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1 Introduction

Let A/K be an abelian surface over an algebraically closed field K. The question of
determining the number N∗

A of isomorphism classes of smooth curves of genus 2 lying
on A has been considered by many authors.

This question was first considered by Hayashida [H1], who determined N∗
A in 1965

in the case that A = E × E ′, where E ∼ E ′ are two isogeneous complex elliptic
curves without complex multiplication, and in 1968 he also determined N∗

A in the
case that A = E ×E, where E is an elliptic curve with complex multiplication (CM)
by a maximal order; see [H2]. Moreover, in 1986 Ibukiyama, Katsura and Oort [IKO]
determined N∗

A in the case that A = E × E ′, where E and E ′ are supersingular
elliptic curves. More recently, Gélin, Howe and Ritzenthaler [GHR] used Hayashida’s
formula for N∗

A to give an algorithm for explicitly determining a set of representatives
for the isomorphism classes of the set of genus 2 curves on A = E×E in Hayashida’s
situation [H2].

Since each smooth genus 2 curve C on A determines a principal polarization θC ,
the question of determining N∗

A is closely connected with the question of determining
the number NA of isomorphism classes of all principal polarizations on A. Indeed,
the papers [H1], [H2] and [IKO] also determine the number NA. All these results use
the study of 2× 2 Hermitian matrices with coefficients in End(E).

In this paper we want to introduce a different method for determining NA and
N∗

A, one that has the potential of also being applicable to arbitrary abelian surfaces.
In this method we make use of the refined Humbert invariant qθ = q(A,θ) attached

to a principal polarization θ on A as in [K4]. This invariant is a positive-definite
quadratic form. Given a quadratic form q, a natural first question is to classify
the set of isomorphism classes of principal polarizations on A with the same refined
Humbert invariant. Thus, if P(A) ⊂ NS(A) denotes the set of principal polarizations
on A, then we want to determine the set P(A, q) := Aut(A)\P(A, q), where

P(A, q) = {θ ∈ P(A) : q(A,θ) ∼ q}.

Here and below, the symbol ∼ means that the two quadratic forms are equivalent.
The advantage of studying the set P(A, q) is that there are several explicit for-

mulae for its cardinality.
To state the result, let qA(D) = 1

2
(D.D) denote the intersection form on A, which

defines an integral quadratic form on the Néron-Severi group NS(A), and consider
the subgroup

GA := {α ∈ Aut(qA) : α(P(A)) = P(A)}
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consisting of those automorphisms of qA which preserve the set P(A) of principal
polarizations on A. It is easy to see that GA ≥ HA, where HA is the image of Aut(A)
in Aut(NS(A)) via its action on NS(A). We then have the following first result.

Theorem 1 If θ ∈ P(A, q), then the number of isomorphism classes of principal
polarizations in P(A, q) is given by the number of (HA, Sθ)-double cosets in GA, where
Sθ = {α ∈ GA : α(θ) = θ} denotes the stabilizer subgroup of θ in GA. Thus,

(1) |P(A, q)| = |HA\GA/Sθ|.

In some cases the (finite) number on the right hand side of (1) can be computed
directly, as was done in [K8]. However, for most cases (but not all) we can use a much
simpler method. This method is based on the important and useful fact that there is
a nice mass formula for P(A, q). To state it, let us call

M(S) =
∑
θ∈S

1

a(θ)

the mass of a subset S ⊂ P(A) := HA\P(A); here a(θ) = |Aut(θ)|, for any θ ∈ P(A)
such that θ = HAθ, and Aut(θ) := HA∩Sθ. We then have the following mass formula:

Theorem 2 If q is a quadratic form such that P(A, q) 6= ∅, then

(2) M(P(A, q)) = [GA : HA]/|Aut(q)|.

It is a remarkable fact that in virtually all cases the weight a(θ) for θ ∈ P(A, q)
only depends on q. In the case that A is not isogeneous to a product of supersingular
elliptic curves (i.e., A is not a supersingular surface), then we have:

Theorem 3 Let A/K be an abelian surface which is not supersingular. If θ ∈
P(A, q), where q is a quadratic form which does not represent 1, then a(θ) only
depends on q. More precisely, if rn(q) := |{(x1, . . . , xr) ∈ Zr : q(x1, . . . , xr) = n}|
denotes the number of representations of an integer n by q, then

(3) a(θ) = a(q) := max(1, r4(q), 3r4(q)− 12), for all θ ∈ P(A, q),

except when q ∼ 4x2, in which case a(θ) = 1, for all θ ∈ P(A, q). Thus, if we put
a(q)∗ = a(q) when q 6∼ 4x2 and a(q)∗ = 1, when q ∼ 4x2, then

(4) |P(A, q)| = [GA : HA]a(q)∗/|Aut(q)|.

It is interesting (and useful) to note that if C/K is a genus 2 curve, then the
number a(θC) is in many cases closely related to the order of the automorphism
group Aut(C) of the curve.
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Theorem 4 If C/K is a curve of genus 2 such that qC is either a binary or ternary
form, then

(5) |Aut(C)| = 2a(θC) = 2a(qC).

Furthermore, in this case the structure of Aut(C) is completely determined by a(qC).

We next observe that Theorem 3 implies a general formula for the number N∗
A of

isomorphism classes of smooth curves of genus 2 on an abelian surface A. To state
it, let C(A) = {C ⊂ A} denote the set of smooth genus 2 curves lying on A, and let

Θ∗
A = {q : q ∼ q(A,θC), for some C ∈ C(A)}/∼

denote the set of equivalence classes of integral quadratic forms which are equivalent
to some q(A,θC) with C ∈ C(A). Furthermore, given any finite set Q of equivalence
classes integral quadratic forms, put

S(Q) =
∑
q∈Q

a(q)∗

|Aut(q)|
=

n∑
i=1

a(qi)
∗

|Aut(qi)|
,

where q1, . . . , qn is a system of representatives of the equivalence classes of Q, and
a(qi)

∗ is as in (4). We then have:

Theorem 5 If A/K is an abelian surface which is not supersingular, then the number
N∗

A of isomorphism classes of curves of genus 2 on A is given by the formula

(6) N∗
A = [GA : HA]S(Θ∗

A).

Note that it can happen that N∗
A = 0, i.e., that Θ∗

A = ∅. This is clear if A has no
principal polarization, i.e., if P(A) = ∅. But even if P(A) 6= ∅, then it can happen
that Θ∗

A = ∅. In that case A ' E × E ′ is a product surface, and the cases for which
N∗

A = 0 were classified in [K4] and [K5], and also in Hayashida/Nishi [HN1] and [HN2]
in special cases.

It is clear from formula (6) that N∗
A can be readily computed for a specific surface

A, provided that we can compute the index [GA : HA] and the set Θ∗
A because then

S(Θ∗
A) can be determined by using results from the theory of quadratic forms; see §6.

In the case that A ' E×E ′ is an abelian product surface which is not supersingu-
lar, the index [GA : HA] was computed in [K8], and the structure of Θ∗

A follows from
the results in [K4], [K9] and Kir [Ki], as is shown in the proofs of Proposition 37 and
Theorem 41 below. This, therefore, leads to an explicit formula (and/or algorithm)
for computing N∗

A in those cases.
To explain this in more detail, suppose that first that A is a non-CM abelian

product surface. In that case one can give an explicit formula for N∗
A, which is

conveniently expressed in terms of the class number h(∆) and the number of genera
g(∆) of positive primitive integral binary quadratic forms of discriminant ∆ for certain
values of ∆.
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Theorem 6 Let A = E × E ′, where Hom(E,E ′) = Zh with d := deg(h) ≥ 1. If
d = 1, then N∗

A = 0, and if d > 1, then

(7) N∗
A = 2ω(d)−2

(
h(−16d)

g(−16d)
+ c(d)

)
,

where ω(d) denotes the number of distinct prime divisors of d, and c(d) = h(−d)
g(−d)

, if

d ≡ 3 (mod 4), and c(d) = −1 if d ≡ 2, 4, 6 (mod 8) and c(d) = 0 otherwise.

Note that this gives a more compact statement of the result of Hayashida [H1];
see Remark 40 below.

Now suppose that A is a CM abelian product surface, i.e., A = E × E ′, where E
and E ′ are isogenous elliptic curves with complex multiplication. Let qE,E′ denote the
degree function on Hom(E,E ′), which is a binary quadratic form. If ∆ = disc(qE,E′)
denotes its discriminant and ∆′ := ∆/κ2, where κ = cont(qE,E′) denotes the content
of qE,E′ , then by [K8] we have that

(8) [GA : HA] = 2ω(κ)+1g(∆′)h(∆)h(∆′)−1.

Moreover, if gen(q) denotes the set of equivalence classes of quadratic forms which
are genus-equivalent to a given quadratic form q (see Jones [Jo], Chapter V), and if
gen(q)∗ ⊂ gen(q) denotes the subset of equivalence classes of forms q′ ∈ gen(q) which
do not represent 1, then we have the following special case of Theorem 46 below.

Theorem 7 Let A = E × E ′ be a CM product surface. If ∆ = disc(qE,E′) is odd,
then

(9) N∗
A = 2ω(κ)+1g(∆′)h(∆)h(∆′)−1S(gen(x2 ⊥ 4qE,E′)∗).

Using this formula, one can explicitly compute N∗
A for each given CM product

surface A, if ∆ is odd. There is a similar (but much more complicated formula) in
the case that ∆ is even; see Theorem 46 below. In all cases this leads to an explicit
algorithm for computing N∗

A which is given in §6. Moreover, at the end of the paper
we present a table of the values of N∗

A for abelian CM surfaces A with |∆| ≤ 100.
It is perhaps useful to mention that if θ ∈ P(A, q)\P(A)∗ is a principal polarization

which does not come from a genus 2 curve, then in some cases a(θ) does not only
depend on q, so Theorem 3 does not hold for such a q. This situation is studied in
more detail in [K10].

This paper is organized as follows. In §2 we recall the definition of the refined
Humbert invariant and prove the key Theorem 10 from which Theorem 1 follows
easily, as is explained in §3. Moreover, the Mass Formula (Theorem 2) is an easy
consequence of Theorem 1, as is shown in §4. In §5 we study the weight a(θC) of the
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principal polarization of a curve C ∈ C(A) and prove Theorems 3 and 4. This uses
results of [K7] and the knowledge of the possible automorphism groups of a genus 2
curve; see Igusa [Ig] and Shaska/Völklein [SV]. Furthermore, the formula for a(θC)
is made more explicit in certain cases; see Proposition 32 and Corollary 35. Note
that Theorem 5 follows easily from (4), as is explained in §5. Finally, in §6 we study
abelian product surfaces and prove Theorems 6 and Theorems 46; the latter includes
Theorem 7 above. In addition, we include an algorithm for computing the formula
given in Theorem 46 and present a table of the values of N∗

A for A as in that theorem
with |∆| ≤ 100.

2 The refined Humbert invariant

Let A/K be an abelian surface, and let qA : NS(A) → Z be the integral quadratic
form on NS(A) defined by (one-half of) the self-intersection pairing on the Néron-
Severi group NS(A) = Div(A)/≡ of A. Its associated bilinear form βA is therefore
the intersection pairing, i.e.,

(10) βA(D,D′) := qA(D +D′)− qA(D)− qA(D′) = (D.D′).

Let P(A) ⊂ NS(A) denote the set of principal polarizations of A. Thus, by the
Riemann-Roch Theorem on A (see [Mu], p. 150) we have that

P(A) = {cl(D) : D ∈ Div(A) is ample and qA(cl(D)) = 1},

where cl(D) ∈ NS(A) = Div(A)/ ≡ denotes the class defined by the divisor D ∈
Div(A). In the sequel we will assume tacitly that P(A) 6= ∅.

If θ ∈ P(A), then put

(11) q̃(A,θ)(D) = βA(D, θ)2 − 4qA(D) = (D.θ)2 − 2(D.D), for D ∈ NS(A).

It is easy to see (see [K1]) that this defines a positive-definite quadratic form q(A,θ) on
the quotient space NS(A, θ) := NS(A)/Zθ, so we have that q̃(A,θ) = q(A,θ) ◦ πθ, where

πθ : NS(A) → NS(A, θ) := NS(A)/Zθ

denotes the quotient map. The quadratic form q(A,θ) or, more correctly, the quadratic
module (NS(A, θ), q(A,θ)) is called the refined Humbert invariant of the principally
polarized abelian surface (A, θ); cf. [K4]. Since NS(A, θ) ' Zρ−1, where ρ = ρ(A) =
rank(NS(A)) is the Picard number of A, we see that q(A,θ) defines an equivalence class
of integral, positive definite quadratic forms in ρ− 1 variables.

For what follows, it is of paramount importance to understand that isomorphisms
of two such quadratic modules (NS(A, θi), q(A,θi)) are induced by suitable elements of
the automorphism group

Aut(qA) = {α ∈ Aut(NS(A)) : qA ◦ α = qA}
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of the quadratic form qA. However, since Aut(qA) does not act on P(A), it is useful
to consider the following subgroup GA ≤ Aut(qA) which preserves the set of polar-
izations:

GA := {α ∈ Aut(qA) : α(P(A)) = P(A)}
As we shall see, GA has index 2 in Aut(qA). This follows from the following result:

Proposition 8 If α ∈ Aut(qA), then α ∈ GA if and only if α(θ) ∈ P(A), for some
θ ∈ P(A).

Proof. Suppose that θ′ := α(θ) ∈ P(A), where θ ∈ P(A), and let D ∈ P(A).
Since α ∈ Aut(qA), we have that (α(D).α(D)) = (D.D) = 2 > 0, so by Corollary
2.2(b) of [K1] we have that either D ∈ P(A) or that −D ∈ P(A). Moreover, since
(α(D).α(θ)) = (D.θ) > 0 because both are ample, it follows that that α(D) ∈ P(A).
Thus α(P(A)) ⊂ P(A).

Now since α−1(θ′) = θ, a similar argument applied to α−1 shows that α−1(P(A)) ⊂
P(A) and so we obtain that P(A) ⊂ α(P(A)) and hence that α(P(A)) = P(A). Thus
α ∈ GA. Since the converse implication is trivial, this proves the assertion.

Corollary 9 We have that Aut(qA) = 〈−1NS(A)〉 ×GA. Thus [Aut(qA) : GA] = 2.

