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Abstract

This article studies certain questions pertaining to the moduli space Mg(g′, n)
which was introduced and studied by H. Lange in the 1970’s. This space clas-
sifies the isomorphism classes of curves X of genus g which admit a subcover
f : X → Y of degree n to a curve Y of genus g′.

Here we focus on the case that g = 2 and g′ = 1, in which case the irreducible
components of M2(1, n) are certain Humbert surfaces. It is shown here that
M2(1, n) is always connected, and that it has d(n)− 1 irreducible components.

One of the questions discussed here in some detail concerns the intersection
M2(1, n)∩M2(1,m) of two such moduli spaces. It turns out that the irreducible
components of such an intersection are images of modular curves, and these can
be described explicitly by using the generalized Humbert schemes H(q) and the
theory of binary quadratic forms.

1 Introduction

It is a pleasure to dedicate this paper1 to Herbert Lange for his 75th birthday, not only
because we have known each other for a long time, but also (and more importantly)
because the results which are presented here are closely connected with some of his
early work.

Starting with his thesis, much of Herbert Lange’s early work (cf. Lange[L1] – [L4])
concerns the following topic:

Problem. Describe the set of curves X/C which admit a non-rational subcover.

Thus, he was interested in studying the set Mg(g
′, n) of (isomorphism classes of)

curves X of genus g which have a subcover f : X → Y of degree n to some curve Y
of genus g′ ≥ 1 inside the moduli space Mg of curves genus g, i.e.,

Mg(C) = {isomorphism classes 〈X〉 of curves X/C of genus g}.

This was the subject both of his dissertation (the case g = 2) and of his habilitation
(for arbitrary g ≥ 2), and of at least 4 publications.

The following result is (a part of) Satz I of Lange[L4].

1This is an expanded version of my lecture at the Langefest

1



Theorem 1.1 (Lange, 1977) (a) If g > g′ ≥ 1 and n ≥ 2, then the set Mg(g
′, n) is

a closed subset of Mg.
(b) The subscheme Mg(g

′, n) is equidimensional of dimension

dimMg(g
′, n) = g − (n− 2)(g′ − 1),

provided that either

g′ ≥ 2 and
g + 1

g′ + 1
≤ n ≤ g + 1

g′ − 1
or that g′ = 1 and n >

g + 1

2
.

Moreover, Mg(g
′, n) = ∅ in all other cases, except possibly in the case that n = g+1

2

and g′ = 1.

These beautiful results of Lange naturally lead to further questions about the
geometric structure of the subschemes Mg(g

′, n). For example:

Question 1 How many irreducible components does Mg(g
′, n) have? When is Mg(g

′, n)
irreducible?

Question 2 What is the “geometric type” of each irreducible component? When are
they all rational or of general type?

Question 3 Is Mg(g
′, n) connected? (This is a question of Accola/Previato[AP] in

the case that g = 2.)

Question 4 What can be said about the intersection of Mg(g
′, n) with one or more

Mg(g
′′, n′)’s?

These and other related questions will be investigated in the case that g = 2.

Acknowledgment. I would like to thank the organizers of the Langefest and of the
conference Geometry at the Frontier III for inviting me and for providing travel funds
and for their kind hospitality at the conference. In addition, I would like to thank
the referee for his/her useful comments and suggestions which improved this paper.
Moreover, I gratefully acknowledge receipt of funding from the Natural Sciences and
Research Council of Canada (NSERC).

2 Humbert surfaces

When g = 2, the irreducible components of M2(1, n) turn out to be open subsets of
certain Humbert surfaces; these naturally live in the moduli space A2 of principally
polarized abelian surfaces, i.e.,

A2(C) = {isomorphism classes 〈A, λ〉 of principally polarized abelian surfaces (A, λ)},

where the pair (A, λ) consists of an abelian surface A/C together with a principal
polarization λ = φθ : A

∼→ Â; cf. [LB] or [M2].
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Remark 2.1 Via the Torelli map 〈X〉 7→ 〈JX , λX〉 we can (and will) view the moduli
space M2 as a subset of A2, i.e. M2 ⊂ A2. Here, JX is the Jacobian surface of X, and

λX = φθX : JX
∼→ ĴX

is the polarization induced by the theta-divisor θX on JX .

