The Number of Covers of an Elliptic Curve

Ernst Kani

Department of Mathematics and Statistics Queen's University Kingston, Ontario Http://www.mast.queensu.ca/~kani

The Number of Covers of an Elliptic Curve

1. Introduction

Problem (Hurwitz, 1891): Let X be a compact Riemann surface, $W \subset X$ a finite subset and $n \geq 1$. Calculate #H(X, W, n), where

$$\begin{split} H(X,W,n) := & \{ Y \xrightarrow{f} X : \deg(f) = n, f \text{ is simply} \\ & \text{branched over } W \} / \simeq. \end{split}$$

Observation: It is easier to calculate the weighted number of such covers:

$$N_X(w,n) := \frac{1}{n!} \varphi_X(w|n) := \sum_{f \in H(X,W,n)} \frac{1}{|\operatorname{Aut}(f)|}.$$

This depends only on w = #W.

Notation (Hurwitz, 1901). Put

$$\Phi_X(q,\lambda) = \sum_{n \ge 1} \sum_{w \ge 0} N_X(w,n) q^n \frac{\lambda^w}{w!}$$
$$F_X(q,\lambda) = e^{\Phi_X(q,\lambda)} - 1$$
$$= \sum_{n \ge 1} \sum_{w \ge 0} f_X(w|n) \frac{q^n \lambda^w}{n! w!}$$

Thus:
$$\Phi_X(q, \lambda) = \log(1 + F_X(q, \lambda))$$
, and hence the $N_X(w, n)$'s can be computed from the $f_X(w|n)$'s.
Theorem A (Hurwitz, 1891/1901): If $X = \mathbb{P}^1_{\mathbb{C}}$, then
(a) $f_X(w|n) = \#\{(\tau_1, \dots, \tau_w) \in T(S_n)^w :$
 $\tau_1 \cdots \tau_w = 1\}$
where $T(S_n)$ denotes the set of transpositions of S_n .
(b) $f_X(w|n) = \sum_{\chi \in \operatorname{Irr}(S_n)} A_{\chi} B_{\chi}^w$, where
 $A_{\chi} = \frac{1}{n!} \operatorname{deg}(\chi)^2$, $B_{\chi} = \frac{\binom{n}{2}\chi(\tau)}{\operatorname{deg}(\chi)}, \tau \in T(S_n)$
(c) Let $\chi = \chi_{\varkappa}$, where $\varkappa = (\varkappa_1, \dots, \varkappa_n)$ satisfies
 $\varkappa_1 + \ldots + \varkappa_n = \binom{n}{2}$, $0 \le \varkappa_1 < \ldots < \varkappa_n$.

Then we have

$$A_{\chi} = \frac{1}{n!} \left(\frac{\Delta(\varkappa_1, \dots, \varkappa_n)}{\varkappa_1! \dots \varkappa_n!} \right)^2,$$

$$B_{\chi} = \frac{1}{2} \sum_{i=1}^n \varkappa_i(\varkappa_1 - 1) - \frac{1}{6}n(n-1)(n+4).$$

Note: The formulae of part (c) are essentially due to Frobenius (1900).

Theorem B (Dijkgraaf 1995): If X = E is an elliptic curve, then

(a)
$$f_E(w|n) = \#\{(\tau_1, \dots, \tau_w, g_1, g_2) \in S_n^{w+2} : \tau_i \in T(S_n), \tau_1 \cdots \tau_w g_1 = g_2^{-1} g_1 g_2\}.$$

(b) $f_E(w|n) = n! \sum_{\chi \in Irr(S_n)} B_{\chi}^w$.