Proof. It is clear that −1 = −1NS(A) ∈ Aut(qA) and that −1 ∈ Z(Aut(qA)). Now −1 /∈
GA because if θ ∈ P(A), then −θ /∈ P(A) because (−θ.θ) < 0. Thus 〈−1〉∩GA = {1}.

It remains to show that 〈−1〉GA = Aut(qA). For this, let α ∈ Aut(qA), and let
θ ∈ P(A). Then qA(α(θ)) = qA(θ) > 0. Thus, by Corollary 2.2(b) of [K1] we have
that either α(θ) ∈ P(A) or that −α(θ) ∈ P(A). In the former case we have that
α ∈ GA by Proposition 8 and in the latter case we have that −α ∈ GA, so either
α ∈ GA or −α ∈ GA. This proves the first assertion, and the second clearly follows
from the first.

We now come to the main result of this section. This is closely related to what
was stated without proof in Remark 17 of [K5].

Theorem 10 If α ∈ GA and if θ ∈ P(A), then there is a unique isomorphism

αθ : (NS(A, θ), q(A,θ))
∼→ (NS(A,α(θ)), q(A,α(θ)))

of quadratic modules such that

(12) πα(θ) ◦ α = αθ ◦ πθ.

Conversely, if θ, θ′ ∈ P(A) and if

α : (NS(A, θ), q(A,θ))
∼→ (NS(A, θ′), q(A,θ′))

is an isomorphism of quadratic modules, then there is a unique α ∈ GA such that
α(θ) = θ′ and such that α = αθ.
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Before proving this, let us observe the following important special case.

Corollary 11 Let θ ∈ P(A), and let Sθ = {α ∈ GA : α(θ) = θ} denote its stabilizer
in GA. Then the map α 7→ αθ defines a group isomorphism Sθ

∼→ Aut(qθ) which maps
S+

θ := {g ∈ Sθ : det(g) = 1} onto Aut+(qθ) := {α ∈ Aut(qθ) : det(α) = 1}.

Proof. By the first part of Theorem 10, the indicated rule defines a map Sθ → Aut(qθ),
and it is immediate that this is a group homomorphism. By the second part of
Theorem 10, this is a bijection and so the first assertion follows.

To prove the second assertion, it suffices to show that det(αθ) = det(α), for all
α ∈ Sθ. For this, note that since θ ∈ P(A) is a primitive element in NS(A), we can
extend θ to a basis D1 = θ,D2, . . . , Dr of NS(A). Then the matrix M of α with
respect to this basis has the form M =

(
1 ∗
0 M1

)
, and so det(α) = det(M) = det(M1).

Now since D2 := πθ(D2), . . . , Dr := πθ(Dr) is a basis of NS(A, θ), it follows from
(12) that M1 is the matrix of αθ with respect to this basis. Thus det(αθ) = det(M1) =
det(α), which proves the determinant formula and hence the second assertion.

We now turn to the proof of Theorem 10. We begin with the following basic facts
about the quadratic forms qA and qθ := q(A,θ).

Lemma 12 Let θ ∈ P(A), and put Zθ⊥ := {D ∈ NS(A) : βA(D, θ) = 0}. Then

(13) NS(A)
(2)
θ := {D ∈ NS(A) : βA(D, θ) ≡ 0 (mod 2)} = Zθ ⊕ Zθ⊥,

and mθ := [NS(A) : NS(A)
(2)
θ ] | 2. Furthermore,

(14) πθ(NS(A)
(2)
θ ) = NS(A, θ)(2) := {D̄ ∈ NS(A, θ) : qθ(D̄) ≡ 0 (mod 2)},

and so NS(A, θ)(2) is a submodule of NS(A, θ) of index mθ. In addition, the restriction
π′θ of πθ to Zθ⊥ induces an isomorphism of quadratic modules:

(15) π′θ : (Zθ⊥, (−4qA)|Zθ⊥)
∼→ (NS(A)

(2)
θ , (qθ)|NS(A)

(2)
θ

).

Proof. Since NS(A)
(2)
θ is the kernel of the homomorphism D 7→ βA(D, θ) (mod 2),

it is clear that NS(A)
(2)
θ is a submodule of NS(A) of index mθ | 2. Clearly Zθ⊥ ⊂

NS(A)
(2)
θ . Furthermore, since βA(θ, θ) = 2qA(θ) = 2, we see that Zθ ⊂ NS(A)

(2)
θ , and

so Zθ ⊕ Zθ⊥ ⊂ NS(A)
(2)
θ . (Note that Zθ ∩ Zθ⊥ = 0 because qA is positive definite on

Zθ and negative definite on Zθ⊥ by the Hodge index theorem.)

To prove the opposite inclusion, let D ∈ NS(A)
(2)
θ . Then n := βA(D,θ)

2
∈ Z, so

D′ = D − nθ ∈ Zθ⊥ and hence D = nθ +D′ ∈ Zθ + Zθ⊥. This proves (13).
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To prove (14), letD ∈ NS(A)
(2)
θ , soD = nθ+D′, with n ∈ Z andD′ ∈ Zθ⊥ by (13).

Then πθ(D) = πθ(D
′), so qθ(πθ(D)) = qθ(πθ(D

′)) = q̃θ(D
′) = −4qA(D′) ≡ 0 (mod 2)

by (11). Thus πθ(NS(A)
(2)
θ ) ⊂ NS(A, θ)(2).

Conversely, suppose that D̄ ∈ NS(A, θ)(2). Then D̄ = πθ(D) for some D ∈
NS(A) and we have that q̃θ(D) = qθ(D̄) ≡ 0 (mod 2). Now q̃θ(D) = βA(D, θ)2 −
4qA(D) ≡ βA(D, θ)2 (mod 2), so 2|βA(D, θ), and hence D ∈ NS(A)

(2)
θ . Thus D̄ ∈

πθ(NS(A)
(2)
θ ), which proves (14). Thus, since NS(A)

(2)
θ is a submodule of NS(A), we

see that NS(A, θ)(2) = πθ(NS(A)
(2)
θ ) is a submodule of NS(A, θ). Note that mθ =

[NS(A) : NS(A)
(2)
θ ] = [NS(A, θ) : NS(A, θ)(2)] because Ker(πθ) = Zθ ⊂ NS(A)

(2)
θ .

By (13) and (14) we see that πθ(Zθ⊥) = NS(A, θ)(2). Thus, π′θ : Zθ⊥ ∼→ NS(A, θ)(2)

is an isomorphism because because Ker(πθ) ∩ Zθ⊥ = 0. For D ∈ Zθ⊥ we have by
definition that q̃θ(D) = −4qA(D), so qθ(π

′
θ(D)) = −4qA(D), and hence we obtain the

indicated isomorphism (15) of quadratic modules.

Proof of Theorem 10. Suppose first that α ∈ GA, and put θ′ = α(θ). Note that
θ′ ∈ P(A) because α ∈ GA. Since Ker(πθ′ ◦ α) = α−1(Zθ′) = Zθ = Ker(πθ), there
is a unique isomorphism αθ : NS(A, θ)

∼→ NS(A, θ′) such that (12) holds. Now since
α ∈ Aut(qA), we have that βA(α(D), θ′) = βA(α(D), α(θ)) = βA(D, θ) and also
qA(α(D)) = qA(D), for all D ∈ NS(A), so q̃θ′ ◦ α = q̃θ, and hence it follows from (12)
that qθ′ ◦ αθ = qθ. Thus, αθ defines the indicated isomorphism of quadratic modules.

We now prove the converse. Thus, let θ, θ′ ∈ P(A) be given, and let α be the
given isomorphism of quadratic modules. It is then clear from the definition and
the fact that NS(A, θ)(2) is a submodule of NS(A, θ) by Lemma 12 that α restricts
to an isomorphism α(2) : NS(A, θ)(2) ∼→ NS(A, θ′)(2). Thus, by (15) we obtain an
isomorphism of quadratic modules

α1 := (π′θ′)
−1 ◦ α(2) ◦ π′θ : (Zθ⊥, (−4qA)|Zθ⊥)

∼→ ((Zθ′)⊥, (−4qA)|(Zθ′)⊥).

Note that this implies that qA ◦ α1 = (qA)|Zθ⊥ . Since NS(A)
(2)
θ = Zθ ⊕ Zθ⊥ by (13),

it follows that there is a unique isomorphism α2 : NS(A)
(2)
θ

∼→ NS(A)
(2)
θ′ such that

α2(θ) = θ′ and (α2)|Zθ⊥ = α1. Note that since qA(θ) = 1 = qA(θ′), it follows that

qA(α2(D)) = qA(D), for all D ∈ NS(A)
(2)
θ .

We observe that mθ = mθ′ because by Lemma 12 we have that mθ = [NS(A, θ) :
NS(A, θ)(2)] = [α(NS(A, θ)) : α(NS(A, θ)(2))] = [NS(A, θ′) : NS(A, θ′)(2)] = mθ′ . Thus,
if mθ = 1, then α := α2 ∈ Aut((NS(A), qA)) satisfies the desired properties.

Assume therefore that mθ = mθ′ = 2. Since NS(A)
(2)
θ has finite index in the

free module NS(A), we see that α2 extends uniquely to a Q-linear automorphism
α0 of NS0(A) = NS(A) ⊗ Q. Furthermore, if q0

A denotes the natural extension of
qA to NS0(A) (which is given by q0

A(x) = 1
n2 qA(nx), if n ∈ Z, n 6= 0, is such that

nx ∈ NS(A)), then we see that q0
A(α0(x)) = q0(x), for all x ∈ NS0(A).
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We now want to show that α0(NS(A)) = NS(A). For this, note that NS(A) =

ZD1 + NS(A)
(2)
θ , where D1 ∈ NS(A) satisfies βA(D1, θ) ≡ 1 (mod 2). Clearly 2D1 ∈

NS(A)
(2)
θ . We now show:

Claim: α2(2D1) = 2D2, for some D2 ∈ NS(A).

To construct D2, put D′
2 := α2(2D1) ∈ α2(NS(A)

(2)
θ )) = NS(A)

(2)
θ′ and D̄2 :=

α(πθ(D1)) ∈ NS(A, θ′). Thus, there exists D′′
2 ∈ NS(A) such that πθ′(D

′′
2) = D̄2.

Then

(16) D′
2 = 2D′′

2 + nθ′, for some n ∈ Z.

Indeed, πθ′(D
′
2) = πθ′(α2(2D1)) = α(πθ(2D1)) = 2α(πθ(D1)) = 2D̄2 = πθ′(2D

′′
2), and

so (16) follows.
We next observe that 2|n. For this, we compute as follows: 8qA(D1) = 2qA(2D1) =

2qA(α2(2D1)) = 2qA(D′
2)

(16)
= 2qA(2D′′

2+nθ′). Since 2qA(D) = βA(D,D),∀D ∈ NS(A),
we see that 2qA(2D′′

2+nθ′) = βA(2D′′
2+nθ′, 2D′′

2+nθ′) = 4βA(D′′
2 , D

′′
2)+4nβA(D′′

2 , θ
′)+

2n2, so n2 = 4qA(D1)−2βA(D′′
2 , D

′′
2)−2nβA(D′′

2 , θ
′) ≡ 0 (mod 2), and hence 2|n. Thus,

D2 := D′′
2 + n

2
θ′ ∈ NS(A), and so D′

2 = 2D2 by (16). This proves the claim.
From the claim we see that α0(D1) = 1

2
α0(2D1) = 1

2
α2(2D1) = 1

2
(2D2) = D2 ∈

NS(A), so α0(NS(A)) ⊂ NS(A) because α0(NS(A)
(2)
θ ) = α2(NS(A)

(2)
θ ) = (NS(A)

(2)
θ′ ⊂

NS(A). Furthermore, since [α0(NS(A)) : α0(NS(A)
(2)
θ )] = [NS(A)) : NS(A)

(2)
θ ] =

[NS(A)) : NS(A)
(2)
θ′ ], we see that α0(NS(A)) = NS(A). Thus, the restiction α :=

(α0)|NS(A) ∈ Aut((NS(A), qA)).
We have that α(θ) = θ′ by construction, so α ∈ GA by Proposition 8. It remains

to show that αθ = α, i.e., that (12) holds. If D ∈ NS(A)
(2)
θ , then πθ′(α(D)) =

πθ′(α2(D)) = α(πθ(D)) by the construction of α2. Thus 2(πθ′ ◦ α) = πθ′ ◦ (2α) =
α ◦ (2πθ) = 2(α ◦ πθ), and so (12) holds because NS(A, θ′) is torsionfree.

Finally, we show that α ∈ GA is uniquely determined by the given properties.
Indeed, suppose α′ ∈ GA is another element with α′(θ) = θ′ and α′θ = α. Then
α′(Zθ⊥) = (Zθ′)⊥ because α′ ∈ Aut(qA). Thus, if D ∈ Zθ⊥, then πθ′(α

′(D)) =
α(πθ(D)) = πθ′(α(D)), and so α′(D) = α(D) because πθ is injective on (Zθ′)⊥; see

Lemma 12. Thus, α and α′ agree on NS(A)
(2)
θ = Zθ ⊕ Zθ⊥. Since this has finite

index in NS(A), it follows that α = α′, and so α is uniquely determined by the given
properties.

In what follows, we shall frequently use the following fact which is a generalization
of the easy part of Theorem 10.

Proposition 13 If α : (NS(A), qA)
∼→ (NS(A′), qA′) is an isomorphism of quadratic

modules, where A and A′ are abelian surfaces, and if θ ∈ P(A)) and α(θ) ∈ P(A′),
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then there is a unique isomorphism

αθ : (NS(A, θ), q(A,θ))
∼→ (NS(A′, α(θ)), q(A′,α(θ)))

such that (12) holds. In particular, if f : A
∼→ A′ is an isomorphism of abelian

surfaces, then q(A,θ) ∼ q(A′,f∗(θ)), for all θ ∈ P(A).

Proof. The first assertion follows by a similar argument as that of the first part of
the proof of Theorem 10. Moreover, if f : A

∼→ A′ is an isomorphism of abelian
surfaces, then f induces an isomorphism f∗ : NS(A)

∼→ NS(A) such that qA′ ◦ f∗ = qA
and such that f∗P(A) = P(A′). Thus, α = f∗ satisfies the hypothesis of the first
assertion, and so (NS(A, θ), q(A,θ)) ' (NS(A′, f∗(θ)), q(A′,f∗(θ))), i.e., q(A,θ) ∼ q(A′,f∗(θ)),
for all θ ∈ P(A).