The Humbert surfaces H∆ are defined via the Humbert invariant ∆, which is
a number which Humbert[Hu] attached in 1899 to a so-called “singular relation”
(Humbert’s terminology). Such a relation is one which is satisfied by the entries of a
(normalized) period matrix of a principally polarized abelian surface (A, λ) and only
exists for special abelian surfaces. (See §6 below for an algebraic description of this
invariant.) Thus, the Humbert surface with Humbert invariant ∆ is defined by

H∆ = {(A, λ) ∈ A2 : (A, λ) has a singular relation with Humbert invariant ∆}

In van der Geer[vdG], Ch. IX, one finds a modern treatment of Humbert surfaces.
Humbert’s results are summarized in Kap. I, §1, of Hecke’s dissertion [He].

The following result follows (more or less) from what Humbert[Hu] proved about
his invariant.

Theorem 2.2 (Humbert) For each positive integer n ≡ 0, 1 (mod 4), there exists
an irreducible (analytic) surface Hn ⊂ A2 (now called a Humbert surface) such that:

(a) If 〈A, λ〉 ∈ A2(C), then End(A) 6= Z ⇔ 〈A, λ〉 ∈ Hn(C), for some n;

(b) M2 = A2 \H1;

(c) If 〈X〉 ∈ M2(C), then ∃ a surjection f : X → E, where E/C is some elliptic
curve ⇔ 〈JX , λX〉 ∈ HN2(C), for some N ≥ 2.

Proof. For convenience of the reader,2 here is a sketch of how these results follow from
the results of Humbert[Hu]. (See also Remark 6.1 below.)

First of all, Humbert[Hu] explains in §3 (p. 237) that if one normalized period
matrix of (A, λ) has a singular relation with invariant ∆, then every normalized
period matrix of (A, λ) also has a singular relation with invariant ∆. Thus, this
property is an invariant of the isomorphism class of (A, λ).

In §11 (p. 245) he shows that his invariant satisfies ∆ ≡ 0, 1 (mod 4) and that
∆ > 0 (Théorème 14, p. 246).

In Théorème 12 (p. 245) he shows that one can choose the period matrix in such
a way that the singular relation assumes a simple form. This means (in modern
language) that for each ∆ ≡ 0, 1 (mod 4) there is a linear relation f∆ = 0 in the

2This follows a suggestion of the referee, who asked me to explain where these results are proved
in Humbert’s paper
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Siegel half-space H2 such that its image in A2 = Sp2(Z)\H2 is H∆. Thus, H∆ is an
irreducible analytic surface in A2; cf. also [vdG], Theorem (IX.2.4) on p. 212.

(a) In §138 Humbert shows (on p. 285) that if (A, λ) ∈ H∆ for some ∆, the A is
“singular” in his (and Hurwitz’s) terminology, i.e., End(A) 6= Z.

I wasn’t able to find that the converse implication was stated (or proved) in [Hu],
except in special cases; cf. Théorème I in §104 and Théorème II in §105. However,
Hecke[He] states at the end of §I.1 (without proof or reference) that one can deduce
that the converse holds.

Note that part (a) follows directly from what was proven in [K1], Corollary 5.5.
(b) In Remarque II in §17 on p. 248, Humbert points out that ∆ = 1 if and only

if (A, λ) ' (E1×E2, λ1⊗λ2), where (Ei, λi) is a (principally polarized) elliptic curve,
for i = 1, 2, and λ1 ⊗ λ2 is the product polarization. This, together with Satz 2 of
Weil[We], proves the assertion.

Note that in view of [K1], §5, this also follows Proposition 6 in [K3].
(c) This is Théorème 15 in §15 on p. 247. 2

Remark 2.3 (a) Each Humbert surface Hn is a Zariski-closed subset of A2. This
does not follow directly from Humbert[Hu].

(b) Part (c) of Theorem 2.2 had already been stated and proved by Biermann in
1883; cf. Krazer[Kr], Satz V on p. 485. Perhaps Humbert did not know this.

(c) The result of Theorem 2.2(c) was refined in Theorem 1.9 of [K1] in the following
way:

(1) 〈JX , λX〉 ∈ HN2 ⇔ ∃ a minimal f : X → E with deg(f) = N.

Here and below, a cover f : X → E is called minimal if it does not factor over an
isogeny of E of degree > 1.

