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The Number of Covers
of an Elliptic Curve

1. Introduction

Problem (Hurwitz, 1891): Let X be a compact Rie-
mann surface, W ⊂ X a finite subset and n ≥ 1.
Calculate #H(X,W, n), where

H(X,W, n) :={Y f→ X : deg(f ) = n, f is simply
branched over W}/ '.

Observation: It is easier to calculate the weighted
number of such covers:

NX(w, n) :=
1

n!
ϕX(w|n) :=

∑
f∈H(X,W,n)

1

|Aut(f )|
.

This depends only on w = #W .

Notation (Hurwitz, 1901). Put

ΦX(q, λ) =
∑
n≥1

∑
w≥0

NX(w, n)qn
λw

w!

FX(q, λ) = eΦX(q,λ) − 1

=
∑
n≥1

∑
w≥0

fX(w|n)
qn

n!

λw

w!
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Thus: ΦX(q, λ) = log(1 + FX(q, λ)), and hence the
NX(w, n)’s can be computed from the fX(w|n)’s.

Theorem A (Hurwitz, 1891/1901): If X = P1
C

, then

(a) fX(w|n) = #{(τ1, . . . , τw) ∈ T (Sn)w :
τ1 · · · τw = 1}

where T (Sn) denotes the set of transpositions of Sn.

(b) fX(w|n) =
∑
χ∈Irr(Sn)AχB

w
χ , where

Aχ =
1

n!
deg(χ)2, Bχ =

(n
2

)
χ(τ )

deg(χ)
, τ ∈ T (Sn)

(c) Let χ = χκ, where κ = (κ1, . . . ,κn) satisfies

κ1 + . . . + κn =

(
n

2

)
, 0 ≤ κ1 < . . . < κn.

Then we have

Aχ = 1
n!

(
∆(κ1, . . .κn)

κ1! . . .κn!

)2

,

Bχ = 1
2

n∑
i=1

κi(κ1 − 1)− 1
6n(n− 1)(n + 4).

Note: The formulae of part (c) are essentially due to
Frobenius (1900).
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Theorem B (Dijkgraaf 1995): If X = E is an elliptic
curve, then

(a) fE(w|n) = #{(τ1, . . . , τw, g1, g2) ∈ Sw+2
n : τi ∈

T (Sn), τ1 · · · τwg1 = g−1
2 g1g2}.

(b) fE(w|n) = n!
∑
χ∈Irr(Sn)B

w
χ .

(c) Let Θ̃(q, λ, ζ) be defined by the formal product∏
n≥1
n odd

(1− en
2λ/8qn/2ζ)(1− e−n

2λ/8qn/2ζ−1)

and let Θ̃0(q, λ) ∈ Q[[q, λ]] be the the coefficient of
ζ0 in Θ̃(q, λ, ζ) ∈ Q[ζ, ζ−1][[q, λ]]. Then

FE(q, λ) = Θ̃0(q, λ)− 1,
and hence

ΦE(q, λ) = log(Θ̃0(q, λ)).

Remark: Dijkgraaf attributes part (c) to a M.R. Dou-
glas (preprint). Its proof uses the above-mentioned
formula of Frobenius (1900).



4

Theorem C (Kaneko/Zagier, 1995): Write

Θ̃0(q, λ)
∏
n≥1

(1− qn) =

∞∑
w=0

Aw(q)λw.

Then each Aw is a quasi-modular form of weight 6w,
i.e. there exist cwi,j,k ∈ Q such that

Aw =
∑

i,j,k≥0
2i+4j+6k=6w

cwi,j,kE
i
2E

j
4E

k
6 ,

where for k ≥ 2, k even, Ek is the Eisenstein series

Ek(q) = 1− 2k
Bk

∑
n≥1

σk−1(n)qn.

Corollary: For each w ≥ 2, the function

ΦE,w(q) =
∑
n≥1

NE(w, n)qn

is quasi-modular of weight 3w.

Example:

ΦE,2(q) =
1

51840
(10E3

2 − 6E2E4 − 4E6).
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2. Proof Sketch of Theorem B

(a) Let Tw,n := {(τ1, . . . , τw, g1, g2) ∈ T (Sn)w×S2
n :

τ1 · · · τwg1 = g−1
2 g1g2}.

The structure of the fundamental group π1(E \W )
shows that

ϕE(w|n) = #{t ∈ Tw,n : t generates a transitive
subgroup of Sn}.

By a combinatorial argument one then derives the
desired identity

fE(w|n) = #Tw,n.

(b) (Mike Roth) For each g ∈ Sn, let us put

Pg(w, n) = {(τ ) ∈ T (Sn)w : τ1 · · · τwg ∈ c(g)}.
where c(g) denotes the conjugacy class containing g.
Then, if c1 = {1}, c2 = T (Sn), c3 . . . , ch denote all
the conjugacy classes of Sn, we have

f (w|n)

n!
=
∑
g∈Sn

|Pg(w, n)|
|c(g)|

=

h∑
i=1

πi(w, n),

where πi(w, n) = |Pg(w, n)| with c(g) = ci.
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Let Z = Z(C[Sn]) denote the centre of the group
algebra of Sn. Z has two natural bases:

z := (z1, . . . , zh) and ε := (εχ1, . . . , εχh),

in which

zi = zci =
∑
g∈ci

g, and εχi = degχi
n!

∑
g∈Sn

χi(g)g−1.

Consider the linear map µ2 : Z → Z defined by
z 7→ z · z2, and let its matrix wrt. the z-basis be

Mn = [µ2]z.

Then the i-th diagonal element of Mw
n is

(Mw
n )i,i = πi(w, n), and so fE(w|n) = n!tr(Mw

n ).