3 The Structure of P(A, q)

We now fix an integral quadratic form q in r variables, and consider the subset

P(A, q) := {θ ∈ P(A) : qθ ∼ q}

of P(A). Here qθ = q(A,θ) is the refined Humbert invariant of (A, θ) and the condition
qθ ∼ q means that we have an isomorphism (NS(A), q(A,θ)) ' (Zr, q) of quadratic
modules. In the sequel we will tacitly assume that r = ρ(A)− 1 = rank(NS(A))− 1,
for otherwise P(A, q) is empty.

It is an immediate consequence of Theorem 10 that the group GA acts transitively
on the set P(A, q). More precisely:

Proposition 14 If θ ∈ P(A, q), then the map g 7→ g(θ) defines a bijection of GA-sets

(17) GA/Sθ
∼→ P(A, q),

where Sθ := {α ∈ GA : g(θ) = θ} denotes the GA-stabilizer of θ.

Proof. If g ∈ GA, then from the first part of Theorem 10 it follows that (NS(A, g(θ)),
qg(θ))) ' (NS(A, θ), qθ) ' (Zr, q), so g(θ) ∈ P(A, q). This means that P(A, q) is a
GA-set.

Next, suppose that θ′ ∈ P(A, q). Then qθ′ ∼ q ∼ qθ, so there exists an isomorphism
α : (NS(A, θ), qθ) ' (NS(A, θ′), qθ′). By the second part of Theorem 10 there exists
g ∈ GA such that g(θ) = θ′, and so GA acts transitively on P(A, q). Thus, the
assertion follows from this and the orbit-stabilizer theorem of group theory.

It follows from Proposition 14 that for any subgroup H ≤ GA, the set H\P(A, q)
of H-orbits of P(A, q) is given by the set of H\GA/Sθ of (H,Sθ)-double cosets of GA,
where θ ∈ P(A, q).

10



In particular, this applies to the group H = HA which is the image of the automor-
phism group Aut(A) of A. To define HA, recall that for any divisor D ∈ Div(A) and
any automorphism α ∈ Aut(A) we have the image divisor α∗(D) (which is defined
by α∗(C) = α(C) on prime divisors C of A). It is clear that α∗ preserves intersection
numbers and hence is compatible with numerical equivalence. We thus obtain that
α∗ ∈ Aut(qA). Moreover, it is easy to see that α∗(P(A)) = P(A), so α∗ ∈ GA. It thus
follows that the rule α 7→ α∗ defines a group homomorphism

ϕA : Aut(A) → GA

We denote the image of ϕA by HA := ϕA(Aut(A)) ≤ GA. Note that ϕA is never
injective because [−1]A ∈ Ker(ϕA), as is not difficult to see.

From the above discussion we thus obtain:

Corollary 15 If θ ∈ P(A, q), then the rule g 7→ HAg(θ) defines a bijection

HA\GA/Sθ
∼→ P(A, q) := HA\P(A, q).

In particular,

(18) |P(A, q)| = |HA\GA/Sθ|.

Note that this proves Theorem 1 of the Introduction.

4 The mass formula for P(A, q)

We next turn to the mass formula for P(A, q). To formulate the result, let θ ∈ P(A),
and let

Aut(θ) := HA ∩ Sθ

denote the automorphism group of θ, where, as before, HA = ϕA(Aut(A)) is the
image of the automorphism group Aut(A) in GA, and Sθ is the GA-stabilizer of θ. It
is immediate that if Aut(A, θ) := {α ∈ Aut(A) : α∗θ = θ}, then

(19) Aut(θ) = ϕA(Aut(A, θ)) ' Aut(A, θ)/Ker(ϕA).

Note that Sθ is always a finite group because Sθ ' Aut(qθ) by Corollary 11 and
because qθ is a positive quadratic form. Thus, a(θ) := |Aut(θ)| <∞, and we have

(20) a(θ) | |Aut(qθ)|, for all θ ∈ P(A).

We observe that if α ∈ HA, then

(21) Aut(α(θ)) = HA ∩ αSθα
−1 = α(HA ∩ Sθ)α

−1 = αAut(θ)α−1.

11



Thus, a(θ) = |Aut(θ)| has the same value for all elements in the HA-orbit θ = HAθ
of θ, and so we can write a(θ) := a(θ). Thus, as in the introduction, we can define
the mass of a subset S ⊂ P(A) := HA\P(A) by

M(S) :=
∑
θ∈S

a(θ)−1.

In the case that S = P(A, q), this mass is given by a simple formula, as was
mentioned in Theorem 2.

Proof of Theorem 2. Let θ ∈ P(A, q). We first observe that if g ∈ GA, then the
number of HA-orbits of HAgSθ is

(22) |HA\HAgSθ| = [Sθ : Sθ ∩ g−1HAg] = |Sθ| · |Aut(g(θ))|−1.

Indeed, if Sθ =
∐

i(Sθ∩g−1HAg)si, then one sees easily that HAgSθ =
∐

iHAgsi, and
so the first equality of (22) follows. Moreover, since

Sθ ∩ g−1HAg = g−1(gSθg
−1 ∩ HA)g = g−1(Sg(θ) ∩ HA)g = g−1 Aut(g(θ))g,

we see that [Sθ : Sθ ∩ g−1HAg] = |Sθ|
|Sθ∩g−1HAg| = |Sθ|

|Aut(g(θ)| because |Sθ| <∞.

Now let g1, . . . , gt be a system of representatives of HA\GA/Sθ, so by Corollary
15 we have that g1(θ), . . . , gt(θ) is a system of representatives of HA\P(A, q). Thus

[GA : HA] =
t∑

i=1

|HA\HAgiSθ| =
t∑

i=1

|Sθ|
|Aut(gi(θ))|

= |Sθ| ·M(P(A, q)),

and so (2) follows because |Sθ| = |Aut(qθ)| = |Aut(q)| by Corollary 11 and by the
fact that qθ ∼ q since θ ∈ P(A, q).

When A is an abelian product surface, then the index [GA : HA] was calculated
in [K8]. In the non-CM case we have the following.

Proposition 16 Let A = E × E ′, where Hom(E,E ′) = Zh with d := deg(h) ≥ 1. If
q is a binary quadratic form such that P(A, q) 6= ∅, then

(23) M(P(A, q)) = 2ω(d)/|Aut(q)|.

Proof. By Theorem 1 of [K8] we have that [GA : HA] = 2ω(d), and so (23) follows from
Theorem 2.

In the case of a CM abelian product surface A ' E×E ′ we obtain a similar result
by using the index formula (8) which was mentioned in the introduction. For this,
we recall the following (well-known) notation.
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If ∆ < 0 is a quadratic discriminant, i.e., if ∆ ≡ 0, 1 (mod 4), then let h(∆) =
|C(∆)| denote the order of the class group of primitive forms of discriminant ∆; cf.
[Co], p. 29 and p. 50. Note that h(∆) = |Pic(O∆)|, where O∆ denotes the order of
discriminant ∆; cf. [Co], p. 137. Moreover, we let g(∆) = [C(∆) : C(∆)2] denote
the number of genera of discriminant ∆. A formula for g(∆) is given in formula (48)
below.

Proposition 17 Let A = E×E ′, where qE,E′ is a binary quadratic form of discrim-
inant ∆ and content κ. Put ∆′ = ∆/κ2. If q is a ternary quadratic form, then

(24) a(θ) | |Aut+(q)|, for all θ ∈ P(A, q).

Moreover, if P(A, q) 6= ∅, then we have that

(25) M(P(A, q))|Aut+(q)| = 2ω(κ)g(∆′)
h(∆)

h(∆′)
.

Proof. By Theorem 3 of [K8] we have that det(h) = 1, for all h ∈ HA, so Aut(θ) =
HA ∩ Sθ ≤ S+

θ := {g ∈ Sθ : det(g) = 1}. Thus (24) follows because S+
θ ' Aut+(q) by

Corollary 11.
By Theorem 2 of [K8] we have that (8) holds, so by Theorem 2 we obtain that

M(P(A, q))|Aut(q)| = 2ω(κ)+1g(∆′) h(∆)
h(∆′)

. Now for any ternary form q we have that

|Aut(q)| = 2|Aut+(q)| because −1 ∈ Aut(q) \ Aut+(q), and so (25) follows.

Remark 18 If A/K is as in Proposition 17, then (24) implies that a(θ)|24 because
for any positive ternary form q we have that |Aut+(q)| | 24 by [Di], Theorem 105.

More generally, if A/K is any abelian surface and if q is a positive form with
rank(q) ≤ 3, then a(θ)|48, for any θ ∈ P(A, q). Indeed, by (19) we know that
a(θ) | |Aut(q)|, so if q is a ternary form, then |Aut(q)| = 2|Aut+(q)| | 48 by Theorem
105 of [Di] again. Moreover, if q is a binary form, then |Aut(q)| = 2, 4, 8, or 12
(see [Jo], Theorems 51a and 52), so again a(θ)|48. If q has rank 1, then clearly
|Aut(q)| = 2. This proves the assertion. (Note that if q = 0, then a(θ) = 1 because
then Aut(JC , θC) = {±1} = Ker(ϕJC

).)

5 The computation of a(θ)

We now study the weight a(θ) = |Aut(θ)| of a principal polarization θ ∈ P(A) in the
case that θ = cl(C) is the class of a smooth genus 2 curve C on A. For this, let

P∗(A) = {cl(C) : C ∈ C(A)},

where C(A) denotes the set of smooth genus 2 curves C lying on A. Note that by the
adjunction formula for C ⊂ A we have that P∗(A) ⊂ P(A). We recall the following
basic fact from Proposition 6 of [K4] which characterizes the set P∗(A) inside P(A).
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Proposition 19 If θ ∈ P(A) is any principal polarization, then

(26) θ ∈ P∗(A) ⇔ qθ(D̄) 6= 1, for any D̄ ∈ NS(A, θ).

As a first step towards computing a(θ), we observe the following (well-known) fact
about the polarized automorphism group Aut(A, θ) = {α ∈ Aut(A) : α∗(θ) = θ}.

Proposition 20 If A is an abelian surface, and if θ = cl(C) ∈ P∗(A), then the rule
α 7→ α∗ = (α∗)−1 induces an isomorphism Aut(C) ' Aut(A, θ).

Proof. If θ = cl(C), then it follows from the universal property of the Jacobian that A
is (isomorphic to) the Jacobian JC of C, so (A, θ) ' (JC , θC), where θC is the theta-
divisor of C. Moreover, it follows from Torelli’s Theorem (see Milne [Mi], Theorem
12.1) and the fact that C is hyperelliptic that the indicated map gives an isomorphism
Aut(C) ' Aut(JC , θC) ' Aut(A, θ).

In view of formula (19), the above proposition gives us some information about
the weight a(θ) when θ ∈ P∗(A). To go further, we need more information about
Ker(ϕA). The aim is to prove the following result.

Proposition 21 Let (A, θ) be a principally polarized abelian surface such that A ∼
E ×E, for some elliptic curve E. Then Ker(ϕA) = {±1A}, except when A ' E ×E,
where E is a CM elliptic curve with jE ∈ {0, 1728}. Moreover, if θ = cl(C) ∈ P∗(A),
then

(27) a(θ) = 1
2
|Aut(C)|.

As first step, we prove the following result.

Lemma 22 If (A, θ) is a principally polarized abelian surface, then

(28) Ker(ϕA) = Aut(A) ∩ C0(End0
θ(A)),

where End0
θ(A) = {α ∈ End0(A) : α̂φθ = φθα} and C0(End0

θ(A)) denotes the central-
izer of End0

θ(A) in End0(A).

Proof. Recall from [K4], §11, that the map D 7→ φ−1
θ ◦ φD induces an isomorphism

Φθ : NS(A)
∼→ Endθ(A) := {α ∈ End(A) : rθ(α) = α},

where rθ(α) = φ−1
θ ◦ α̂ ◦ φθ. Moreover, by Proposition 58 of [K4] we have that

(29) Φθ(α
∗D) = rθ(α)Φθ(D)α, for all α ∈ Aut(A), D ∈ NS(A).

14



From this we see that

(30) Aut(A, θ) = {α ∈ Aut(A) : rθ(α) = α−1}.

Indeed, if α ∈ Aut(A), then α ∈ Aut(A, θ) ⇔ α∗θ = θ ⇔ Φθ(α
∗θ) = Φθ(θ). Since

Φθ(θ) = 1A, we see from (29) that the latter condition is equivalent to the equation
rθ(α)1Aα = 1A, and so (30) follows.

Since Ker(ϕA) = {α ∈ Aut(A) : α∗D = D, ∀D ∈ NS(A)} and since clearly
Ker(ϕA) ≤ Ker(A, θ), we see from (29) and (30) that

Ker(ϕA) = {α ∈ Aut(A) : α−1βα = β, ∀β ∈ Endθ(A)} = Aut(A) ∩ C(Endθ(A)),

where C(S) = {α ∈ End(A) : αβ = βα, ∀β ∈ S} denotes the centralizer of a subset
S ⊂ End(A) in End(A). Moreover, we observe that if C0(S) := {α ∈ End0(A) :
αβ = βα, ∀β ∈ S}, then C0(S) = C(S)Q and C0(S) ∩ End(A) = C(S), and hence
Ker(ϕA) = Aut(A) ∩ C0(Endθ(A)). This proves (28) because End0

θ(A) = Endθ(A)Q,
and so C0(Endθ(A)) = C0(End0

θ(A)).

We next compute the centralizer C0(End0
θ(A)) in the cases of interest here.

Lemma 23 Let (A, θ) be a principally polarized abelian surface. If A ∼ E × E, for
some elliptic curve E, then Endθ(A) generates End0(A) as a Q-algebra, and hence
C0(End0

θ(A)) = Z(End0(A)), where the latter denotes the centre of End0(A). In
particular, if E is not a CM-curve, then C0(Endθ(A)) = Q · 1A.

Proof. Since A ∼ E2, it follows from the “basic construction” of [FK] that there exist
elliptic curves Ei ∼ E and an isogeny h : A′ := E1×E2 → A such that h∗θ = NθE1,E2 ,
for some N ; see [K6], Proposition 10. This means that if we put θ′ := θE1,E2 , then

ĥ ◦ φθ ◦ h = Nφθ′ , i.e., rθ′,θ(h)h = [N ]A′ , where rθ′,θ(h) := φ−1
θ′ ĥφθ.

