterized by
the set of maps Hom(T', H), as T" runs over all topo-
logical (complex) spaces.

In other words: As a topological space, H is deter-
mined by the functor

Fy :Top — Sets
which is given by Fgp(T') = Homy,,(T', H). (Simi-

larly for complex spaces.)

Problem: For each complex spaceT", describe the holo-
morphic maps

T — H = H¥"Ple(y, N, w).

Fulton (1969): Consider families of covers, i.e. covers
of curve families/T"

f X =Yp=PL=P xT

Thus: For each t € T', the fibre f; : Xy — (IP’lT)t =

P! of f at t is a cover (of curves) in the previous
sense, i.e. fr € H(...).
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Expect: 1) For each family of covers f: X — Yp =
IP’lT, the assignment ¢ +— f; defines (naturally) a
holomorphic map [f]: T — H.

2) Each holomorphic map ¢ : 1" — H arises uniquely
in this way, i.e. g = [ f], for a unique family of covers
f X — Y7 (up to isomorphism).

Reformulation: Let

simple
H>" (Y /T, N, w)
= (set of families of simple covers over T

with fy € HSmPle(Y, N, w),Yt)/ ~.
[t 15 easy to see that the assignment
T — H¥™Ple(Y, /T N, w)
defines a functor

HNw: C — spaces — Sets,

and that
Expectation < Hy, ~ Fg

d
g H represents the functor Hp 4.
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Theorem B (Fulton, 1969): If N > 3, then the
Hurwitz space HSMPE(Y, N w) (as defined by Hur-

witz) represents the above functor Hpy .

This theorem generalizes to the algebraic setting by
replacing complex spaces by schemes:

Theorem C (Fulton, 1969):If N > 3, then the
functor

HNw: Sch — Sets

is representable by a scheme Hpy o, /7, of finite type.
In particular, for any field K we have

Hy oK) = HSPEP KN, w).

In addition, the restriction of the discriminant map
to HN,w X Z[l/N'] C HN,wa
1
50 Hyw ® Z[L/NY — (Pgry )\ Ay,
is finite and etale.

Remark: Little seems to be known about the gcomet-
ric structure of Hpy 4.

Aim: Study analogues of these results in the case that
Y = F is an elliptic curve (and w = 2).
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Remark: In recent years, there have are an abundance
of results and applications of Hurwitz spaces:

1) Inverse Galois theory: Fried, Volklein, . ..

- Fried, Volklein, Harbater, Debes, Wevers,. . . : stud-
ied moduli spaces of other types of covers / Pl

2) Moduli problems of curves: Fulton, Mumford and
Harris, ...

- used H 4, to study the geometry of Mg, the mod-
uli space of curves of genus g.

3) String theory: Gromov/Witten, Dijkgraaf,. ..

also: Cordes/Moore/Ramgoolan, Kontsevich, . ..
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3. The Case Y = F and w =2

Reference: [EM Preprint No. 9 (2001), [EM Essen.
(See also www.mast.queensu.ca/"kani)
— to appear in: Collectanea Mathematica

Let E/K bean clliptic curve over a field K (char # 2).
Fix N > 2 prime to char(K).

Note: If (X J, E) € HS"Ple(E /K, N,2), then by

the Riemann-Hurwitz relation

20x —2=NQ2gp —2)+tw=w=2= gy = 2.

More generally: Study the set H2)/(E/K, N) of all
genus 2 covers of degee N of £/ K:

f: X —F, deg(f)=Nandgyx =2.

Similarly, study the set H 2 (Ep/T, N) of families
of such covers:

f: X —Ep=FEXxT, ftEH (Et/K() N).

As before, the assignment 7' — H2)(Ep/T, N) de-
fines a functor

(2)
HE/KN Sch — Sets.
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Theorem 1. If N isodd, then Hg} K.N is representable
2)

by a smooth, qudbl—g ojective surface H E/K,N OV
K which has (over K)

> old) —a(N)

d|N
irreducible components. Thus A (2) is irreducible

E/K.N
if and only if NV is prime.

Remarks: 1) The above result does not extend to the
case that NV is even. However, a slightly weaker
result is true in that case: the functor H is coarsely
representable by such a variety:.

2) The reason that H breaks up into components is
the following:

foom foo Uy
Fach X — FE factors as X — E' — FE, where
ufs: B’ — F is the max. unramified subcover of f.

@) . .
Thus: H /K, N 18 & union of components which are

indexed by subgroups G < E with #G|N (and
#G # N); explictly, G = Ker(u ).
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Definition: A cover f : X — FE is called minimal if
deg(uys) = 1.
Theorem 2. For every N > 3 (prime to char(K)),

the functor Hg}f}?) N which classifies minimal genus
2 covers 18 representable by a smooth, irreducible
quasi-projective surface H 53 / K>N over K.