On the other hand, by the orthogonality relations
the matrix of µ2 wrt. the ε-basis is

[µ2]ε = diag(Bχ1, . . . , Bχh),

and hence we obtain the desired formula

fE(w|n) = n!tr(Mw
n ) = n!

h∑
i=1

Bwχi.
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3. Hurwitz Moduli Spaces (X = E and w = 2)

Reference: E.K.,Collectanea Mathematica 54 (2003).

Let E/K be an elliptic curve over a fieldK (char 6= 2).
Fix N ≥ 2 prime to char(K).

Study: the set H(2)(E/K,N) of all genus 2 covers of
degee N of E/K:

f : Y → E, deg(f ) = N and gY = 2.

More generally, the study of families of such covers
yields a functor

H(2)
E/K,N

: Sch→ Sets.

Theorem 1. IfN is odd, thenH(2)
E/K,N

is representable

by a smooth, quasi-projective surface H
(2)
E/K,N

over

K which has (over K)∑
d|N

σ(d)− σ(N)

irreducible components. ThusH
(2)
E/K,N

is irreducible

if and only if N is prime.
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Remarks: 1) The above result does not extend to the
case that N is even. In that case the functor H is
only coarsely representable by such a variety.

2) H breaks up into components because:

Each Y
f→ E factors as Y

f ′→ E′
uf→ E, where

uf : E′→ E is the max. unramified subcover of f .

Thus: H
(2)
E/K,N

is a union of components which are

indexed by subgroups G ≤ E with #G|N (and
#G 6= N); explictly, G = Ker(ûf ).

Definition: A cover f : Y → E is called minimal if
deg(uf ) = 1.

Theorem 2. For every N ≥ 3 (prime to char(K)),

the functor H(min)
E/K,N

which classifies minimal genus

2 covers is representable by a smooth, irreducible

quasi-projective surface H
(min)
E/K,N

over K.

More precisely, we have

H
(min)
E/K,N

⊗K K ' E ×HE/K,N
whereHE/K,N ⊂ X(N) is an open subvariety (curve)

of the modular curve X(N) of (full) level N .
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Remarks: 1) If K = C, then X(N) = Γ(N)\H∗,
which is a Galois cover of X(1) ' P1 of degree

sl(N) := |SL2(Z/NZ)/{±1}|.

2) The reason that E appears as a factor ofH(min)
E/K,N

is due to the fact that the groupE(K) acts onE and

hence on H
(2)
E/K,N

etc. via translation: f 7→ Tx ◦ f .

Thus: introduce and study normalized covers.

Definition: A cover f : Y → E with gY = 2 is called
normalized if it is minimal and if

f (WY ) ⊂ E[2] and #(f−1(0E) ∩WY ) =

{
3 N odd
0 else

where WY = Fix(σY ) denotes the set of 6 Weier-
strass points of Y . (Here: σY is the hyperelliptic
involution of Y .)

Theorem 3. For every N ≥ 3 (as above), the functor
HE/K,N which classifies normalized genus 2 covers
is representable by a smooth, irreducible affine curve
HE/K,N/K such that HE/K,N ⊗K ⊂ X(N).
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Theorem 4: Let

DE/K,N = X(N)/K \ (HE/K,N ⊗K)

denote the degeneracy locus. Then

#DE/K,N ≤ 1
12N (5N + 6)sl(N),

and equality holds if and only if char(K) - N !.

– reinterpretation of results of Crelle J. 485 (1997)
+ J. No. Th. 64 (1997).

Theorem 5: The assignment (Y
f→ E) 7→ Disc(f ) is

represented by a quasi-finite morphism

δ = δE/K,N : HE/K,N → P
1
K ' (E(2))sym.

Furthermore, if char(K) - N !, then δ is finite and
unramified outside of πE(E[2]) ⊂ P1.

Theorem 6: If char(K) - N !, then

deg(δE/K,N ) = 1
6(N − 1)sl(N).
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4. Application to Counting Covers

Corollary 7: If W ⊂ E and #W = 2 then

#H(E,W, n) = 2
3

∑
d|n

σ1(d)(n− d)sl(n/d)

= n
3

(
σ3(n)− nσ1(n) + 3σ1

(n
2

))
,

where σ1(x) = 0, if x /∈ Z.

Remark: Theorem 6 ⇒ Corollary 7 by using∑
d|n

σ1(d)sl(n/d) = σ3(n),

∑
d|n

dσ1(d)sl(n/d) = n2σ1(n).

Corollary 8: The weighted number of covers is

NE(2, n) = n
3 (σ3(n)− nσ1(n))

and hence

ΦE,2(q) = 1
51840(10E3

2 − 6E2E4 − 4E6).

Lemma: If f : Y → E ∈ H(E,W, n), then

|Aut(f )| =
{

2 if 2|n, deg(uf ) = n
2

1 otherwise
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5. Proof of Theorem 6 (Overview)

Remark: The proof of Theorem 6 uses the methods
of Arithmetic Algebraic Geometry.

More precisely, it uses:

(I) a study of degenerations of the universal cover

funiv : YH → E ×H

1) study the degeneration of the minimal modelM(YH)/X(N)
of YH ; this uses the modular height of relative curves.

2) study whether or not funiv extends to a cover

f : M(YH)→ E ×X(N).

(II) the intersection theory on M(YH):

1) Calculate the modular height hM(YH)/X(N).

2) Calculate the self-intersection number of the rel-
ative dualizing sheaf ω0

M(YH)/X(N)
.

3) Relate deg(δE/K,N ) to intersection numbers in-

volving the relative dualizing sheaf. (Relate the dif-
ferent divisor of f to ω0

M(YH)/X(N)
.)