It is clear that the rule α 7→ h−1 ◦ α ◦ h defines an isomorphism of rings ch :
End0(A)

∼→ End0(A′). From the above relation it follows that ch(rθ(α)) = rθ′(ch(α)),
for all α ∈ End0(A); see [K4], formula (65). Thus, ch(End0

θ(A)) = End0
θ′(A

′), and so
we see that it suffices to prove the assertions for (A′, θ′) in place of (A, θ).

Thus, we may assume (by changing notation) that A = E×E ′, where E ∼ E ′ are
elliptic curves and θ = θE,E′ . In this case we can use (as in [K4]) the identification
of End(A) with certain 2 × 2 “matrices”. Via this identification we have by [K4],
Proposition 63, that

Endθ(A) =

{(
[n1] ht

h [n2]

)
: ni ∈ Z, h ∈ Hom(E,E ′)

}
.

Thus, for any h ∈ Hom(E,E ′) we have that αh :=

(
0 ht

h 0

)
∈ Endθ(A), and also

that β := diag(1, 0) ∈ Endθ(A).
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Let E denote the Q-algebra generated by Endθ(A). Then
(
0 0
h 0

)
= αhβ ∈ E .

Similarly,
(
0 ht

0 0

)
= βαh ∈ E . Moreover, if n = deg(h) > 0, and if g ∈ End(E), then(

ng 0
0 0

)
= αhαhgβ ∈ E , and similarly, if g′ ∈ End(E ′), then

(
0 0
0 ng′

)
= αhβα(g′)th ∈ E .

Thus End0(A) = E because any element of End0(A) can be written as a Q-linear
combination of the above elements.

This proves the first assertion, and second follows from the first because clearly
C0(Endθ(A)) = C0(E) = C0(End0(A)) = Z(End0(A)).

To prove the last assertion, note that End0(A) 'M2(End(E)), so Z(End0(A)) '
Z(End0(E)) = Q, if E is either non-CM or supersingular. Thus dimQ(Z(End0(A))) =
1 in these cases. Since clearly Q · 1A ⊂ Z(End0(A)), equality holds.

Proof of Proposition 21. By hypothesis, A ∼ E×E. Suppose first that E is not a CM
elliptic curve. Then by Lemmas 22 and 23 we have that Ker(ϕA) = Aut(A)∩Q ·1A =
{±1A}, the latter because deg(x1A) = 1 if and only if x = ±1. This proves the first
assertion in this case.

Now suppose that E is a CM elliptic curve. Then by Theorem 2 of [K3] we have
that A ' E1 × E2, for some CM elliptic curves E1 ∼ E2 ∼ E. We are thus in the
situation of Lemma 29 of [K8], and so it follows from that lemma that Ker(ϕA) =
{±1A} except when E1 ' E2 and jEi

∈ {0, 1728}. This proves the first assertion in
all cases.

Now suppose that θ = cl(C) ∈ P∗(A). Then A 6' E × E, where E a CM
elliptic curve with jE ∈ {0, 1728}, because in that case Theorem 2 of [K5] shows that
P∗(A) = ∅ since then qE,E ∼ x2 + y2 or qE,E ∼ x2 + xy + y2 when jE ∈ {0, 1728}.
Thus |Ker(ϕA)| = 2 by the first assertion, and so formula (27) follows from this and
Proposition 20 (together with formula (19)).

As a first application of Proposition 21 we prove the following result which is
needed below and which extends a result of [AP], p. 142, to arbitrary characteristic
(by a simpler proof).

Proposition 24 If C/K is a curve of genus 2 such that Aut(C) ' C10 := Z/10Z,
then the Jacobian JC of C is not isogeneous to E × E, for any non-supersingular
elliptic curve E/K.

Proof. Let qC := q(JC ,θC) denote the refined Humbert invariant of (JC , θC). We claim:

(31) Aut(C) ' C10, rank(qC) ≤ 3 ⇒ a(θC) = 1.

Indeed, since Aut(C) ' C10, it follows that there exists a σ ∈ Aut(JC , θC) of order 5
by Proposition 20. But then σ lies in Ker(ϕJC

) because a(θ) | 48 by Remark 18 and
5 - 48. Thus ±σ ∈ Ker(ϕJC

), so Ker(ϕJC
) = Aut(JC , θC) and hence a(θC) = 1, which

proves the claim.
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Now if JC were isogeneous to E×E, where E is a non-CM or a CM elliptic curve,
then qC would be a binary or ternary form, and then we would have that a(θC) = 5
by Proposition 21, which contradicts (31). This proves the proposition.

Remark 25 If p := char(K) 6= 0, and if C/K is a genus 2 curve such that Aut(C) has
an element of order 10, then it can happen that JC is isogeneous to E ×E, for some
supersingular curve E/K. Indeed, if p 6= 2, 5, then this happens when p 6≡ 1 (mod 5);
see [IKO], Proposition 1.13. In that case qC is a quintic quadratic form and a(θC) = 5
by Proposition 21.

We now want to connect the weight a(θC) of a genus 2 curve C/K to an invariant
of the associated refined Humbert invariant qC . To do this, let

i(G) := |{g ∈ G : ord(g) = 2}|

denote the number of involutions of a finite group G, and put i∗(G) := i(G)− 1. In
addition, for any integer n let

rn(qC) = |Rn(qC)|, where Rn(qC) = {D ∈ NS(JC , θC) : qC(D) = n}.

Then we have the following basic result from [K1] and [K7]:

Proposition 26 If C/K is a genus 2 curve, then

(32) i∗(Aut(C)) = r4(qC).

Thus, if r4(qC) > 0, then JC ∼ E1 ×E2, for some elliptic curves Ei/K. Moreover, if
r4(qC) ≥ 3, then E1 ∼ E2.

Proof. As in [K7], §6, let I(C) ⊂ Aut(C) denote the set of elliptic involutions of
C. Then |I(C)| = i∗(Aut(C)). By Proposition 35 of [K7] we know that |I(C)| =
|S2(JC , θC)|, where the latter denotes the number of elliptic subgroups on JC of degree
2. On the other hand, by Theorem 1.5 of [K1] and the fact that r1(qC) = 0 by (26),
this number equals r4(qC), and so (32) follows.

If r4(qC) > 0, then |S2(JC , θC)| = r4(qC) > 0, so there exists an elliptic sub-
group E1 ≤ JC , and hence JC ∼ E1 × E2, for some elliptic curve E2. Moreover, if
r4(qC) ≥ 3, then there exist σ1, σ2 ∈ I(C) such that σ2 6= σ1, σCσ1, where σC denotes
the hyperelliptic involution of C, and so it follows from Proposition 40 of [K7] that
rank(qC) ≥ 2. Since rank(qC) = ρ(JC)−1 = ρ(E1×E2)−1 = 1+rank(Hom(E1, E2))
by Proposition 23 of [K4], this means that Hom(E1, E2) 6= 0, and so E1 ∼ E2.

As an application, we can work out the value of a(θ) in the following special case
which is not covered by Proposition 20.
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Proposition 27 Let C/K be a curve of genus 2 with Aut(C) ' C2×C2. If rank(qC) =
1, then qC ∼ 4x2 and we have that a(θC) = 1.

Proof. Since i∗(Aut(C)) = i∗(C2×C2) = 2, we have by Proposition 26 that r4(qC) = 2.
Since rank(qC) = 1, we have that qC ∼ nx2, for some n ∈ N. By Proposition 19 we
have that n > 1, and so n = 4 because r4(qC) > 0. This proves the first assertion.

To prove the second assertion, we first observe that there exists an elliptic in-
volution σ ∈ I(C) because |I(C)| = |i∗(Aut(C))|, as was mentioned in the proof
of Proposition 26. (Thus Aut(C) = 〈σ, σC〉, where σC denotes the hyperelliptic in-
volution.) Let fσ : C → Eσ := C/〈σ〉 denote the associated elliptic subcover of
degree 2. Then E := f ∗σ(JEσ) ∈ S2(JC , θC) is an elliptic subgroup of JC . The
class [E] ∈ NS(JC , θC) is a primitive element of NS(JC , θC) by Theorem 1.9 of [K1],
so NS(JC , θC) = Z[E] because rank(NS(JC , θC)) = rank(qC) = 1 by hypothesis.
Since NS(JC , θC) = NS(JC)/ZθC , this implies that NS(JC) = ZθC + Z cl(E), where
cl(E) ∈ NS(JC) denotes te class of E in NS(JC).

Since fσ ◦ σ = fσ, we have that σ∗f ∗σ = f ∗σ , so σ∗E = E, and hence σ∗ cl(E) =
cl(E). Thus, since σ∗θC = θC (because σ∗ = (σ∗)

−1 ∈ Aut(JC , θC) by Proposition 20),
this implies that σ∗D = D, for all D ∈ NS(JC) = ZθC + Z cl(E), which means that
σ∗ ∈ Ker(ϕJC

). Thus, since also σ∗C = [−1]JC
∈ Ker(ϕJC

), we see that Aut(JC , θC) =
〈σ∗, σ∗C〉 ≤ Ker(ϕJC

) ≤ Aut(JC , θC), and so Ker(ϕJC
) = Aut(JC , θC), which means

by (19) that a(θC) = 1.

Remark 28 It is not difficult to see that a curve C/K satisfying the hypotheses of
Proposition 27 exists. In fact, there exist infinitely many such curves over K. Indeed,
given any pair (E1, E2) of elliptic curves Ei/K with E1 6∼ E2, then by Theorem 2 of
[K2] there exists a curve C/K with surjective morphisms fi : C → Ei of degree 2 for
i = 1, 2. (If char(K) = 2, then the same is true by Theorem 3.4 of [K2], provided
we assume that neither E1 nor E2 is supersingular.) Thus, C2 × C2 ⊂ Aut(C) and
rank(qC) = 1 because JC ∼ E1×E2 and Hom(E1, E2) = 0. (Use the argument of the
proof of Proposition 26.) Furthermore, if Aut(C) > 4 were possible, then it follows
from (the proof of) Theorem 29 below that i∗(G) = r4(qC) > 2, and then E1 ∼ E2

by Proposition 26, contradiction. Thus, Aut(C) ' C2 × C2, as claimed.

We will now establish the following connection between the weight a(θC) and the
number r4(qC) of representations of 4 by qC .

Theorem 29 Let C/K be a curve of genus 2 such that r := rank(qC) ≤ 3, and
put r∗ = min(2, r). Moreover, let Cn denote the cyclic group of order n and Dn the
dihedral group of order 2n. Then we have the following possibilities for Aut(C), a(θC)
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and for r4(qC):

(33)

Aut(C) a(θC) r4(qC)
C2 1 0
C10 1 0

C2 × C2 r∗ 2
D4 4 4
D6 6 6

C3 oD4 12 8
GL2(3) 24 12

,

In particular, we have that

(34) a(θC) = a(qC) := max(1, r4(qC), 3r4(qC)− 12),

except when qC ∼ 4x2, in which case a(θC) = 1. Furthermore, if a(θC) > 1, then

(35) |Aut(C)| = 2a(θC) = 2a(qC).

Proof. If char(K) 6= 2, 5, then the first column of (33) gives the complete list of
possibilities for Aut(C), for any genus 2 curve C/K; see [SV], Theorem 2. However,
if char(K) = 5, then there is another possibility, namely the case that G := Aut(C) '
2+S5, which is a certain double cover of the symmetric group S5; see [SV], p. 711.
But this case cannot occur in our situation, as will now be proved.

To see this, observe first that i∗(G) ≥ i(S5) = 10, since every transposition of S5

lifts to an involution of G; see [SV], p. 711. Thus, by Proposition 26 we have that
JC ∼ E×E, and so by Proposition 21 we obtain that a(θC) = 1

2
|G| = 120. But since

120 - 48, and r ≤ 3, Remark 18 shows that this case is impossible.
If char(K) = 2, then only the cases Aut(C) ' C2, C2 × C2, and D6 are possible

here. Indeed, by the discussion of Igusa [Ig] on p. 645 (together with that on p.
647), we see that the last two cases are the cases (1′) and (2′) of Igusa [Ig]. But his
other two cases (3′) and (6′) are not possible here. To see this, note first that in
case (6′) we have that C has at least 10 elliptic involutions which are given by the
rule σz,c : (x, y) 7→ (x + z4, y + z2x2 + zx + c), where z5 = 1 and c2 − c = 1. (Note
that these elements satisfy the relations given on p. 616 of [Ig], and hence define
automorphisms of C. Moreover, a short computation shows that σ2

z,c = 1.) Thus, a
similar argument as in the case of char(K) = 5 shows that JC ∼ E × E and that
a(θC) = 1

2
|Aut(C)| = 80, the latter by [Ig]. But since 80 - 48, this contradicts Remark

18. Moreover, in the case (3′) we know from the discussion on p. 648 of Igusa [Ig] that
then C also has an elliptic involution. In fact, his argument shows that D4 ≤ Aut(C),
so C has at least 4 elliptic involutions, and hence, as before, we see that JC ∼ E×E,
for some elliptic curve E/K. Thus, since |Aut(C)| = 32 by [Ig], p. 245, we see that
a(θC) = 16 by Proposition 21, and hence r = rank(qC) ≥ 3 by Remark 18 because
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16 - 8 and 16 - 12. This means that r = 3, so E is a CM elliptic curve. But then by
Theorem 2 of [K3] we have that A ' E1 × E2 is a CM product surface, and hence
a(θC)|24 by Remark 18, which is a contradiction since 16 - 24. Thus, this case is also
impossible here, and so the first column gives a complete list of the automorphism
groups when r ≤ 3.

To verify the entries of the third column, it suffices in view of (32) to determine
i∗(G) for each group G appearing in the first column of (33).

For this, note first that it is clear that i∗(G) has the indicated values for the first
three entries of the third column. Moreover, if G = Dn, where n is even, then it is
immediate that i(G) = n + 1, so the next two entries of the third column are also
correct. If G = C3 o D4 (and D4 acts on C3 such that the elements of order 4 of
D4 act by inversion on C3, as is mentioned in [SV]), then it is not difficult to see (by
looking at centralizers of involutions) that there are 3 conjugacy classes of involutions
of lengths 1, 2 and 6. Thus i∗(G) = 8 in this case. Finally, if G = GL2(3), then
by linear algebra over F3 we see that there are 2 conjugacy classes of involutions of
lengths 1 and 12, so here i∗(G) = 12.