Corollary 2.4 For any n ≥ 2 we have

(2) M2(1, n) =
⋃

1<N |n

H∗
N2 ,

where H∗
N2 = HN2 ∩ M2. Thus, M2(1, n) is equidimensional of dimension 2, and

has d(n) − 1 irreducible components, where d(n) is the number of divisors of n. In
particular, M2(1, n) is irreducible if and only if n is a prime number.

Proof. Each subcover f : X → E factors as f = h ◦ fmin, where fmin : X → E ′ is
minimal, so the formula (2) follows from (1). The other assertions follow from (2)
and Theorem 2.2, together with the fact that H∗

N2 = HN2 ∩M2 6= ∅ when N > 1 (see
Theorem 4.1 below). 2

Note that this answers Question 1 of the introduction. We next turn to the study
of Question 2.
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3 The geometry of Humbert surfaces

To construct the moduli space Mg(g
′, n), Lange[L4] adapts and generalizes Mumford’s

construction[M1] of the moduli space Mg.
Thus, he first constructs a suitable subvariety H = Hg,g′,n of some Hilbert scheme,

and then shows that Mg(g
′, n) is the quotient scheme of H under the action of the

group PGL(m), where m ≥ 3 is suitable.
Unfortunately, this construction sheds little light on the geometry of Mg(g

′, n).
Since it suffices to construct the irreducible components of these schemes, and since

for M2(1, n) these components are known by Corollary 2.4 to be Humbert surfaces, it
suffices to construct these surfaces. For them, there is another construction method
available, which is based on what G. Frey and I call the the basic construction; cf.
[FK1], [K2], and [FK2].

The basic construction. Fix an integer N ≥ 2, and let (E,E ′, ψ) be a triple
consisting of two elliptic curves E and E ′ and an isomorphism

ψ : E[N ]
∼→ E ′[N ]

which is an anti-isometry with respect to the eN -pairings (called Weil-pairings in [Si],
p. 96) on the groups of N -torsion points of E and of E ′, respectively. This condition
means that we have

eN(ψ(P ), ψ(Q)) = eN(P,Q)−1, ∀P,Q ∈ E[N ].

Given such a triple (E,E ′, ψ), construct the abelian surface

Jψ := (E × E ′)/Graph(−ψ).

This surface has a “canonical” principal polarization λψ, so 〈Jψ, λψ〉 ∈ A2(C).
This principal polarization λψ is “canonical” in the following sense. If we let

πψ : E ×E ′ → Jψ denote the quotient morphism, then λψ is uniquely determined by
the condition that

π̂ψ ◦ λψ ◦ πψ = N(λ⊗ λ′),

where π̂ψ : Ĵψ → (E × E ′)∧ is the dual isogeny and λ ⊗ λ′ denotes the product
polarization on E × E ′.

Moreover, if the theta-divisor Xψ ∈ Div+(Jψ) of λψ is irreducible, then we have a
(minimal) cover fψ : Xψ → E of degree N , and every (minimal) cover f : X → E of
degree N arises this way.

Since this construction also works for families of elliptic curves over a base (cf.
[K2]), it has a modular interpretation, i.e., it induces a map between the associated
functors. To explain this in more detail, we first note the following result from [FK2];
cf. [FK2], Proposition 4.5.
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Theorem 3.1 Let ZN denote the functor which classifies isomorphism classes of
triples (E,E ′, ψ), where ψ : E[N ] → E ′[N ] is an anti-isometry. If N ≥ 3, then ZN
is coarsely represented by the modular diagonal quotient surface

ZN := ∆∗
N\(X(N)×X(N)),

where X(N) = Γ(N)\H is the usual modular curve of level N on which the group
GN := Γ(1)/(±Γ(N)) ' SL2(Z/NZ)/(±1) acts, and

∆∗
N = {(g, βgβ−1) : g ∈ GN} ≤ GN ×GN , where β =

(
1 0
0 −1

)
.

Remark 3.2 (a) By construction, the modular diagonal quotient surface ZN is a
quotient of the product surface Y (N) := X(N)×X(N) of the modular curve X(N).
We thus have a finite surjective morphism

ΦN : Y (N) = X(N)×X(N) → ∆∗
N\Y (N) = ZN .

