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The Number of Covers
of an Elliptic Curve

1. Introduction

Problem (Hurwitz, 1891): Let X be a compact Rie-
mann surtace, W C X a finite subset and n > 1.
Calculate #H (X, W, n), where

H(X, W n) ={Y Lox. deg(f) = n, f is simply
branched over W}/ ~.

Observation: It is easier to calculate the weighted
number of such covers:

1 1
N = — = :
feH(X,Wn)
This depends only on w = #W.
Notation (Hurwitz, 1901). Put

)\w
Ox(a.)) = 30 3 Nyl
n>1w>0 '
Fy(g,\) = 2x(@Y) _q
qn)\w
— S: S: fX(wWHﬁ
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Thus: ¢y (q,\) = log(1 + Fx(gq,A)), and hence the
Ny (w,n)’s can be computed from the fy(w|n)’s.
Theorem A (Hurwitz, 1891/1901): If X = P, then

(a) fx(wln) = #{(71, -, 7w) € T(5n)" ;

T Tw = 1}
where T'(.Sy,) denotes the set of transpositions of Sy,.

(b) fX(w]n) — ZxEIrr(Sn) AXBw, where

_ ~ (5)x(7)
Ay = ﬁde s(x)%, By = jegw T e T(Sy)

(¢c) Let x = X3¢, Where 2r = (521, ... , 3¢,) satisfies

n
|+ .. oy = <2>, 0 < <...< .

Then we have

Aoy, ... ) 2
i)

1! )

BX:

DO —

Z%Z (500 — 1) — (n—l)(n—l—4).

1=1

Note: The formulae of part (c¢) are essentially due to
Frobenius (1900).
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Theorem B If X = F is an elliptic
curve, then

(a) fe(wln) = #{(r1,. .. , 7w, 91,92) € ST 75 €
T(Sn), 71 Twg1 = g5 9192}

(b) fE(w‘n> = nl ZXEITI(Sn> ng

(c) Let ©(q, \, ¢) be defined by the formal product

H (1— enQA/é%qn/QO(l B €—n2)\/8qn/2<~—1>

n>1
N odd

and let Op(g, \) € Q[[q, \]] be the the coefficient of

Vin B(g, A,) € QIC,¢- 1Jfa.XJ. Then
1
and hence Fple.A)=Ole:A) — 1
O (g, A) = log(Oo(q, A)).
Remark: attributes part (c¢) to a M.R. Dou-

clas (preprint). Its proof uses the above-mentioned
formula of Frobenius



Theorem C (Kaneko/Zagier, 1995): Write

éO(Qa)\)H 1_q ZA

n>1

Then each A, is a quasi-modular form of weight 6w,
1.e. there exist c ik € Q such that

ok

Ay = E: c,t-yj?kEQEflE(;,
1,7,k>0
21+45+6k=6w

where for k > 2, k even, Iy, is the Eisenstein series

Ey(q —1——k20k 1(n

n>1
Corollary: For each w > 2, the function
Ppw(q) =D Np(w,n)q"
n>1

is quasi-modular of weight 3w.

Example:

Opo(q) = ———(10E3 — 6EyEy — 4Eg).

51840



2. Proof Sketch of Theorem B

(a) Let Ty p :={(71, .-, Tw, 91, 92) € T'(Sp)" X S% :
TL- - Twgl = gy G192}
The structure of the fundamental group m1(E \ W)
shows that

pp(win) = #{t € Tyn : t generates a transitive
subgroup of Sy, }.

By a combinatorial argument one then derives the
desired identity

fe(w|n) = #Tyn.
(b) (Mike Roth) For each g € Sy, let us put
Py(w,n) ={(1) € T(Sp)" : 71+ Twg € ¢(g)}.

where ¢(g) denotes the conjugacy class containing g.
Then, if ¢; = {1},¢0 = T(Sp),¢3... ¢ denote all
the conjugacy classes of Sy, we have

fluly) _ g~ [Bylw.m)] iwjn)?

n!

where m;(w,n) = |Py(w, n)| with ¢(g) = «;.
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Let Z = Z(C|S},]) denote the centre of the group
algebra of Sy,. Z has two natural

2= (21,...,2y) and €:=(eyy,-.. &)

in which
deg x;
Zj = Zci — Z g, and €Xi egX Z X’L
gee; geESH
Consider the Lo : 4 — Z defined by
2+ 2 - 29, and let its matrix wrt. the z- be
My = [p2] 2.

Then the i-th of M} is

(My)ii = mi(w,n), and so fp(w|n) = nltr(M,).

On the other hand, by the orthogonality relations
the matrix of po wrt. the e- is

[NQ]E — dlag<BX17 e vBXh)a

and hence we obtain the desired formula

h
fe(wln) =nltr(M,) = n! Z By .
1=1
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3. Hurwitz Moduli Spaces (X = F and w = 2)

Reference: E.K. Collectanea Mathematica 54 (2003).