To verify the entries of the second column, note first that the first entry is clear by
(19) because [−1]JC

∈ Ker(ϕJC
) ≤ Aut(JC , θC) ' C2 by Proposition 20. Moreover,

the second entry follows from (31). Next, suppose that Aut(C) ' C2 × C2, so JC ∼
E1 × E2 by Proposition 26 and hence r = 1 + rank(Hom(E1, E2)). If r = 1, then
a(θC) = 1 = r∗ by Proposition 27. If r ≥ 2, then Hom(E1, E2) 6= 0, so E1 ∼ E2, and
hence by Proposition 21 we obtain that a(θC) = 1

2
|Aut(C)| = 2 = r∗, which proves

that the third entry of the second column is correct.
For the other 3 entries of the second column we have by the above discussion

that r4(qC) ≥ 4, so JC ∼ E × E by Proposition 26. We are thus in the situation
of Proposition 21, and so in view of (27), the rest of the entries follow directly from
those of the first column.

To verify (34), note first that

(36) Aut(C) ' C2 × C2 and r∗ = 1 ⇔ qC ∼ 4x2.

Indeed, the one direction follows from Proposition 27. Conversely, if qC ∼ 4x2, then
clearly r = 1 = r∗, and r4(qC) = r4(4x

2) = 2. Thus, by comparing the third column
of (33) with the first, it follows that Aut(C) ' C2 × C2, which proves (36).

Combining (36) with Proposition 27 shows that a(θC) = 1 when qC ∼ 4x2.
Assume now that qC 6∼ 4x2. Then (34) follows from the second and third columns

of table (33). Indeed, if r4(qC) ≤ 6, then 3r4(qC) − 12 ≤ r4(qC), and so the formula
(34) holds for the first 5 entries of the table because r∗ = 2 for the third entry by our
assumption. For r4(qC) = 8 and r4(qC) = 12 we have that 3r4(qC)− 12 = 12 and 24,
respectively, so (34) holds in all cases.

Finally, if q(θC) > 1, then we have either the cases of lines 4–6 of (33) or the case
of line 3 with r∗ = 2. In all these cases it is clear that (35) holds.
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In order to deduce Theorems 3 and 4 from Theorem 29, we need the following two
facts.

Lemma 30 If A/K is an abelian surface which is not supersingular, then ρ(A) ≤ 4.
In particular, we have that rank(q(A,θ)) ≤ 3, for any θ ∈ P(A).

Proof. Since rank(q(A,θ)) = ρ(A)−1, as was mentioned in §2, it is clear that the second
assertion follows from the first.

To prove the first assertion, consider first the case that A is not simple, so A ∼
E × E ′ for some elliptic curves E/K and E ′/K. Then ρ(A) = ρ(E × E ′) = 2 +
rank(Hom(E,E ′)), so ρ(A) ≤ 4 except when E ∼ E ′ are supersingluar (in which case
ρ(A) = 6). Thus, the first assertion holds in this case.

Assume next that A is simple, so D := End0(A) is a division ring with centre
Z := Z(D). Thus r := dimQ(D) = d2e, where d2 = dimZ(D) and e = [Z : Q].
Furthermore, D has an involution ′ and we have by [Mu], p. 190, that ρ(A) = dimQ(S),
where S = {x ∈ D : x′ = x}. Thus, the possibilities for ρ := ρ(A) are given in in the
table on p. 202 of Mumford [Mu]. Since here g = 2, we obtain the following results,
depending on the type of (D, ′ ).

Type I: d = 1, e|2 ⇒ r = ρ = 1 or 2.
Type II: d = 2, e = 1 ⇒ r = 4 and ρ = 3.
Type III: d = 2, e|2 ⇒ r = 4 or 8 and ρ = 1 or 2.
Type IV: (d, e) = (1, 2), (1, 4) or (2, 2) ⇒ r = 2, 4 or 8 and ρ = 1, 2 or 4.
Thus, in all cases we have that ρ ≤ 4, which proves the first assertion.

Lemma 31 Let C/K be a curve of genus 2 with Aut(C) ' C10. If JC is not super-
singular, then JC is simple and rank(qC) = 1.

Proof. If JC were not simple, then JC ∼ E1 × E2, for some elliptic curves Ei/K,
i = 1, 2. Then E1 6∼ E2 by Proposition 24 because JC is not supersingular. Thus,
End0(JC) ' E1 ⊕ E2, where Ei = End0(Ei), for i = 1, 2. Now by the hypothesis and
Proposition 20 there exists a σ ∈ End0(JC)× of order 5, so there is a σi ∈ E×i of
order 5, for some i = 1, 2. But then Q(ζ5) ' Q(σi) ⊂ Ei, which is impossible because
[Q(ζ5) : Q] = 4 and either [Ei : Q] ≤ 2 or [Ei : Q] = 4 and Ei is not commutative.

Thus, JC is simple, so D := End0(JC) is a division ring. As above, we see that
there exists σ ∈ Aut(JC) ≤ D× of order 5, so L := Q(σ) ⊂ D and L ' Q(ζ5). From
(30) we see that σ+σ−1 ∈ EndθC

(JC), so ρ = ρ(JC) ≥ 2 because [Q(ζ5+ζ
−1
5 ) : Q] = 2.

Suppose that ρ > 2. Then ρ = 3 or 4 by Lemma 30. If ρ = 3, then D has type II
by the table in the proof of Lemma 30, and then r = 4. But this means that D = L
is commutative, which contradicts the fact that d = 2. Thus, ρ 6= 4.

Next, suppose that ρ = 4. Then we are in case IV with (d, e) = (2, 2), so [D :
Z] = 4, where Z = Z(D) is the centre of D. By [Mu], p. 201, Z is an imaginary
quadratic field, so L ∩ Z = Q because the unique quadratic subfield of L ' Q(ζ5) is
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real. But this means that ZL ⊂ D is a field of degree 8, so LZ = D, and hence D is
commutative, which contradicts the fact that d = 2. Thus ρ 6= 4, and so only ρ = 2
is possible. This implies that rank(qC) = ρ− 1 = 1, as claimed.

Proof of Theorem 3. To prove the first assertion, it suffices to show that a(θ) = a(q)∗.
Since θ ∈ P(A, q), we have that qθ ∼ q by definition, and so rn(qθ) = rn(q), for

all n ≥ 1. In particular, r1(qθ) = 0 because r1(q) = 0 by hypothesis. Thus, θ = cl(C)
is the class of a genus 2 curve C ⊂ A by (26), and hence (A, θ) ' (JC , θC). Since
r = rank(qC) ≤ 3 by Lemma 30, we are thus in the situation of Theorem 29, and so
a(θ) = a(qC)∗ by (34). This shows that a(θ) only depends on q, and that (3) holds.

It is clear that (4) follows directly from the first assertion and from formula (2).

Proof of Theorem 4. Since r = rank(qC) ≤ 3, we are in the situation of Theorem 29.
Moreover, since r ≥ 2, we have that r∗ = 2 and that Aut(C) 6' C10 by Lemma 31. In
the remaining cases we see from the table (33) that (5) holds.

It is clear from (5) that qC determines the order of Aut(C), and hence also Aut(C)
because all the groups listed in the first column of (33) have different orders.

From (4) we can immediately deduce Theorem 5 of the introduction.

Proof of Theorem 5. If Θ∗
A = ∅, then also C(A) = ∅, and so N∗

A = 0. Thus, in this
case (6) holds because S(∅) = 0.

Now suppose that Θ∗
A is nonempty, and let q1, . . . , qn be a system of representatives

of the equivalence classes in the set Θ∗
A. Note that since the forms qθ with θ ∈ P(A) all

have the same rank and discriminant (see Proposition 9 of [K4]), this set is necessarily
finite by Watson [Wa], Theorem 11. It is clear from the definition that the sets P(A, qi)
are pairwise disjoint, so we obtain the decompositions

P∗(A) =
n∐

i=1

P(A, qi) and P∗
(A) =

n∐
i=1

P(A, qi)

because the first decomposition is compatible with the HA-action on these sets. Thus,
since the map C 7→ cl(C) defines a bijection Aut(A)\C(A)

∼→ P∗
(A) by Torelli’s

Theorem, we see that

N∗
A = |P∗

(A)| =
n∑

i=1

|P(A, qi)| =
n∑

i=1

[GA : HA]
a(qi)

∗

|Aut(qi)|
= [GA : HA]S(Θ∗

A),

which proves (6).

As was mentioned in the introduction, the quantities a(q) and |Aut(q)| are easily
computed for a given positive binary or ternary quadratic form q. By using the fact
each such form is equivalent to a reduced form, we can give an explicit formula for
a(q) in terms of the coefficients of the form. We first consider the binary case.
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Proposition 32 Let C/K be a curve of genus 2 such that rank(qC) = 2. Then
qC ∼ q, where q(x, y) = ax2 + bxy + cy2 is a reduced binary form, and

(37) 1
2
|Aut(C)| = a(qC) =


1 if a 6= 4
2 if a = 4 and c 6= 4
4 if a = c = 4 and b 6= 4
6 if a = b = c = 4

Furthermore, if a(qC) 6= 1, then

(38) |Aut(qC)| = 2a(qC) = |Aut(C)|.

Proof. The first assertion follows from [Wa], Theorem 7. Moreover, the first equality
of (37) follows from Theorem 4, so to prove (37) it suffices to verify the second equality
of (37).

Since q is reduced, a = min(q); see Watson [Wa], Theorem 7. Since r1(qC) = 0
by (26), we have that a > 1. Moreover, since qC(D) ≡ 0, 1 (mod 4), for all D ∈
NS(A, θC), it follows that a ≥ 4. Thus, if a 6= 4, then min(q) > 4 and hence
r4(qC) = 0, so a(qC) = max(1, 0,−12) = 1. This proves the first line of (37).

Now suppose henceforth that a = 4. If c 6= 4, then c > a = 4 because q is reduced,
so R4(q) = {(±1, 0)} (see [BV], Lemma 5.7.3), and hence r4(q) = 2 in this case. This
means that a(qC) = a(q) = max(1, 2,−6) = 2.

We are left with the case that a = c = 4. Since qC ≡ 0, 1 (mod 4), we see that
b ≡ 0 (mod 4), and so either b = 0 or b = 4. In the first case q = 4x2 + 4y2, so
R4(q) = {(±1, 0), (0,±1)} and r4(q) = 4, so a(qC) = max(1, 4, 0) = 4. In the second
case we have that q = 4x2 + 4xy + 4y2, so R4(q) = {(±1, 0), (0,±1),±(1,−1)} and
r4(q) = 6, which means that a(qC) = a(q) = max(1, 6, 6) = 6. This proves (37).

To prove (38), it suffices in view of (37) to verify the first equality of (38). Now if
a(qC) = 6, then (38) holds because |Aut(4x2 + 4xy + 4y2)| = |Aut(x2 + xy + y2)| =
2|Aut+(x2+xy+y2)| = 12, and similarly equation (38) holds when a(qC) = 4 because
|Aut(4x2 + 4y2)| = 8. We are thus left with the case that a(qC) = 2, so a = 4, and
c > 4.

Since qC ≡ 0, 1 (mod 4), it follows that c ≡ 0, 1 (mod 4). Suppose first that c ≡
0 (mod 4). Then also b ≡ 0 (mod 4). Thus either q = 4x2 +4c1y

2 or 4x2 +4xy+4c1y
2

with c1 = c/4 ≥ 2. Thus, a|b, which means that q is an ambiguous form, and so
|Aut(q)| = 2|Aut+(1

4
q)| = 4 because c1 > 1. Thus (38) holds in this case.

Finally, suppose that c ≡ 1 (mod 4), c > 1. Then q(1,±1) ≡ ±b + 1 (mod 4), so
again b ≡ 0 (mod 4). Thus, we have the cases q = 4x2 + cy2 and q = 4x2 + 4xy+ cy2.
Since both these forms are ambiguous, we have that |Aut(q)| = 2|Aut+(q)| = 4, the
latter because b2 − 4ac = −16c or −16(c− 1), and these are not equal to −3 or −4.
(Here we use Theorem 2.5.10 of [BV].) Thus (38) holds in all the asserted cases.

A similar method can be used for ternary forms. For this, we first prove the
following result which is also of independent interest.
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Proposition 33 Let C/K be as in Theorem 29. If qC is a primitive form and if
3|a(qC), then qC is a ternary form with a(qC) = r4(qC) = 6 and there exists c ≡
1 (mod 4), c > 1, such that

(39) qC ∼ q1,c := 4x2+4y2+cz2+4yz+4xz+4xy or qC ∼ q2,c := 4x2+4y2+cz2−4xy.

Proof. Since 3|a(qC) = max(1, r4(qC), 3r4(qC) − 12), we see that r4(qC) ≥ 3, and so
rank(qC) ≥ 2 by Proposition 26. Now if qC were a binary form, then by (37) we see
that qC ∼ 4x2 +4xy+4y2, which is not primitive. Thus, qC has to be a ternary form.

Since qC is assumed to be primitive, we have that qC ∼ q = ax2 + by2 + cz2 +
Ryz + Sxz + Txy for some integers a, b, c, R, S, T with gcd(a, b, c, R, S, T ) = 1. Now
as in the proof of Proposition 32 we have that qC ≡ 0, 1 (mod 4), so the same is true
for q and for q1 := q(x, y, 0) = ax2 + by2 + Txy, and hence it follows that 2|T (see
[K7], Proposition 5). Similarly, by considering q(x, 0, z) and q(0, y, z) we see that also
2|S and 2|T . Thus we can write q in the form ax2 + by2 + cz2 + 2ryz + 2sxz + 2txy,
where r, s, t ∈ Z, and so q is a properly primitive ternary form in the sense of [Di].

By replacing q by an equivalent form, we may assume by Theorem 103 of [Di] that
q is an Eisenstein reduced form. Note that a is the minimum of the form (by [Di],
Theorem 101), so a = 4 because qC ≡ 0, 1 (mod 4) and r1(qC) = 0 and r4(qC) > 0.

Note that 3 | |Aut+(q)| because by the hypothesis, (5) and (24) we have that
3 | a(qC) = a(θC) | |Aut+(qC)| = |Aut+(q)|. We now look in the tables of Theorem
105 of [Di] to find the reduced forms satisfying the above conditions. Note that we
can discard the cases that a = b = c because this condition implies that q is not
primitive since a = 4.