(c) Let $\tilde{\Theta}(q, \lambda, \zeta)$ be defined by the formal product

$$\prod_{\substack{n \ge 1 \\ n \text{ odd}}} (1 - e^{n^2 \lambda/8} q^{n/2} \zeta) (1 - e^{-n^2 \lambda/8} q^{n/2} \zeta^{-1})$$

and let $\tilde{\Theta}_0(q,\lambda) \in \mathbb{Q}[[q,\lambda]]$ be the the coefficient of ζ^0 in $\tilde{\Theta}(q,\lambda,\zeta) \in \mathbb{Q}[\zeta,\zeta^{-1}][[q,\lambda]]$. Then

$$F_E(q,\lambda) = \tilde{\Theta}_0(q,\lambda) - 1,$$

and hence

$$\Phi_E(q,\lambda) = \log(\tilde{\Theta}_0(q,\lambda)).$$

Remark: Dijkgraaf attributes part (c) to a M.R. Douglas (preprint). Its proof uses the above-mentioned formula of Frobenius (1900). **Theorem C** (Kaneko/Zagier, 1995): Write

$$\tilde{\Theta}_0(q,\lambda) \prod_{n\geq 1} (1-q^n) = \sum_{w=0}^{\infty} A_w(q)\lambda^w.$$

Then each A_w is a quasi-modular form of weight 6w, i.e. there exist $c_{i,j,k}^w \in \mathbb{Q}$ such that

$$A_{w} = \sum_{\substack{i,j,k \ge 0\\2i+4j+6k=6w}} c_{i,j,k}^{w} E_{2}^{i} E_{4}^{j} E_{6}^{k},$$

where for $k \geq 2$, k even, E_k is the Eisenstein series

$$E_k(q) = 1 - \frac{2k}{B_k} \sum_{n \ge 1} \sigma_{k-1}(n) q^n.$$

Corollary: For each $w \geq 2$, the function

$$\Phi_{E,w}(q) = \sum_{n \ge 1} N_E(w,n)q^n$$

is quasi-modular of weight 3w.

Example:

$$\Phi_{E,2}(q) = \frac{1}{51840} (10E_2^3 - 6E_2E_4 - 4E_6).$$

2. Proof Sketch of Theorem B

(a) Let
$$T_{w,n} := \{(\tau_1, \dots, \tau_w, g_1, g_2) \in T(S_n)^w \times S_n^2 : \tau_1 \cdots \tau_w g_1 = g_2^{-1} g_1 g_2 \}.$$

The structure of the fundamental group $\pi_1(E \setminus W)$ shows that

$$\varphi_E(w|n) = \#\{t \in T_{w,n} : t \text{ generates a transitive} \\ \text{subgroup of } S_n\}.$$

By a combinatorial argument one then derives the desired identity

$$f_E(w|n) = \#T_{w,n}.$$

(b) (Mike Roth) For each $g \in S_n$, let us put

 $P_g(w,n) = \{ (\tau) \in T(S_n)^w : \tau_1 \cdots \tau_w g \in \mathfrak{c}(g) \}.$

where $\mathbf{c}(g)$ denotes the conjugacy class containing g. Then, if $\mathbf{c}_1 = \{1\}, \mathbf{c}_2 = T(S_n), \mathbf{c}_3, \dots, \mathbf{c}_h$ denote all the conjugacy classes of S_n , we have

$$\frac{f(w|n)}{n!} = \sum_{g \in S_n} \frac{|P_g(w,n)|}{|\mathfrak{c}(g)|} = \sum_{i=1}^n \pi_i(w,n),$$

where $\pi_i(w, n) = |P_g(w, n)|$ with $\mathfrak{c}(g) = \mathfrak{c}_i$.

Let $Z = Z(\mathbb{C}[S_n])$ denote the centre of the group algebra of S_n . Z has two natural bases:

 $z := (z_1, \ldots, z_h)$ and $\varepsilon := (\varepsilon_{\chi_1}, \ldots, \varepsilon_{\chi_h}),$

in which

$$z_i = z_{\mathbf{c}_i} = \sum_{g \in \mathbf{c}_i} g$$
, and $\varepsilon_{\chi_i} = \frac{\deg \chi_i}{n!} \sum_{g \in S_n} \chi_i(g) g^{-1}$.