Let E/K be an clliptic curve over a field K (char # 2).
Fix N > 2 prime to char(K).

Study: the set H@(E/K, N) of all genus 2 covers of
degee N of F/K:

f:Y —=FE deg(f)=N and gy = 2.

More generally, the study of families of such covers
yields a functor

(2)
HE/KN Sch — Sets.

Theorem 1. If N isodd, then H%} K.N is representable
(2)

by a smooth, quasi-projective surface H

E/K,N
K which has (over K)

> old) -

d|N

over

irreducible components. Thus H (2) is irreducible

F/K,N
if and only if NV is prime.
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Remarks: 1) The above result does not extend to the
case that NV is even. In that case the functor H is
only coarsely representable by such a variety.

2) H breaks up into components because:

f : oy U
Each Y = FE factors asY — E' — FE, where
ufr: E' — E is the max. unramified subcover of f.

Thus: H ;52) K.N is a union of components which are
indexed by subgroups G < FE with #G|N (and

#G # N); explictly, G = Ker(u ).

Definition: A cover f : Y — FE is called minimal it
deg(uys) = 1.

Theorem 2. For every N > 3 (prime to char(K)),

the functor Hg}zg? N
2 covers 1s representable by a smooth, irreducible
E/K,.N

which classifies minimal genus

quasi-projective surtace over K.

More precisely, we have

min —

where Hp/pe y C X(N) is an open subvariety (curve)
of the modular curve X (N) of (full) level V.
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Remarks: 1) If K = C, then X(N) = I'(N)\9H",
which is a Galois cover of X (1) ~ P! of degree

SI(N) = [SLa(Z/NZ) {1},

2) The reason that E appears as a factor of Hgy]@ N

is due to the fact that the group E(K) acts on E and

(2)
hence on HE/K,N

Thus: introduce and study normalized covers.

Definition: A cover [ : Y — E with gy = 2 is called
normalized if it 1s minimal and if

fwwacEmmm#q*mmmw@»—{

where Wy = Fix(oy ) denotes the set of 6 Weier-
strass points of Y. (Here: oy is the hyperelliptic
involution of Y.

etc. via translation: f— Tro f.

3 N odd
0 else

Theorem 3. For every N > 3 (as above), the functor
Hp /i,y which classifies normalized genus 2 covers
is representable by a smooth, irreducible affine curve

HE/K,N/K SU_Ch th&t HE/K,N@)F C X(N)
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Theorem 4: Let
Dg/rn =X(N) g\ (Hp i n ® K)

denote the degeneracy locus. Then

#Dp /i N < (BN +6)sl(N),
and equality holds if and only if char(K') { N!.

— reinterpretation of results of Crelle J. 485 (1997)
+ J. No. Th. 64 (1997).

Theorem 5: The assignment (Y J, FE) — Disc(f) is
represented by a quasi-finite morphism

6 =0p/kn: Hpien — Pl ~ (B,

Furthermore, if char(K') ¢ NI then ¢ is finite and
unramified outside of g (E[2]) € PL

Theorem 6: If char(K) 1 N!, then
deg(Og, ) = BN — DSI(N),



4. Application to Counting Covers
Corollary 7: If W C E and #W = 2 then

#H(E,W.n) =3» oi(d d)sl(n/d)
dn

= % (03(n) = noi(n) +301 (),

where o1(x) =0, if x ¢ Z.
Remark: Theorem 6 = Corollary 7 by using
> or(d)siin/d) = 3(n),
d|n

> doy(d)sl(n/d) = n*oy(n).

dn
Corollary 8: The weighted number of covers is

Np(2.n) = % (03(n) — noi(n)

and hence
O o(q) = s (1053 — 6By By — 4F).
Lemma:If f:Y — EF € H(E,W,n), then

Aut(f)] = {2 if 2[n, deg(us) = 5

1 otherwise
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5. Proof of Theorem 6 (Overview)

Remark: The proof of Theorem 6 uses the methods
of Arithmetic Algebraic Geometry:.

More precisely, it uses:

(I) a study of degenerations of the universal cover
funiv:Yg — E X H

1) study the degeneration of the minimal model M (Ypy),
of Y7; this uses the modular height of relative curves.

2) study whether or not f,,,;, extends to a cover
f:M(Yy)— Ex X(N).

(IT) the intersection theory on M (Y ):
1) Calculate the modular height iy, )/ x (V).

2) Calculate the sclt-intersection number of the rel-
ative dualizing sheaf w?w(YH) JX(N):

3) Relate deg(0p ¢ v) to intersection numbers in-

volving the relative dualizing sheaf. (Relate the dif-
ferent divisor of f to w M(Yi)/X( N)')