Suppose first that r, s, t > 0. Then the automorphs listed in lines 1–7 of the table
on p. 179 of [Di] all have order 2, and those in line 8 have order 4. Thus, we are only
left with the case of line 9, which means that a = b = 2r = 2s = 2t, i.e., q = q1,c, for
some c. Note that c ≥ b = 4 since q is reduced. Moreover, c ≡ 1 (mod 2) because
otherwise q is not primitive, and so c ≡ 1 (mod 4) because q ≡ 0, 1 (mod 4).

Now suppose that r, s, t ≤ 0. Here again the automorphs listed in lines 1–7 of the
table on p. 180 of [Di] all have order 2, and those of line 8 have order 4. Moreover,
the case of line 10 of the table can be discarded because then b = c = −2r, and
hence q is not primitive. In addition, the case of line 11 is impossible because the
condition a = −3s implies that 3|4. We are thus left with the case of line 9, so
a = b = −2t, r = s = 0, which means that q = q2,c, for some c. As in the case of q1,c,
it follows that c ≡ 1 (mod 4) and that c > 1. This proves (39).

It remains to show that r4(qC) = 6. By (39), it suffices to show that r4(qi,c) = 6,
for i = 1, 2 (and c ≡ 1 (mod 4), c > 1). Since q2,c(x, y, z) = 4q2(x, y) + cz2, where
q2(x, y) = x2 − xy + y2, we see that R4(q2,c) = {(x, y, 0) : (x, y) ∈ R1(q2)} because q2
is a positive form and c ≥ 5, so r4(q2,c) = r1(q2) = 6. Moreover, since

q1,c(x, y, z) = 2(x+ y)2 + 2(x2 + z)2 + 2(y + z)2 + (c− 4)z2,
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we see that R4(q1,c) = {(x, y, 0) : (x, y) ∈ R1(q1)}, where q1(x, y) = q1,c(x, y, 0) = x2+
xy+y2. Indeed, if c ≥ 9, then this is clear, so suppose that c = 5. If (x, y, z) ∈ R4(q1,5)
and z 6= 0, then z = ±2 and x+ y = x+ z = y + z = 0, so x = −y and x = −z = y,
contradiction. Thus r4(q1,c) = r1(q1) = 6. We thus have that r4(qC) = 6, and so
a(qC) = max(1, 6, 6) = 6, as claimed.

Corollary 34 If C/K is as in Theorem 29 and if r4(qC) > 6, then qC is a non-
primitive ternary form.

Proof. Since r4(qC) > 6, we have by Proposition 26 that rank(qC) ≥ 2. Moreover,
since this implies that a(qC) ≥ r4(q4) > 6, it follows from (37) that qC cannot be a
binary form, and hence qC is a ternary form.

Since r4(qC) > 6, it follows from (33) that r4(qC) = 8 or 12, and so a(qC) = 12 or
24. Thus 3|a(qC), and so qC cannot be primitive by Proposition 33.

This leads to the following method for computing a(qC) when qC is a primitive
ternary form.

Corollary 35 Let qC be a primitive ternary form. Then qC ∼ q, where q is Eisenstein
reduced. Moreover, if we write q(x, y, z) = ax2 + by2 + cz2 + 2ryz+ 2sxz+ 2txy, then
we have that

(40) 1
2
|Aut(C)| = a(qC) =


1 if a 6= 4,
2 if a = 4 and b 6= a,
6 if a = b = 4 and (r, s, t) = (2, 2, 2) or (0, 0,−2),
4 otherwise.

Proof. Recall that from the proof of Proposition 33 that qC is properly primitive, so
the first assertion follows from Theorem 103 of [Di]. Moreover, we saw in that proof
that r4(q) = 0 if and only if a 6= 4, so the first line of (40) holds.

Now suppose that a = 4, so r4(q) > 0. Since b is the second minimum of q (see
[Di], Theorem 101), we see that r4(q) = 2 if and only if a = 4 and b 6= 4. Thus,
assume that r4(q) > 2. By Theorem 29 and Corollary 34 we know that the only
possibilities for r4(q) > 2 are r4(q) = 4 or 6. Furthermore, if a(qC) = r4(q) = 6, then
by Proposition 33 we have that qC ∼ qi,c and then q = qi,c because by [Di], Theorem
104, any two equivalent Eisenstein-reduced forms are equal. Thus, (r, s, t) = (2, 2, 2),
if i = 1 and (r, s, t) = (0, 0,−2), if i = 2. Conversely, if q = qi,c, then r4(q) = 6, as
was shown in the proof of Proposition 33. This shows that the first 3 cases of (40)
are correct, and so it follows that r4(q) = 4 in the remaining cases. This proves (40).

Remark 36 If qC is an imprimitive ternary form, then the computation of a(qC) is
more complicated. However, we can still compute r4(qC) (and hence a(qC)) if qC is
given explicitly.
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Indeed, if qC ∼ q, where q(x, y, z) = ax2 + by2 + cy2 + ryz + sxz + txy, then we
can determine Rn(q) by using Hermite’s identity

(41) 4aq(x, y, z) = (2ax+ ty + sz)2 + q′(y, z),

where q′(y, z) is a positive binary quadratic form; see Watson [Wa], p. 18. Thus, for
a given n, the form q′(y, z) can only take finitely many values m, and for each such
an m the set Rm(q′) is easily computed. Moreover, for each (y, z) ∈ Rm(q′), we can
find all possible x’s (if any) such that (x, y, z) ∈ Rn(q).

6 Abelian Product Surfaces

We now apply the method of Theorem 5 to give a formula for the number N∗
A in

the case that A = E × E ′ is an abelian product surface. (Here we may assume that
E ′ ∼ E, for otherwise N∗

A = 0 by Remark 43 below.) For this, we need to know the
index [GA : HA] and the set Θ∗

A. In the non-CM case we have the following.

Proposition 37 Let A = E × E ′, where Hom(E,E ′) = Zh with d := deg(h) ≥ 1.
Then [GA : HA] = 2ω(d), and

(42) Θ∗
A =

{
gen(x2 + 4dy2)∗ ∪ gen(4x2 + 4xy + (d+ 1)y2), if d ≡ 3 (mod 4),

gen(x2 + 4dy2)∗, otherwise.

Proof. The first assertion follows from Theorem 1 of [K8]. Moreover, the formula (42)
was implicitly proven in [K4]. To see this, suppose first that C ∈ C(A). Then C is a
curve of type d in the terminology of [K4], so by Theorem 2 of [K4] we know that qC
is (equivalent to) a binary form of type d, and that qC does not represent 1. Thus,
by Theorem 13 of [K4] we have that qC ∈ gen(x2 + 4dy2)∗, if d 6≡ 3 (mod 4), or that
qC ∈ gen(x2 + 4dy2)∗ ∪ gen(4x2 + 4xy+ (d+ 1)y2), if d ≡ 3 (mod 4). This shows that
Θ∗

A is contained in the right hand side of (42).
Conversely, if q is a binary form contained in the right hand side of (42), then q

is a form of type d by Theorem 13 of [K4], and then by Theorem 31 of [K4] there
exists a curve C ∈ C(A) such that qC ∼ q. This shows that the right side of (42) is
contained in Θ∗

A, and so (42) holds.

Thus, to determine N∗
A, it suffices to compute S(Q), where Q = gen(x2 + 4dy2)∗

and Q = gen(4x2 + 4xy + (d + 1)y2), the latter when d ≡ 3 (mod 4). For this, the
following result is useful.

Lemma 38 If q is a primitive positive binary quadratic form of discriminant ∆, and
if u(∆) := |Aut+(q)|, then

(43)
∑

q′∈gen(q)

1

|Aut(q′)|
=

h(∆)

2u(∆)g(∆)
.
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Proof. Recall that |Aut+(q)| = 2 if ∆ 6= −3,−4; see [BV], p. 29. Since h(−3) =
h(−4) = 1, it follows that u(∆) = |Aut+(q)| only depends on ∆.

Let ≈ denote proper (or SL2(Z)) equivalence of binary forms, and let Gen(q)
denote the set of SL2(Z)-equivalence classes of all binary forms which are genus-
equivalent to q. By Corollary 3.14, Theorem 3.15 and Theorem 3.21 of [Co] we see
that

(44) |Gen(q)| =
h(∆)

g(∆)
.

Consider the map cq : Gen(q) → gen(q) which takes an SL2(Z)-equivalence class of
forms to its GL2(Z)-equivalence class. This map is clearly surjective, and we have
that

(45) |c−1
q (q′)| · |Aut(q′)| = 2u(∆), for all q′ ∈ gen(q).

Indeed, we have that |c−1
q (q′)| = 1 if and only if q′ ≈ (q′)c, where (q′)c is the op-

posite of q′, and the latter condition is equivalent to the condition that |Aut(q′)| =
2|Aut+(q′)| = 2u(∆); see Jones [Jo], p. 162. (Jones calls such classes ambiguous.) On
the other hand, if |c−1

q (q′)| > 1, then |c−1
q (q′)| = 2, and then |Aut(q′)| = |Aut+(q′)| =

u(∆), so (45) holds in all cases. Thus (43) follows because by (45) and (44) we obtain
that ∑

q′∈gen(q)

2u(∆)

|Aut(q′)|
=

∑
q′∈gen(q)

|c−1
q (q′)| = |Gen(q)| =

h(∆)

g(∆)
.

Proposition 39 Let d ≥ 1 and put ε(d) = 1, if d ≡ 0, 1, 5 (mod 8) and ε(d) = 0
otherwise. Then

(46) 4S(gen(x2 + 4dy2)∗) =
h(−16d)

g(−16d)
− 1 + ε(d),

except when d = 1, in which case 4S(gen(x2+4dy2)∗) = 0. Moreover, if d ≡ 3 (mod 4),
then

(47) 4S(gen(4x2 + 4xy + (d+ 1)y2)) =
h(−d)
g(−d)

+ 1.

Proof. Suppose first that d ≡ 3 (mod 4), and let q′ ∈ gen(q), where q = 4x2 + 4xy +
(d+1)y2). Then cont(q′) = 4 and ∆(q′) = −16d, so by Proposition 32 and its proof we
see that a(q′)∗ = a(q′) > 1 if and only if q′ ∼ q = 4q1, where q1 = x2 +xy+ 1

4
(d+1)y2.

Since |Aut(4q1)| = 2u(−d) and a(4q1)
|Aut(4q1)| = 1

2
by (38), we see that

S(gen(q)) =
1

2
− 1

2u(−d)
+

∑
q′∈gen(q)

1

|Aut(q′)|
=

u(−d)− 1

2u(−d)
+

∑
q′∈gen(q1)

1

|Aut(q′)|
.
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Since q1 is primitive with ∆(q1) = −d, we obtain from (43) that S(gen(q)) = u(−d)−1
2u(−d)

+
h(−d)

2u(−d)g(−d)
. Now if d = 3, then h(−d) = g(−d) = 1 and u(−d) = 6, so S(gen(q)) = 1

2
.

Thus (47) holds in this case. If d > 3, then u(−d) = 2, so S(gen(q)) = 1
4

+ h(−d)
4g(−d)

, so

(47) holds in all cases.
The proof of (46) is similar. Put q = x2 + 4dy2, and let q′ ∈ gen(q). Note that q′

is primitive with ∆(q′) = −16d. We observe that q′ ∈ gen(q)∗ ⇔ r1(q
′) = 0 ⇔ q′ ∼ q,

so gen(q)∗ = ∅ when d = 1 because h(−16) = 1. Thus S(gen(q)∗) = 0 in this case, so
assume henceforth that d > 1.

By Proposition 32 and its proof we see that a(q′) > 1 if and only if q′ ∼ qd, where
qd = 4x2 + dy2 when d is odd, and qd = 4x2 + 4xy + (d + 1)y2 when d is even. Note
that the condition q′ ≡ 0, 1 (mod 4) implies that d ≡ 1 (mod 4) in the first case and
d ≡ 0 (mod 4) in the second case. Thus, if d ≡ 3 (mod 4), then a(q′) = 1, for all
q′ ∈ gen(q)∗. Thus, since |Aut(q)| = 2u(−16d) = 4, for all d ≥ 1, we obtain from
(43) that

S(gen(q)∗) =
∑

q′∈gen(q)∗

1

|Aut(q′)|
= −1

4
+

∑
q′∈gen(q)

1

|Aut(q′)|
= −1

4
+

h(−16d)

4g(−16d)
,

and so (46) holds in this case because here ε(d) = 0.
Now suppose that d ≡ 1 (mod 4). Then qd ∈ gen(q′), as can be seen by observing

that the generic characters of qd (see [Co], p. 55) all have the value 1. Thus, since
|Aut(qd)| = 2u(−16d) = 4 because qd is ambiguous, it follows from (38) that

S(gen(q)∗) =
1

2
− 1

4
+

∑
q′∈gen(q)∗

1

|Aut(q′)|
=

∑
q′∈gen(q)

1

|Aut(q′)|
=

h(−16d)

4g(−16d)
,

and so (46) holds in this case as well because here ε(d) = 1.
Finally, suppose that d is even. By looking at the generic characters of qd in this

case, we see that qd ∈ gen(q) if and only d ≡ 0 (mod 8), i.e., if and only if ε(d) = 1.
Thus, if ε(d) = 0, then a(q′) = 1, for all q′ ∈ gen(q)∗, and so a similar calculation as
for d ≡ 3 (mod 4) shows that (46) holds in this case. On the other hand, if ε(d) = 1,
then qd ∈ gen(q)∗, and then a similar calculation as for d ≡ 1 (mod 4) shows that (46)
holds. This proves (46) in all cases.

We can use the above results to prove Theorem 6 of the introduction.

Proof of Theorem 6. From Theorem 5 and Proposition 37 it follows that N∗
A =

2ω(d)−2(4S(Θ∗)). Using (42), we see from Proposition 39 that 4S(Θ∗
A) = h(−16d)

g(−16d)
+c(d),

with c(d) = h(−d)
g(−d)

, if d ≡ 3 (mod 4), and with c(d) = ε(d) − 1, if d 6≡ 3 (mod 4) and

d > 1. This proves (7). If d = 1, then S(Θ∗
A) = S(gen(x2 +4y2)∗) = 0 by Proposition

39, and so N∗
A = 0 in this case.
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Remark 40 The above Theorem 6 represents a restatement of Hayashida’s formula
on p. 18 of [H1] in much simpler and compact form. However, it is not so easy to see
that (7) gives the same formula as that of [H1] because that formula is expressed in
terms of the class number h of Q(

√
−d). To see the connection, note first that h is

related to h(−16d) (and to h(−d)) by the formula of Theorem 7.24 in [Co]; this leads
to the function ψ as defined in [H1]. Moreover, if we use the fact that

(48) g(∆) = 2ω(|∆|)−1+µ(∆),

where µ(∆) = 1, if ∆ ≡ 0 (mod 32), µ(∆) = −1, if ∆ ≡ 4 (mod 16), and µ(∆) = 0
otherwise (see [Co], p. 54 or [K4], formula (18)), then it is not difficult (but a bit
tedious) to derive the formulae of Hayashida by considering each of the five case
distinctions listed in Hayashida’s paper.