(b) Since the curve X(N) has a natural compactification (by adding cusps), the
surfaces Y (N) and ZN also admit natural compactifications Ȳ (N) and Z̄N , respec-
tively. The geometry of the (desingularization of the) modular diagonal quotient
surfaces Z̄N was determined by Hermann[H1] and also by Kani and Schanz[KS].

The “basic construction” leads to the following result.

Theorem 3.3 The rule (E,E ′, ψ) 7→ (Jψ, λψ) defines a finite morphism

βN : ZN → A2

whose image is the Humbert surface HN2. Thus, HN2 is an irreducible surface which
is a Zariski-closed subset of A2. Moreover, the normalization of HN2 is the symmetric
modular diagonal quotient surface

Zsym
N := 〈wN〉\ZN ,

where wN ∈ Aut(ZN) is the involution which is induced via ΦN from the involution
τN ∈ Aut(Y (N)) which interchanges the factors of Y (N) = X(N) × X(N). In
particular, deg(βN : ZN → HN2) = 2.

Proof. As is shown in [K8], the first assertions can be deduced from Theorem 15 of
[K7], which is a refinement of [K1], Corollary 1.8 and of [FK2], Proposition 4.11. The
assertion about the normalization of HN2 was stated (without proof) in [FK2], loc.
cit., and is proved in Theorem 7.3 of [K8].

The geometric structure of the desingularization of the natural compactification
of Zsym

N was determined by Hermann[H2] in the prime case.
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Theorem 3.4 (Hermann) If N ≥ 3 is prime, then the surface Zsym
N is:

• rational, if N ≤ 13,

• an elliptic K3-surface, if N = 17,

• an honest elliptic surface, if N = 19,

• of general type, if N ≥ 23.

Remark 3.5 Thus, by Theorems 3.3 and 3.4 one has a precise description of the
geometric type of the components HN2 of M2(1, n), at least when N is prime. In
particular, this gives the birational description of M2(1, n), when n is prime. It is to
be expected that a similar description exists for all N ’s, but this has not been worked
out (as far as I know).

On the other hand, the geometric description of ZN , which is a double cover of
Zsym
N , has been given for all N by Hermann[H1] and by Kani and Schanz[KS], as was

mentioned above.

4 Connectedness properties

We now turn to discuss Question 3, which was (implicitly) raised by Accola and
Previato[AP]. Recall that this question asks whether M2(1, n) is connected for all
n ≥ 2. That this is indeed the case follows from the following much stronger assertion
(which also partially answers Question 4).

Theorem 4.1 If n > m ≥ 2, then Hn2 ∩Hm2 ∩M2 6= ∅. Moreover, Hn2 ∩Hm2 is a
finite union of (images of) modular curves.

Remark 4.2 The first part of Theorem 4.1 is a special case of Corollary 8.2 below,
which will be proven in §8. The second part follows from the more precise assertion
(8) in Theorem 10.5.

The first part of this theorem was also proven by Franciosi/Pardini/Rollenske[FPR]
by another method.

Corollary 4.3 The moduli space M2(1, n) is connected for any n ≥ 2.

Proof. By Corollary 2.4 (and Theorem 3.3) we know that the Humbert surfaces H∗
N2 =

HN2 ∩M2 with N |n and N ≥ 2 are the irreducible components of M2(1, n). Thus,
by Theorem 4.1 we see that any two irreducible components of M2(1, n) have a non-
empty intersection, so M2(1, n) is connected. 2
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5 Intersections of Humbert surfaces

We now come to the discussion of Question 4, which concerns the intersection of
different moduli spaces. In our situation (g = 2) this question reduces to the following.

Question 4* What are the irreducible components of the intersection M2(1, n) ∩
M2(1,m), when gcd(n,m) = 1?

In view of the above structure theorem (Corollary 2.4) for the M2(1, n)’s, it suffices
to answer the following question.

Question 5 How can we describe the irreducible components of the intersection of
two Humbert surfaces?

Remark 5.1 The intersection Hn2 ∩ Hm2 ∩M2 classifies curves X of genus 2 with
two minimal morphisms f1 : X → E1 and f2 : X → E2 of degrees n and m.

To understand the components of this intersection, we will generalize Humbert’s
construction of the Humbert surfaces Hn in A2 in order to construct certain one-
dimensional subschemes of A2.