More precisely, we have
min
HJ(E/K>N O K ~ Ex Hgpn

where Hp ¢ v € X (V) is an open subvariety (curve)

of the modular curve X (N) of (full) level V.
Remarks: 1) If K = C, then X(N) = ['(N)\H",

which is a Galois cover of X (1) ~ P! of degree

SU(N) = [SLo(Z/NZ) {41}

2) The reason that E appears as a factor of H E/K.N

is due to the fact that the group E(K) acts on E and

hence on H\> E/K.N etc. via translation: f+— Tpo f.

Thus: introduce and study normalized covers.
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Definition: A cover f : X — E with gy = 2is called
normalized if it 1s minimal and if

FW) € B[2] and £(f~1(05) N W) = {

where W = Fix(ox) denotes the set of 6 Weier-
strass points of X. (Here: ox is the hyperelliptic
involution of X.)

Notes: 1)If f : X — Eisminimal, then 3'y € F(K)
such that Ty o f : X — E 1s normalized.
2) It f is normalized, then fooyxy = [—1]go f.
Thus Disc(f) is symmetric with respect to |[—1]g
i.e. [—1]Disc(f) = Disc(f).
Example: Let
E: y'=(x—a)lz—0b)z—c), abc#0
X: = —a)t®=b)t*—o).
Then the cover f : X — FE, given by f*zr =
t2, f*y = s, is normalized and of degree 2.

3 N odd

0 else

)

Theorem 3. For every N > 3 (as above), the functor
Hpg /i, v which classifies normalized genus 2 covers
is representable by a smooth, irreducible affine curve

HE/K,N/K SU_Ch th&t HE/K,N(X)FC X(N)
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Theorem 4: Let
Dg/gn =X(N) g\ (Hp/gn © K)

denote the degeneracy locus. Then

#Dp i v < (5N +6)sI(N),
and equality holds if and only if char(K) 1 N!.

— reinterpretation of results of Crelle J. 485 (1997)
4+ J. No. Th. 64 (1997).

Theorem 5: The assignment (X EN FE) — Disc(f) is
represented by a quasi-finite morphism

6 =bp/kn Heygn — Pl = (BP)V™.

Furthermore, if char(K') ¢ NI, then ¢ is finite and
unramified outside of 7p(F[2]) C PL.

Theorem 6: If char(K) 1 N!, then
. _
deg(dp/k n) = g(N — 1)sl(N).
Remarks: 1) This degree can be viewed as a measure
of non-rigidity of coverings (— Volklein).

2) H. Volklein proved Theorem 6 for N = 3,5, 7 by
using croup theory (and a computer).



15

4. Some applications

(a) Rationality Questions (K a number field)

Since IX(N) = 2 tor N > 7, we have by Faltings’
theorem (= Mordell’'s Conjecture):

Corollary 1: #HE/K,N(K) < oo, ifN>T.
Question: Is Hp i y(K) =0, for N >> 07

This is false (even for N prime), for there exist
curves X/K with oo'ly many fy : X — FE for
which N = deg(fy) is prime.

Conjecture (*) For each E'/K there exist only fi-
nitely many genus 2 curves X /K which have a (min-
imal) morphism f : X — FE of degree N > 7.

Remark: ABC conj. = Asym. Fermat = Conj. (*).

Moreover, the converse: Conj. (*) = Asyin. Fermat
is “almost true”: it implies a slightly weaker version
of Frev's Conjecture 5 (which by Frey and Wiles
is equivalent to the Asymptotic Fermat Conjecture

(for K =Q).)
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(b) Moduli

Question: For which curves Y/ K does there exist a
(minimal) morphism f : Y — E of degree N7

Corollary 2: For every N there exists a morphism
IN = H g . M
to the moduli space of curves of genus 2. Moreover:

a) Im(p ) = Humbert surface with Inv. A = N2,
b) deg(uy) = 2sl(N); more precisely,

Im(juy) ~ Z™, = (X(N) x X(N)/(Ax_1,7).
where 7(x,y) = (y,x) and
Ay —1=A{(g,2-1(9)) : 9 € SLo(Z/NZ) /{£1}},

where a_1(g) = Q_19Q "1 with Q_1 = (_01 ?)

In particular, the normalization (and compactifica-

tion) of the Humbert surface Im (g ) is the symmet-

ric Diagonal (Quotient Surface Z}S\?Tl.



(c) Counting Covers: (K = K)

Corollary 3:If N > 2 and char(K) 1 N, then for
every R C E with #R = 2 we have

e =Y m = 5(Na3(N) — N*oy(N),
feH*(E/K,N,R)
where o1 (N) = > a1 d¥. Thus, if char(K) = 0,

then Fy(q) == 3 eng” is a quasi-modular form of
weight 6; explicitly we have

1) F:

1) B =z
where Ej, = 14 bp ) > 0—1(1)q" with by =
—24, b4 = 240 and bg = —504.

Remarks: 1) The identity (1) was first proven by R.
Dijkgraaf (1995) by using the methods of mirror
symmetry (— B. Mazur).

2) Theorem 6 = Corollary 3 by using the identities

S o1(n)sl(N/n) = a3(N),

n|N

Znal(n)sl(N/n) — N?%0((N).

n|N

——(10E3 — 6B By — AEy),
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(d) Curves with minimal degeneration:

Let H = Hp /i v C X = X(N)be the moduli space,
f Yy — Eg = FE X H the universal cover,
p: Y n — X the minimal model of Yy over X,

h7N X = deg X(p*wng / ) 1ts modular height.