We now turn to the case of a CM product surface A = E × E ′, i.e. one for which
E ∼ E ′ is an elliptic curve with complex multiplication. Note that this case includes
all abelian surfaces A which are isogeneous to E0 × E0, for some CM elliptic curve
E0/K; see [K3], Theorem 2.

In this case the description of the index [GA : HA] and of the set Θ∗
A is more

complicated than in the non-CM case. To simplify the description, we introduce the
following terminology and notation.

Definition. A principal polarization θ ∈ P(A) is called odd if q(A,θ) represents an
odd integer. We denote the set of such θ’s by P(A)odd ⊂ P(A), and also write
P(A)ev := P(A)\P(A)odd. The elements in P(A)ev are called even polarizations. We
also put

Θodd
A := {q : q ∼ q(A,θ), θ ∈ P(A)odd}/∼ and Θev

A := {q : q ∼ q(A,θ), θ ∈ P(A)ev}/∼ .

Notation. If q(x, y) = ax2 + bxy+ cy2 is a binary quadratic form, then let fq denote
the ternary form

fq(x, y, z) = x2 ⊥ q = x2 + 4ay2 + 4byz + 4cz2.

In addition, if 2|b and a ≡ 3 (mod 4), then write a1 = a+1
4

and b1 = b
2
, and put

gq(x, y, z) = x2 + a2
1a(a+ 4)y2 + (b21 + c)z2 − a1b(a+ 2)yz − bxz + a(2a1 + 1)xy.

Similarly, if 2|b and c ≡ 3 (mod 4), then write c1 = c+1
4

and b1 = b
2
, and put

g′q(x, y, z) = x2 + c21c(c+ 4)y2 + (b21 + a)z2 − c1b(c+ 2)yz − bxz + c(2c1 + 1)xy.

Note that fq, gq and g′q are primitive forms. Moreover, fq is properly primitive in the
sense of Dickson [Di], whereas 2gq and 2g′q are improperly primitive forms because
the coefficient of xy in both qq and g′q is odd.
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Using the above notation, we can now formulate the analogue of Proposition 37
for CM product surfaces. Recall from the introduction that qE,E′ denotes the degree
function on Hom(E,E ′), which is a binary quadratic form if E ∼ E ′ is a CM elliptic
curve.

Theorem 41 Let A ' E × E ′ be a CM product surface and let qE,E′ ∼ q, where
q = ax2+bxy+cy2 is a binary quadratic form. Let ∆ = b2−4ac denote its discriminant
and κ = cont(q) = gcd(a, b, c) its content. Then the index [GA : HA] is given by the
formula (8), and Θodd

A = gen(fq). Furthermore, Θev
A 6= ∅ if and only if

(49) 2|b and a ≡ 3 (mod 4) or c ≡ 3 (mod 4) or a+ b+ c ≡ 3 (mod 4).

If this is the case, then q ∼ q′ = a′x2 + b′xy + c′y2 with a′ ≡ 3 (mod 4). Moreover,
if ∆ ≡ 16 (mod 32), then q ∼ q′′ = a′′x2 + b′′xy + c′′y2 with a′′ ≡ 3 (mod 4) and
c′′ ≡ a′′ + 4 (mod 8). In addition, if (49) holds, then
(50)

Θev
A = gen(4gq′), if ∆ 6≡ 16 (mod 32), and Θev

A = gen(4gq′′) ∪ gen(4g′q′′), otherwise.

In order to prove this important result, we require some auxiliary results. We first
observe:

Proposition 42 In the situation of Theorem 41 we have that P(A)ev 6= ∅ if and
only if 4|∆ and qE,E′(h) ≡ 3 (mod 4), for some h ∈ Hom(E,E ′).

Proof. Recall from Proposition 23 of [K4] that we have an isomorphism

(51) D : Z⊕ Z⊕ Hom(E,E ′)
∼→ NS(A)

such that qA(D(a, b, h)) = ab− deg(h) = ab− qE,E′(h). In particular, we see that

(52) D(a, b, h) ∈ P(A) ⇔ ab− deg(h) = 1 and a > 0.

Let θ ∈ P(A), so θ = D(a, b, ch) ∈ P(A), where h ∈ Hom(E,E ′) is primitive
and a, b, c ∈ Z satisfy ab − c2 deg(h) = 1. Then there exists h′ such that h, h′ is a
basis of Hom(E,E ′), and then D1 := D(1, 0, 0), D2 := D(0, 1, 0), D3 := D(0, 0, h)
and D4 := D(0, 0, h′) is a basis of NS(A). Note that ∆ = (deg(h + h′) − deg(h) −
deg(h′))2 − 4 deg(h) deg(h).

We observe from (11) that θ ∈ P(A)ev if and only if (θ.D) ≡ 0 (mod 2), for all
D ∈ NS(A). Since (D1.θ) = b, (D2.θ) = a, (D3.θ) = −2 deg(h), (D4.θ) = c(D4.D3),
and since gcd(a, b, c) = 1, we see that

(53) θ = D(a, b, ch) ∈ P(A)ev ⇔ 2|a, 2|b, 2|(D3.D4).
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Moreover, since (D3.D4) = − deg(h + h′) + deg(h) + deg(h′), it follows that ∆ ≡
(D3.D4)

2 (mod 4), and so we have that 2|(D3.D4) if and only if 4|∆.
Thus, if θ = D(a, b, ch) ∈ P(A)ev, then 4|∆ and 2|a, 2|b. Thus, since ab −

deg(ch) = 1, we see that deg(ch) = ab− 1 ≡ 3 (mod 4), which proves one direction of
the proposition.

Conversely, suppose that 4|∆ and that there exists h∗ ∈ Hom(E,E ′) such that
deg(h∗) = n = 4k− 1. Write h∗ = ch, with h primitive, and put a = 2, b = 2k. Then
ab− deg(ch) = 1, so θ := D(2, 2k, ch) ∈ P(A), and by (53) and by the sentence after
it we see that θ ∈ P(A)ev. Thus P(A)ev 6= ∅, and so the proposition follows.

Remark 43 Note that if A = E × E ′ where Hom(E,E ′) = 0, then it follows from
(52) that P(A) = {θ}, where θ = D(1, 1, 0). Since q(A,θ)(D(1, 0, 0)) = 1, it follows
from (26) that θ /∈ P(A)∗, so P(A)∗ = ∅ and hence N∗

A = 0.

We now examine the condition of Proposition 42 in more detail.

Lemma 44 Let q(x, y) = ax2 + bxy + cy2 be a binary quadratic form and suppose
that 4|∆ = disc(q). Then:

(a) We have that q(x, y) ≡ 3 (mod 4), for some x, y ∈ Z, if and only if (49) holds.

(b) If (49) holds, then q ∼ q′, where q′ = a′x2 + b′xy + c′y2 and a′ ≡ 3 (mod 4).

(c) If ∆ ≡ 16 (mod 32) and if (49) holds, then q ∼ q′′, where q′′ = a′′x2 + b′′xy+ c′′y2

and a′′ ≡ 3 (mod 4) and c′′ ≡ a′′ + 4 (mod 8).

Proof. (a) If (49) holds for q, then clearly q(x, y) ≡ 3 (mod 4), for some x, y ∈ Z.
Indeed, if a ≡ 3 (mod 4), then q(1, 0) = a ≡ 3 (mod 4), and if c ≡ 3 (mod 4), then
q(0, 1) = c ≡ 3 (mod 4). Finally, if a + b + c ≡ 3 (mod 4), then q(1, 1) = a + b + c ≡
3 (mod 4).

Conversely, suppose that q(x, y) ≡ 3 (mod 3), for some x, y ∈ Z. Since 4|∆, we
have that 2|b. Thus, if x ≡ 1 (mod 2) and y ≡ 0 (mod 2), then x2 ≡ 1 (mod 4) and
y2 ≡ bxy ≡ 0 (mod 4), so a ≡ q(x, y) ≡ 3 (mod 4). Similarly, if x ≡ 0 (mod 2) and
y ≡ 1 (mod 2), then c ≡ q(x, y) ≡ 3 (mod 4). Now suppose that x ≡ y ≡ 1 (mod 4).
Then x2 ≡ y2 ≡ 1 (mod 4), and bxy ≡ ±b ≡ b (mod 4) because 2|b, so a + b + c ≡
q(x, y) ≡ 3 (mod 4). Thus (49) holds because the case x ≡ y ≡ 0 (mod 4) is not
possible.

(b) In what follows, we will use the abbreviation q = [a, b, c] to denote q(x, y) =
ax2 + bxy + cy2. Now if a ≡ 3 (mod 4), then we can take q = q′. If c ≡ 3 (mod 4),
then we can take q′ = [c, b, a] ∼ q. Finally, if a+ b+ c ≡ 3 (mod 4), then we can take
q′ = [a+ b+ c, b+ 2c, c] ∼ q.

(c) By part (b) we have that q ∼ q′ = [a′, b′, c′], with a′ ≡ 3 (mod 4) and 2|b′.
Suppose first that b′ ≡ 2 (mod 4), so b′ = 2b1 with b1 odd. Then the condition
∆ ≡ 16 (mod 32) implies that b21 − a′c′ ≡ 4 (mod 8). Since b21 ≡ 1 (mod 8), we
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obtain that a′c′ ≡ −3 (mod 8). Thus, if a′ ≡ 3 (mod 8), then c′ ≡ 7 (mod 8), and if
a′ ≡ 7 (mod 8), then c′ ≡ 3 (mod 8). Thus, we can take q′′ = q′ when b′ ≡ 2 (mod 4).

Now suppose that b′ ≡ 0 (mod 4). Then we can take q′′ = [a′, b′+2a′, a′+b′+c′] ∼
q′ ∼ q because b′ + 2a′ ≡ 2 (mod 4). This proves (c).

Remark 45 It is clear from condition (49) that P(A)ev = ∅ if ∆ is odd or if
cont(qE,E′) is even. Furthermore, if ∆ ≡ 4 or 8 (mod 16), then an argument sim-
ilar to the proof of Lemma 44 shows that (49) holds if and only if cont(qE,E′) is odd.
On the other hand, if ∆ ≡ 0 or 12 (mod 16), and cont(qE,E′) is odd, then condition
(49) may or may not hold for q ∼ qE,E′ .

We are now ready to prove Theorem 41. For this, we will use results from [K8],
[K5], [K9] and Kir [Ki].

Proof of Theorem 41. The index formula (8) follows from Theorem 2 of [K8]. Next,
consider θ0 := D(1, 1, 0) ∈ P(A)odd. A short computation shows that q(A,θ0) ∼ fq; see
formula (29) of [K9]. Thus, if we apply Theorem 20 of [K5] to the quadratic module
(NSA, qA), then we obtain that Θodd

A ⊂ gen(fq). It therefore follows from Theorem 2
of [K9] that Θodd

A = gen(fq).
By Proposition 42 and Lemma 44(a) we see that P(A)ev = ∅ if and only if (49)

holds. Moreover, the existence of the forms q′ and q′′ follows from Lemma 44.
We next observe that 4gq′ ∈ Θev

A , if 4|∆. Indeed, since q′ ∼ qE,E′ , there exists a
basis h, h′ of Hom(E,E ′) such that qE,E′(xh + yh′) = q′(x, y), so a′ = deg(h). Then
θq′ := D(2, 1

2
(a′ + 1), h) ∈ P(A)ev by (52) and (53), and a short computation shows

that q(A,θq′ )
(xD2 + yD∗

3 + zD4) = 4gq(x, y, z), where the Di are as in the proof of

Proposition 42, and D∗
3 = −a′D1 − 1

2
(a′ + 1)D3. Since the images of D2, D

∗
3 and of

D4 in NS(A, θq′) form a basis of NS(A, θq′) by Proposition 29 of [K4], it follows that
q(A,θq′ )

∼ 4gq. Similarly, if ∆ ≡ 16 (mod 32), and if θq′′ := D(2, 1
2
(c + 1), h′), then we

see that θq′′ ∈ P(A)ev and that q(A,θq′′ )
∼ 4g′q′′ .

Now if ∆ 6≡ 16 (mod 32), then by Theorem 21 of [Ki] we know that Θev
A lies in

a single genus so Θev
A ⊂ gen(4gq′) since 4gq′ ∈ Θev

A as was shown above. Then by
Theorem 1 of [Ki] it follows that Θev

A = gen(4gq′).
On the other hand, if ∆ ≡ 16 (mod 32), then by Theorem 21 of [Ki] again we

know that Θev
A lies in two disjoint genera. Moreover, the proof of that result shows

that in fact Θev
A ⊂ gen(q(A,θ′1)) ∪ gen(q(A,θ′2)) with θ′i = D(2, 1

2
(ri + 1), hi), where each

hi ∈ Hom(E,E ′) is primitive of degree ri ≡ 3 (mod 4) and r2 ≡ r1 + 4 (mod 8). It
thus follows from what was said above that Θev

A ⊂ gen(4gq′′) ∪ gen(4g′q′′). Moreover,
Theorem 1 of [Ki] shows that equality holds, which proves (50).

Remark. Strictly speaking, the above proof of Theorem 41 is only valid when char(K) =
0 because Kir [Ki] makes this hypothesis. But if we use the argument of the proof of
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Theorem 2 in [K9], then we see that the results of [Ki] can be extended to arbitrary
characteristic.

We are now ready to prove Theorem 7, which will be deduced from the following
much more general result. To state it, let

N∗,odd
A = |{C ∈ C(A) : θC ∈ P(A)odd}/' |

denote the number of isomorphism classes of curves on A whose theta-divisor lies in
P(A)odd, and let N∗,ev

A = |{C ∈ C(A) : θC ∈ P(A)ev}/' |, so N∗
A = N∗,odd

A + N∗,ev
A .