These generalized Humbert schemes will be defined by considering a refinement
of the Humbert invariant, which Humbert introduced in his work.

However, while Humbert’s invariant is a number, the refined Humbert invariant
is a quadratic form, as will be explained presently.

The basic idea. As will be explained below, each integral, positive definite quadratic
form q defines a subset

H(q) ⊂ A2,

called a generalized Humbert scheme. Its definition relies on the notion of the refined
Humbert invariant.

As a preview, we state some of the basic properties of the generalized Humbert
schemes. These will be verified in §7.

Proposition 5.2 (a) The set H(q) depends only on the GLr(Z)-equivalence class of
the quadratic form q = q(x1, . . . , xr). Moreover,

(3) q1 → q2 ⇒ H(q1) ⊂ H(q2).

where the symbol q1 → q2 means that q1 primitively represents the form q2; cf. §7.
(b) The usual Humbert surface is Hn = H(nx2).

(c) We have that H(q) 6= A2, but H(q) may be empty. Indeed, H(q) = ∅, if q is
not positive-definite or if r > 3.
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(d) If n 6= m, then

(4) Hn ∩Hm =
⋃

q→n,m

H(q),

where the union is over all integral, positive definite binary quadratic forms q which
represent both n and m primitively; cf. §8.

Remark 5.3 If m 6= n, then up to GL2(Z)-equivalence there are only finitely many
positive binary forms q satisfying the condition q → n,m because this condition
implies that |disc(q)| ≤ 4mn. Thus, by Proposition 5.2(a), the union on the right
hand side of (4) consists only of finitely many H(q)’s.

The intersection formula (4) constitutes a first step towards understanding the
components of the intersection of two Humbert surfaces.

However, further work is necessary to obtain a better picture, and this leads to
the following questions.

Question 6 For which integral binary quadratic forms q is H(q) 6= ∅?

Question 7 What is the geometric structure of H(q)? Is H(q) irreducible?

Question 8 Can (the components of) H(q) be described by images of modular curves?
If so, which modular curves map to H(q)?

These questions will be addressed below.

6 The refined Humbert invariant

The refined Humbert invariant q(A,λ) of a principally polarized abelian surface (A, λ) ∈
A2(C) is defined as follows.

Definition. Let A be an abelian surface with a principal polarization λ : A
∼→ Â,

and let θ = θλ ∈ Div(A) be an associated theta-divisor, i.e., λ = φθ in the notation
of [M2]. Let NS(A) denote the Néron-Severi group of A, i.e., NS(A) := Div(A)/≡,
where ≡ denotes numerical equivalence of divisors, and put

NS(A, λ) := NS(A)/Zθλ.

Consider the quadratic form on NS(A) defined by

q(A,λ)(D) = (D.θλ)
2 − 2(D.D), ∀D ∈ NS(A),
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where ( . ) denotes the intersection pairing on the Néron-Severi group NS(A). It then
follows from the definition and the Hodge index theorem that q(A,λ) defines a positive-
definite quadratic form on the module NS(A, λ); cf. [K1]. This induced quadratic
form on NS(A, λ) is called refined Humbert invariant of (A, λ) and is also denoted by
q(A,λ).

Remark 6.1 If D̄ ∈ NS(A, λ) is primitive, i.e., if NS(A, λ)/ZD̄ is torsionfree (and
D̄ 6= 0), then D gives rise to a “singular relation” of A (in the sense of Humbert), and
conversely every such relation arises in this way, as was shown in [K1], §5. Moreover,
∆ := q(A,λ)(D̄) is equal to the Humbert invariant ∆ attached to the singular relation;
cf. [K1], Corollary 5.5.

7 Generalized Humbert schemes

Using the refined Humbert invariant q(A,λ), which was defined in the previous section,
we can generalize the notion of a Humbert surface as follows.

Notation. If q : Zr → Z is an integral, positive-definite quadratic form in r variables,
then we put

H(q) := {〈A, λ〉 ∈ A2(C) : q(A,λ) → q}.
Here the symbol q(A,λ) → q indicates that the form q(A,λ) primitively represents the
form q. This means that there exists an injective homomorphism

h : Zr ↪→ NS(A, λ)

such that NS(A, λ)/h(Zr) is torsionfree and such that the h-restriction of q(A,λ) to Zr

is q, i.e., q(A,λ) ◦ h = q.
If q(A,λ) → q and h is surjective, then we say that q(A,λ) is equivalent to q and

write q(A,λ) ∼ q.