Consider the linear map $\mu_2 : Z \to Z$ defined by $z \mapsto z \cdot z_2$, and let its matrix wrt. the *z*-basis be

$$M_n = [\mu_2]_z.$$

Then the *i*-th diagonal element of M_n^w is

$$(M_n^w)_{i,i} = \pi_i(w, n)$$
, and so $f_E(w|n) = n! tr(M_n^w)$.

On the other hand, by the orthogonality relations the matrix of μ_2 wrt. the ε -basis is

$$[\mu_2]_{\varepsilon} = \operatorname{diag}(B_{\chi_1}, \ldots, B_{\chi_h}),$$

and hence we obtain the desired formula

$$f_E(w|n) = n! \operatorname{tr}(M_n^w) = n! \sum_{i=1}^h B_{\chi_i}^w.$$

3. Hurwitz Moduli Spaces (X = E and w = 2)

Reference: E.K., Collectanea Mathematica 54 (2003).

- Let E/K be an elliptic curve over a field K (char $\neq 2$). Fix $N \geq 2$ prime to char(K).
- **Study:** the set $H^{(2)}(E/K, N)$ of all genus 2 covers of degee N of E/K:

 $f: Y \to E$, $\deg(f) = N$ and $g_Y = 2$.

More generally, the study of families of such covers yields a functor

$$\mathcal{H}^{(2)}_{E/K,N}: \underline{Sch} \to \underline{Sets}.$$

Theorem 1. If N is odd, then $\mathcal{H}_{E/K,N}^{(2)}$ is representable by a smooth, quasi-projective surface $H_{E/K,N}^{(2)}$ over K which has (over \overline{K})

$$\sum_{d \mid N} \sigma(d) - \sigma(N)$$

irreducible components. Thus $H_{E/K,N}^{(2)}$ is irreducible if and only if N is prime.

- **Remarks:** 1) The above result does not extend to the case that N is even. In that case the functor \mathcal{H} is only coarsely representable by such a variety.
 - 2) H breaks up into components because:

Each $Y \xrightarrow{f} E$ factors as $Y \xrightarrow{f'} E' \xrightarrow{u_f} E$, where $u_f : E' \to E$ is the max. unramified subcover of f. Thus: $H_{E/K,N}^{(2)}$ is a union of components which are indexed by subgroups $G \leq E$ with #G|N (and $\#G \neq N$); explicitly, $G = \operatorname{Ker}(\hat{u}_f)$.

- **Definition:** A cover $f : Y \to E$ is called minimal if $\deg(u_f) = 1$.
- **Theorem 2.** For every $N \geq 3$ (prime to char(K)), the functor $\mathcal{H}_{E/K,N}^{(min)}$ which classifies minimal genus 2 covers is representable by a smooth, irreducible quasi-projective surface $H_{E/K,N}^{(min)}$ over K.

More precisely, we have

$$H_{E/K,N}^{(min)} \otimes_K \overline{K} \simeq E \times H_{E/K,N}$$

where $H_{E/K,N} \subset X(N)$ is an open subvariety (curve) of the modular curve X(N) of (full) level N.

Remarks: 1) If $K = \mathbb{C}$, then $X(N) = \Gamma(N) \setminus \mathfrak{H}^*$, which is a Galois cover of $X(1) \simeq \mathbb{P}^1$ of degree $\overline{sl}(N) := |\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}|.$

2) The reason that E appears as a factor of $\mathcal{H}_{E/K,N}^{(min)}$ is due to the fact that the group E(K) acts on E and hence on $H_{E/K,N}^{(2)}$ etc. via translation: $f \mapsto T_x \circ f$. **Thus:** introduce and study normalized covers.

Definition: A cover $f: Y \to E$ with $g_Y = 2$ is called normalized if it is minimal and if

 $f(W_Y) \subset E[2]$ and $\#(f^{-1}(0_E) \cap W_Y) = \begin{cases} 3 & N \text{ odd} \\ 0 & \text{else} \end{cases}$

where $W_Y = \operatorname{Fix}(\sigma_Y)$ denotes the set of 6 Weierstrass points of Y. (Here: σ_Y is the hyperelliptic involution of Y.)