We then have:

Theorem 46 Let A = E×E ′ be a CM product surface over a field K. As before, let
∆ = disc(qE,E′), κ = cont(qE,E′) and ∆′ = ∆/κ2. Then

(54) N∗,odd
A =

2ω(κ)+1g(∆′)h(∆)

h(∆′)
S(gen(fq)

∗),

where fq is as in Theorem 41. Moreover, N ev
A > 0 if and only if condition (49) holds.

If this is the case, and if ∆ 6≡ 16 (mod 32), then

(55) N∗,ev
A =

2ω(κ)+1g(∆′)h(∆)

h(∆′)
S(gen(4gq′)),

where q′ and gq′ are as in Theorem 41. Furthermore, if ∆ ≡ 16 (mod 32), and if (49)
holds, and if q′′, gq′′ and g′q′′ are as in Theorem 41, then

(56) N∗,ev
A =

2ω(κ)+1g(∆′)h(∆)

h(∆′)

(
S(gen(4gq′′)) + S(gen(4g′q′′))

)
.

Proof. Put P(A)∗,odd = P∗(A) ∩ P(A)odd and P(A)∗,odd = HA\P(A)∗,odd. Then as in
the proof of Theorem 5 in §5 we have that

P(A)∗,odd =
∐

f∈Θ∗,odd
A

P(A, f) and P(A)∗,odd =
∐

f∈Θ∗,odd
A

P(A, f),

and by a similar argument as in that proof we see that N∗,odd
A = |P(A)∗,odd| = [GA :

HA]S(Θ∗,odd
A ). Now by (50) and (26) we see that Θ∗,odd

A = gen(fq)
∗, so (54) follows by

using (8).
Next, consider θ ∈ P(A)ev. Since 4| cont(q(A,θ)), it follows that q(A,θ) cannot

represent 1, and so θ ∈ P∗(A) by (26). Thus P(A)∗,ev := P∗(A) ∩ P(A)ev = P(A)ev

and P(A)∗,ev = HA\P(A)∗,ev = HA\P(A)ev =: P(A)ev. Thus, by a similar argument
as above we see that N∗,ev

A = |P(A)∗,ev| = |P(A)ev| = [GA : HA]S(Θev
A ), and so (55)

and (56) follow directly from (50) and (8).

Proof of Theorem 7. In this situation we have that N∗,ev
A = 0 by Theorem 46 (see

Remark 45), so N∗
A = N∗,odd

A , which is given by (54). This proves Theorem 7.
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Remark 47 If A′ = E1 × E2 is another CM product surface such that qE1,E2 and
qE,E′ are genus-equvalent, then ∆ = disc(qE1,E2) = disc(qE,E′) and κ = cont(qE1,E2) =
cont(qE,E′), so by (8) we see that [GA′ : HA′ ] = [GA : HA]. Moreover, it follows from
Corollary 30 of [K9] that Θ∗

A′ = Θ∗
A, so S(Θ∗

A′) = S(Θ∗
A), and hence N∗

A′ = N∗
A by

(6). Thus we see that N∗
A depends only on the genus of the form qE,E′ . Similarly, by

using (54) we see that N∗,odd
A only depends on the genus of qE,E′ .

As was mentioned in the introduction, Theorem 46 allows us to compute N∗
A for

each CM product surface A = E × E ′, provided we know the equivalence class of
qE,E′ . Here is an algorithm for doing this.

Algorithm for computing N∗
A for a CM product surface A = E × E ′.

Suppose that qE,E′ ∼ q, where q(x, y) = ax2 + bxy + cy2.

Part I: The Computation of I := [GA : HA].

1) Compute κ = gcd(a, b, c) and ∆ = b2 − 4ac. If κ = 1, then by formula (8) we
have that I = 2g(∆), where g(∆) is given by formula (48).

2) If κ > 1, then by formula (8) we have that I = 2ω(κ)+1g(∆′)h(∆′, κ), where
∆′ = ∆

κ2 and

h(∆′, κ) :=
h(κ2∆′)

h(∆′)
=

κ

w

∏
p|κ

(
1− 1

p

(
∆′

p

))
;

see [Co], Corollary 7.28. Here (∆′

p
) denotes the Legendre-Kronecker symbol and w =

3, if ∆′ = −3, w = 2, if ∆ = −4, and w = 1 otherwise.

Part II: The Computation of N∗,odd
A .

1) Make a list L1 of all positive, properly primitive, Eisenstein-reduced ternary
forms f of discriminant disc(f) = 16∆ in the sense of Watson [Wa] (or of determinant
d(f) = −4∆ in the sense of [Di]) which satisfy the condition that f ≡ 0, 1 (mod 4).

2) For each f ∈ L1, check whether f ∈ gen(fq), where fq = x2 ⊥ 4q. This is done
by computing and comparing the genus invariants and genus characters of f and fq;
see [Di], §32. Let L2 be the subset of forms satisfying this condition.

3) (Optional) Check that the list L2 is correct by computing its mass M(L2) =∑
f∈L2

|Aut+(f)|−1 and comparing it to the result given by the mass formula of

Eisenstein/Smith/Brandt; see [K5]. Note that the automorphism group Aut+(f) of
a reduced form f can be computed by using [Di], Theorem 105.

4) Remove from L2 the forms f for which a = 1 (in the notation of Corollary 35).
Then the resulting list L3 = {f1, . . . ft} is a system of representatives of gen(fq)

∗.

5) Use Corollary 35 and [Di], Theorem 105, to compute a(fi)

2|Aut+(fi)|
, for 1 ≤ i ≤ t,

and add these to obtain the sum S1 := S(gen(fq)
∗). Then by (54) we have that

N∗,odd
A = IS1.
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Part III: The Computation of N∗
A.

1) If condition (49) does not hold, then N∗
A = N∗,odd

A , and we are done by Part II.
2) Assume henceforth that (49) holds. Compute q′ ∼ q satisfying the condition

of Theorem 41 by using the recipe given in the proof of Lemma 44(b). Moreover, if
∆ ≡ 16 (mod 32), then compute q′′ ∼ q satisfying the conditions of Theorem 41 by
using the recipe given in the proof of Lemma 44(c).

3) Make a list L4 of all positive primitive Eisenstein reduced forms f of discrimi-
nant ∆

4
such that 2f is improperly primitive (so 2f has determinant d(2f) = −∆

2
).

4) If ∆ 6≡ 16 (mod 32), then for each f ∈ L4, check whether f ∈ gen(gq′), and
let L5 be the subset of forms satisfying this condition. If ∆ ≡ 16 (mod 32), then for
each f ∈ L4, check whether f ∈ gen(gq′′)∪gen(g′q′′), and let L5 be the subset of forms
satisfying this condition. As before, this check is done by computing and comparing
the genus invariants and genus characters of 2f and of 2gq′ (or of 2gq′′ and 2g′q′′); see
[Di], §32.

5) For each f ∈ L5, compute a(4f) = max(1, r4(4f), 3r4(4f) − 12), so a(4f) =
max(1, r1(f), 3r1(f) − 12). Here r1(f) can be computed by the method of Remark
36. Moreover, |Aut(4f)| = 2|Aut+(2f) can be computed by using Theorem 105 of

Dickson [Di]. Thus, by computing the sum S2 of the terms a(4f)
|Aut(4f)| with f ∈ L5, we

obtain that N∗,ev
A = IS2 by (55) and (56). Thus N∗

A = N∗,odd
A +N∗,ev

A .

By using the above algorithm we obtain the following table of values for N∗,odd
A

and N∗
A for |∆| ≤ 100. Here we write qE,E′ = κq′E,E′ and use the abbreviation [a, b, c]

for q(x, y) = ax2 + bxy + cy2 as in the proof of Lemma 44. The table below gives
a representative of each of the GL2(Z)-equivalence classes of positive binary forms
q with |∆| = | disc(q)| ≤ 100. Note that by using Remark 47 the list could have
been shortened by listing only one representative of each of the genera of the forms
involved, but such a table would not be as convenient because it is then more difficult
to identify a given form in the table.

It is useful to observe that the numbers N∗
A of the table below agree with those

obtained by Hayashida [H2] in the cases that his formula applies; these cases are
marked with an asterisk (∗). Note that these are the precisely the cases for which
∆ = ∆′ is a fundamental discriminant and q is the principal form of discriminant ∆.
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|∆′| q′E,E′ κ N∗,odd
A N∗

A

3 [1, 1, 1] 1 0 0∗

2 0 0
3 1 1
4 0 0
5 2 2

4 [1, 0, 1] 1 0 0∗

2 0 0
3 0 2
4 1 1
5 2 2

7 [1, 1, 2] 1 0 0∗

2 1 1
3 4 4

8 [1, 0, 2] 1 0 1∗

2 0 0
3 2 4

11 [1, 1, 3] 1 1 1∗

2 0 0
3 6 6

12 [1, 0, 3] 1 0 1
2 2 2

15 [1, 1, 4] 1 0 0∗

2 2 2
15 [2, 1, 2] 1 1 1

2 2 2
16 [1, 0, 4] 1 1 1

2 2 2
19 [1, 1, 5] 1 1 1∗

2 1 1
20 [1, 0, 5] 1 1 1∗

2 0 0
20 [2, 2, 3] 1 0 2

2 1 1
23 [1, 1, 6] 1 1 1∗

2 3 3
23 [2, 1, 3] 1 1 1

2 3 3
24 [1, 0, 6] 1 0 1∗

2 2 2

|∆′| q′E,E′ κ N∗,odd
A N∗

A

24 [2, 0, 3] 1 1 2
2 0 0

27 [1, 1, 7] 1 1 1
28 [1, 0, 7] 1 1 2
31 [1, 1, 8] 1 1 1∗

31 [2, 1, 4] 1 1 1
32 [1, 0, 8] 1 2 2
32 [3, 2, 3] 1 1 3
35 [1, 1, 9] 1 2 2∗

35 [3, 1, 3] 1 3 3
36 [1, 0, 9] 1 1 1
36 [2, 2, 5] 1 2 2
39 [1, 1, 10] 1 1 1∗

39 [2, 1, 5] 1 2 2
39 [3, 3, 4] 1 1 1
40 [1, 0, 10] 1 1 2∗

40 [2, 0, 5] 1 1 2
43 [1, 1, 11] 1 2 2∗

44 [1, 0, 11] 1 1 3
44 [3, 2, 4] 1 1 3
47 [1, 1, 12] 1 2 2∗

47 [2, 1, 6] 1 2 2
47 [3, 1, 4] 1 2 2
48 [1, 0, 12] 1 2 2
48 [3, 0, 4] 1 1 3
51 [1, 1, 13] 1 2 2∗

51 [3, 3, 5] 1 4 4
52 [1, 0, 13] 1 2 2∗

52 [2, 2, 7] 1 1 3
55 [1, 1, 14] 1 2 2∗

55 [2, 1, 7] 1 2 2
55 [4, 3, 4] 1 2 2
56 [1, 0, 14] 1 1 3∗

56 [2, 0, 7] 1 1 3
56 [3, 2, 5] 1 2 4
59 [1, 1, 15] 1 4 4∗

59 [3, 1, 5] 1 4 4
60 [1, 0, 15] 1 2 4
60 [3, 0, 5] 1 3 5
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|∆′| q′E,E′ κ N∗,odd
A N∗

A

63 [1, 1, 16] 1 1 1
63 [2, 1, 8] 1 3 3
63 [4, 1, 4] 1 1 1
64 [1, 0, 16] 1 3 3
64 [4, 4, 5] 1 3 3
67 [1, 1, 17] 1 3 3∗

68 [1, 0, 17] 1 3 3∗

68 [3, 2, 6] 1 1 5
68 [2, 2, 9] 1 3 3
71 [1, 1, 18] 1 3 3∗

71 [2, 1, 9] 1 3 3
71 [3, 1, 6] 1 3 3
71 [4, 3, 5] 1 3 3
72 [1, 0, 18] 1 1 2
72 [2, 0, 9] 1 3 4
75 [1, 1, 19] 1 3 3
75 [3, 3, 7] 1 3 3
76 [1, 0, 19] 1 2 4
76 [4, 2, 5] 1 2 4
79 [1, 1, 20] 1 3 3∗

79 [2, 1, 10] 1 3 3
79 [4, 1, 5] 1 3 3
80 [1, 0, 20] 1 5 5
80 [3, 2, 7] 1 2 6
80 [4, 0, 5] 1 5 5
83 [1, 1, 21] 1 5 5∗

83 [3, 1, 7] 1 5 5

|∆′| q′E,E′ κ N∗,odd
A N∗

A

84 [1, 0, 21] 1 2 2∗

84 [2, 2, 11] 1 2 6
84 [3, 0, 7] 1 1 5
84 [5, 4, 5] 1 5 5
87 [1, 1, 22] 1 2 2∗

87 [2, 1, 11] 1 5 5
87 [3, 3, 8] 1 5 5
87 [4, 3, 6] 1 2 2
88 [1, 0, 22] 1 2 4∗

88 [2, 0, 11] 1 3 4
91 [1, 1, 23] 1 4 4∗

91 [5, 3, 5] 1 5 5
92 [1, 0, 23] 1 4 7
92 [3, 2, 8] 1 4 7
95 [1, 1, 24] 1 4 4∗

95 [2, 1, 12] 1 4 4
95 [3, 1, 8] 1 4 4
95 [4, 1, 6] 1 4 4
95 [5, 5, 6] 1 4 4
96 [1, 0, 24] 1 4 4
96 [3, 0, 8] 1 4 8
96 [4, 4, 7] 1 2 6
96 [5, 2, 5] 1 6 6
99 [1, 1, 25] 1 3 3
99 [5, 1, 5] 1 6 6
100 [1, 0, 25] 1 4 4
100 [2, 2, 13] 1 3 3

References

[AP] R. Accola, E. Previato, Covers of tori: genus two. Lett. Math. Phys. 76 (2006),
135–161.

[BV] J. Buchmann, U. Vollmer, Binary Quadratic Forms. Springer-Verlag, Berlin,
2007.

[Co] D. Cox, Primes of the Form x2 + ny2. Wiley & Sons, New York, 1989.

[Di] L. Dickson, Studies in Number Theory. U Chicago Press, Chicago, 1930.
Reprinted by Chelsea Publ. Co., New York, 1957.

37



[FK] G. Frey, E. Kani, Curves of genus 2 covering elliptic curves and an arithmetical
application. In: Arithmetic Algebraic Geometry (G. van der Geer, F. Oort, J.
Steenbrink, eds.), Progress In Math. vol. 89, Birkhäuser, Boston, 1991, pp.
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