Proof of Proposition 5.2. (a) This is clear from the definition. Indeed, if q1 is GLr(Z)-
equivalent to q2, then ∀〈A, λ〉 ∈ A2(C) we have that q(A,λ) → q1 ⇔ q(A,λ) → q2, and
so H(q1) = H(q2).

Similarly, if 〈A, λ〉 ∈ H(q1), then q(A,λ) → q1, and if q1 → q2, then q(A,λ) → q2, so
〈A, λ〉 ∈ H(q2). Thus H(q1) ⊂ H(q2). This proves (3).

(b) This follows from Remark 6.1.
(c) If q is any (non-zero) quadratic form, then q → nx2, for some n 6= 0, and then

by parts (a) and (b) we have that H(q) ⊂ H(nx2) = Hn. By Humbert (Theorem
2.2), Hn is either empty or a surface, so Hn 6= A2 because dimA2 = 3. This proves
the first statement.

Since q(A,λ) is positive-definite, then the same is true for any q with q(A,λ) → q,
and so it follows that H(q) = ∅, if q is not positive-definite.
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Moreover, since NS(A) ' Zρ, where ρ ≤ h1,1(A) = 4 (cf. [vdG], p. 207), we see
that NS(A, λ) ' Zr, with r ≤ 3. Thus, the same is true for any q with q(A,λ) → q,
and so it follows that H(q) = ∅, if q has rank > 3.

(d) The fact that the right hand side of (4) is contained in the left hand side
follows immediately from (3).

Conversely, suppose that 〈A, λ〉 ∈ Hm ∩ Hn. Then there exist primitive vectors
v, w ∈ M := NS(A, λ) such that q(A,λ)(v) = m and q(A,λ)(w) = n. If v and w were
linearly dependent, then v = ±w and hence q(A,λ)(v) = q(A,λ)(w), contrary to the
hypothesis. Thus, v and w are linearly independent and hence M0 := Zv + Zw has
rank 2. Let M1 be the saturation of M0 in M . Then the restriction q of q(A,λ) to M1

is a positive definite, binary quadratic form which is primitively represented by q(A,λ),
and so 〈A, λ〉 ∈ H(q). Moreover, m = q(v) is primitively represented by q (because
v is primitive in M , hence also in M1. Similarly, n = q(w) is primitively represented
by q. Thus q is one of the forms of the right side of (4), so 〈A, λ〉 ∈ ∪H(q). 2

Theorem 7.1 If q is an integral quadratic form with q → N2, for some integer
N ≥ 1, then H(q) is a closed subset of A2. Moreover, if H(q) 6= ∅ then H(q) is
equidimensional of dimension dimH(q) = 3 − r, where r is the number of variables
of q.

Remark 7.2 This theorem follows easily from the results below; cf. §10, where this
is proved. It is to be expected that the same result holds for all integral quadratic
forms, but the methods below do not prove this.

Definition. A (non-empty) subset of A2 of the form H(q), where q is a quadratic
form, will be called a generalized Humbert scheme.

8 Special quadratic forms

We now want to classify those binary quadratic forms q for which H(q) 6= ∅, and
thus answer Question 6. Here we will only consider those forms which primitively
represent a square because only those lead to elliptic subcovers of genus 2 curves; cf.
Theorem 2.2(c) and Proposition 5.2(b).

Notation. Write q = [a, b, c] for the binary quadratic form

q(x, y) = ax2 + bxy + cy2

on Z2. Moreover, let Q denote the set of integral binary quadratic forms q which
satisfy the following two conditions:

(i) q is positive-definite;
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(ii) q(x, y) ≡ 0, 1 (mod 4), ∀x, y ∈ Z.

In addition, for n ∈ N, let

Q(n) = {q ∈ Q : q → n}

denote the set of forms q ∈ Q which primitively represent n, i.e.,

q(x, y) = n, for some x, y ∈ Z with gcd(x, y) = 1.

We can now classify the binary q’s for which H(q) 6= ∅ (and such that H(q) lies
on some Humbert surface HN2) in the following way.