Corollary 4: The curve Y /X (N) is semi-stable and
has bad reduction at X \ H. Furthermore, its Ja-
cobian J = Jy has bad reduction at X (N)so =
X(N)\ X'(N), and its modular height is

hy i x = hax = 520 () — 2+ #X(N) o).

In particular, for N' = 3 one thus obtains a semi-
stable family p : Y3 — P! whose Jacobian has pre-
cisely 4 places of bad reduction.

Remarks: 1) By a theorem of Faltings it follows (in
char = 0) that for any such curve we have the in-
equality

hyx = hyjx < 529X (n) = 2+ #X(N)oo).

2) In a recent preprint E. Viehweg and K. Zuo study
the structure of families of abelian varieties with
such “minimal degeneration”.
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5. The Basic Construction

Reference: Frey /K., Curves of genus 2 covering ellip-

tic curves ... (Texel Conference, 1989)
Given:
X X
fl~ o N\, ~4:E[N]S EHN].
E E E+

(via the duality theory of Jx.)

Conversely: given anti-isometry ¢ : E[N] — E'[N],
one can recover a (normalized) genus 2 cover

fo Xy — E.

However: the curve X, may be reducible!
= Hp/g N C XE/K N1

Note: 1) The moduli space X JK.N,—1 classifies pairs
(E', ), where ) : E[N] — E'[N]isan anti-isometry.
2) This construction also works for families! (Cf.

[EM Preprint, op. cit.): = Theorem 3 = Theorem
2 = Theorem 1.



6. Proof of Theorem 6 (Overview)

Remark: The proof of Theorem 0 uses the methods
of Arithmetic Algebraic Geometry:.

More precisely, it uses:

— a study of degenerations of the universal cover
Juniv: Xg — £ X H;

In other words:

1) study the degeneration of the minimal model M (X )
of X7; this uses the modular height of relative curves.

2) study whether or not f,,;, extends to a cover
f:M(Xyg)— Ex X(N).

— intersection theory on M (Xg).



7. Study of Degenerations

Let H=H RN denote the moduli space,

fH Yg — Eg = E X3 H the universal cover,
X = X(N) D H the natural compactification,
Y /X the minimal model of the generic fibre of Y.

Facts. 1) The fibres of Y /X are semi-stable.
2) fp extends to a morphism f = fy Y — Ey
which is finite if and only if char(K) { N!.

Theorem 7: Suppose char(K) 1 NI. Then:
(a) The fibres Y, of Y /X are stable curves with at

most one singularity.
(b) Y ; is singular if and only if z € DE/F,N —

Xoo U Xj, where X4 is the set of cusps of X.
(Note that # X~ = sl(N)/N.)

(¢) If # € Xoo, then Y, is an irreducible curve
whose normalization is a curve of genus 1.

(d) If z € X, then Y, = Ey 1 U E, 9 is the union
of two curves of genus 1 which meet transversely in
a unique point F.
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8. Calculation of Intersection Numbers

Let F' = k(X)) denote the function field of X = X (N),
fr: Yp — Ep the generic cover over F,

D = Diff(fr) the different divisor of fg,
We,. € Div(YFp) the hyperelliptic divisor of Y,

D and W their respective closures in Y,

Y /X the relative dualizing sheaf of py : Y - X.

Theorem 8: The modular height of Y /X is

h?/X = deg(@?)*(w%/)(» — ESZ(N)a

and the self-intersection number of wi

Y/X
(WO?/X>2 — S#Xl T S#XOO —

1
N — N).
(TN = 6)3I(N)
Remark: The proof uses Theorem 4, the Noether for-
miula and Mumford’s formula (which holds if g = 2):

h:w2+50—1—51 and 5w2:5o+751,

where h = h?/X’w = wO?/X), and 0 (respect. d1)
is the number of singular points of all fibres which

do not (respect. do) disconnect the fibre.
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Theorem 9: (a) D is an irreducible curve on Y which

O Y
represents the Wy /X D.

(b) Ifql—prlof‘ D—>Eandq2—pfr20f|
D — X, then mp o qq —5ENOQ27 where § : X —
Pl is the unique extension of § : H — P!, Thus

deg(9) = deg(q1) = (woy/X-f*(P x X)).

(c) We have 6D ~ 2W + f*(E x A), for some
A € Div(X), and hence

N N 0 9 9
deg(q1) = gdeg(m 36<9(W7/X> - W),
(d) The self-intersection number of W is
§ 9 3 —
2 2
W2 = 24X, — 22 = — 2 (N — 2)5I(N).
=# X1 — sw” = = )sl(N)

Remark: To compute W2, consider the pullback W*
of W to (the desingularization of) Y x y X(2N),
and observe that W* =Wy + ...+ Wy + B, where
the W;'s are 6 and B is a

supported on the fibres over X (2N )