Theorem 3. For every $N \geq 3$ (as above), the functor $\mathcal{H}_{E/K,N}$ which classifies normalized genus 2 covers is representable by a smooth, irreducible affine curve $H_{E/K,N}/K$ such that $H_{E/K,N} \otimes \overline{K} \subset X(N)$.

Theorem 4: Let

$$D_{E/K,N} = X(N)_{/\overline{K}} \setminus (H_{E/K,N} \otimes \overline{K})$$

denote the degeneracy locus. Then

$$\#D_{E/K,N} \leq \frac{1}{12N}(5N+6)\overline{sl}(N),$$

and equality holds if and only if $char(K) \nmid N!$.

- reinterpretation of results of Crelle J. 485 (1997) + J. No. Th. 64 (1997).

Theorem 5: The assignment $(Y \xrightarrow{f} E) \mapsto \text{Disc}(f)$ is represented by a quasi-finite morphism

 $\delta = \delta_{E/K,N} : H_{E/K,N} \to \mathbb{P}^1_K \simeq (E^{(2)})^{sym}.$ Furthermore, if $\operatorname{char}(K) \nmid N!$, then δ is finite and unramified outside of $\pi_E(E[2]) \subset \mathbb{P}^1.$

Theorem 6: If $char(K) \nmid N!$, then

 $\deg(\delta_{E/K,N}) = \frac{1}{6}(N-1)\overline{sl}(N).$

4. Application to Counting Covers **Corollary 7:** If $W \subset E$ and #W = 2 then $\#H(E,W,n) = \frac{2}{3} \sum \sigma_1(d)(n-d)\overline{sl}(n/d)$ d|n $= \frac{n}{3} \left(\sigma_3(n) - n \sigma_1(n) + 3 \sigma_1\left(\frac{n}{2}\right) \right),$ where $\sigma_1(x) = 0$, if $x \notin \mathbb{Z}$. **Remark:** Theorem $6 \Rightarrow$ Corollary 7 by using $\sum \sigma_1(d) \operatorname{sl}(n/d) = \sigma_3(n),$ d|n $\sum d\sigma_1(d) \operatorname{sl}(n/d) = n^2 \sigma_1(n).$ d|n

Corollary 8: The weighted number of covers is

$$N_E(2,n) = \frac{n}{3} \left(\sigma_3(n) - n \sigma_1(n) \right)$$

and hence

$$\Phi_{E,2}(q) = \frac{1}{51840} (10E_2^3 - 6E_2E_4 - 4E_6).$$

Lemma: If $f: Y \to E \in H(E, W, n)$, then

$$|\operatorname{Aut}(f)| = \begin{cases} 2 \text{ if } 2|n, \deg(u_f) = \frac{n}{2} \\ 1 \text{ otherwise} \end{cases}$$

5. Proof of Theorem 6 (Overview)

- **Remark:** The proof of Theorem 6 uses the methods of Arithmetic Algebraic Geometry. More precisely, it uses:
- (I) a study of degenerations of the universal cover

 $f_{univ}: Y_H \to E \times H$

1) study the degeneration of the minimal model $M(Y_H)/$ of Y_H ; this uses the modular height of relative curves. 2) study whether or not f_{univ} extends to a cover

$$f: M(Y_H) \to E \times X(N).$$

- (II) the intersection theory on $M(Y_H)$:
 - 1) Calculate the modular height $h_{M(Y_H)/X(N)}$.
 - 2) Calculate the self-intersection number of the relative dualizing sheaf $\omega^0_{M(Y_H)/X(N)}$.
 - 3) Relate $\deg(\delta_{E/K,N})$ to intersection numbers involving the relative dualizing sheaf. (Relate the different divisor of f to $\omega_{M(Y_H)/X(N)}^0$.)