Theorem 8.1 Let q be an integral binary quadratic form which primitively represents
a square, and let N ≥ 1. Then:

(5) H(q) 6= ∅ and H(q) ⊂ HN2 ⇔ q ∈ Q(N2).

If this is the case, then there exists 〈A, λ〉 ∈ H(q) such that q(A,λ) is equivalent to q.

Proof. If q ∈ Q(N2), then the Existence Theorem 32 of [K5] shows that that there
exists 〈A, λ〉 ∈ H(q) with q(A,λ) ∼ q, so the last assertion holds. Since q → N2x2, we
have by (3) and Proposition 5.2(b) that H(q) ⊂ HN2 .

Conversely, suppose that 〈A, λ〉 ∈ H(q). Then q(A,λ) → q, so q ∈ Q because
properties (i) and (ii) hold for q(A,λ) and hence are inherited by q. By hypothesis,
q → M2, for some M ≥ 1. Thus q ∈ Q(M2) and so by the Existence Theorem 32
of [K5] there exists 〈A′, λ′〉 ∈ H(q) such that q(A′,λ′) ∼ q. Since 〈A′, λ′〉 ∈ H(q) and
since H(q) ⊂ HN2 by our hypothesis, it follows that q(A′,λ′) → N2 (cf. Proposition
5.2(b)), and hence also q → N2 because q ∼ q(A′,λ′). Thus q ∈ Q(N2), as desired. 2

Note that Theorem 8.1 answers Question 6 for the H(q)’s that appear in the
intersection HN2 ∩Hm2 . Furthermore, this theorem allows us to give a simple proof
of the first part of Theorem 4.1. Indeed, one can prove just as easily the following
more general result.

Corollary 8.2 If m ≡ ε (mod 4), where ε ∈ {0, 1}, and if m,N > 1, then

Hm ∩HN2 ∩M2 6= ∅.

Proof. Note that q := [N2, 2εN,m] ∈ Q(N2) ∩ Q(m), so H(q) 6= ∅ by Theorem 8.1.
Since q → N2 and q → m, we see that H(q) ⊂ Hm ∩HN2 by (4).

Moreover, since q(x, y) = (Nx + εy)2 + (m − ε2)y2 > 1, we see that q 6→ 1.
Thus H(q) 6⊂ H1 by (5), so H(q) 6⊂ H1 = A2 \M2 by Theorem 2.2(b), and hence
H(q) ∩M2 6= ∅. Thus also Hm ∩HN2 ∩M2 6= ∅. 2
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9 The components of H(q)

We now consider Question 7 which in part asks about the irreducibility of H(q). The
following two results give a partial answer to this question.

Theorem 9.1 If q = [a, b, c] ∈ Q(N2) and if 8 - c(q) := gcd(a, b, c), then H(q) has
at most 2ω(c(q)) irreducible components, where ω(c) = |{p | c}| denotes the number of
distinct prime divisors of c = c(q).

In particular, if q is primitive, i.e., if c(q) = 1, then H(q) is an irreducible curve.

Theorem 9.2 Let q ∈ Q(N2). If |disc(q)| > 4N4 and if N is odd, then H(q) has
precisely 2ω(c(q)) irreducible components, except when q ∼ [N2, 0, 4d], for some integer
d ≥ 1.

The proofs of these two theorems will be discussed below in §11.

Remark 9.3 (a) If 8|c(q), then H(q) has at most 2ω(c(q))+1 irreducible components,
and an analogue of Theorem 9.2 holds (but there are more exceptions). Moreover,
the number of components can also be determined in the exceptional cases.

(b) If q ∈ Q(N2) has discriminant disc(q) = −16d with gcd(d,N) = 1, then H(q)
is irreducible, as was proved in Theorem 4 of [K3]. In fact, that theorem also gives
the birational structure of H(q) in this case. The result is that H(q) is birational
to the modular curve X+

0 (d) = X0(d)/〈wd〉, where wd is the Fricke involution on
X0(d) = Γ0(d)\H, except when q is an ambiguous form (see below). In latter case,
H(q) is birational to a (non-trivial) quotient of X+

0 (d), which is given explicitly in
Theorem 57 of [K3].

When N is an odd prime, then the number of components of the H(q)’s can be
completely determined. However, this number depends on whether N ≡ 1 (mod 4)
or not, as the following result shows. To state it, recall (from Gauss) that a binary
integral form q is said to be ambiguous if q ∼ [a, ak, c], for some integers a, k, c ∈ Z.

Theorem 9.4 Let N > 2 be a prime and let q ∈ Q(N2). Then H(q) has at most 2
irreducible components. Moreover, if N ≡ 1 (mod 4), then we have that

H(q) is irreducible ⇔ q is primitive, i.e., c(q) = 1,

whereas if N ≡ 3 (mod 4), then we have that

H(q) is irreducible ⇔ q is primitive or ambiguous.

13



9.1 Numerical examples

By using the reduction theory of binary quadratic forms and the above results (and
others from [K7]), one can work out the intersections of Humbert surfaces with small
invariants, and hence also the intersections of Lange’s moduli spaces M2(1, n).

Proposition 9.5 The intersection of some the Humbert surfaces are as follows:

H1 ∩H4 = H[1, 0, 4],

H1 ∩H5 = H[1, 0, 4],

H4 ∩H9 = H[4, 0, 5] ∪H[4, 0, 9] ∪H[4, 4, 9],

H4 ∩H16 = H[4, 0, 12] ∪H[4, 0, 16] ∪H[4, 4, 5] ∪H[4, 4, 8] ∪H[4, 4, 16],

H4 ∩H25 = H[1, 0, 4] ∪H[4, 0, 9] ∪H[4, 0, 21] ∪H[4, 0, 25] ∪H[4, 4, 17] ∪H[4, 4, 25].

Moreover, all the H(q)’s listed above are irreducible. Thus, if we put as before H∗(q) =
H(q) ∩M2, then the intersection of some of Lange’s moduli spaces are as follows:

M2(1, 2) ∩M2(1, 3) = H4 ∩H9 ∩M2

= H∗[4, 0, 5] ∪H∗[4, 0, 9] ∪H∗[4, 4, 9],

M2(1, 2) ∩M2(1, 5) = H4 ∩H25 ∩M2

= H∗[4, 0, 9] ∪H∗[4, 0, 21] ∪H∗[4, 0, 25] ∪H∗[4, 4, 17] ∪H∗[4, 4, 25].

The above proposition suggests that the number of irreducible components of
such intersections becomes quite large as we increase the parameters. This is also
borne out by the following table which gives the number of irreducible components
of HN2 ∩HM2 for small values of N and M :

N\M 2 3 4 5
2 ∗ 3 5 6
3 3 ∗ 6 9
4 5 6 ∗ 12
5 6 9 12 ∗

Remark 9.6 In the above table of intersections, each H(q) is irreducible. But this
will not be true in general, as Theorems 9.2 and 9.4 and the following table show.
The latter gives the number of irreducible components of HN2 ∩Hm, when m ≡ 0, 1
mod 4:

N2\m 1 4 5 8 9 12 13 16 17 20 21 24 25
1 ∗ 1 1 2 1 2 2 2 3 3 2 3 3
4 1 ∗ 3 4 3 4 5 5 5 6 5 6 6
9 1 3 3 5 ∗ 6 5 6 8 7 8∗ 10∗ 9
16 2 5 5 6 6 9 9 ∗ 9 12 10 11 12
25 3 6 7∗ 8 9 9 10 12 15 16∗ 11 13 ∗

14



Here the starred entries 8∗, 10∗, 7∗ and 16∗ are those for which the intersection
HN2 ∩Hm contains reducible H(q)’s. This table is discussed in more detail in [K7].

9.2 Application to curves with automorphisms

Let G be a finite group and 0 ≤ g′ < g. Then it is known that the set

Mg(G, g
′) := {〈X〉 ∈Mg(C) : G ≤ Aut(X) and gX/G = g′}

is a closed subset of the moduli space Mg; cf. Baily[Ba] and Kuribayashi[Ku].
In the case that g = 2, these subschemes turn out to be generalized Humbert

schemes H∗(q) = H(q) ∩M2, except possibly when dimM2(G, g
′) = 0.

Theorem 9.7 The G-loci M2(G, g
′) in M2 of dimension ≥ 1 are as follows:

M2(C2, 0) = M2

M2(C2, 1) = H∗
4

M2(V4, 0) = H∗
4

M2(D4, 0) = H∗[4, 0, 4]

M2(D6, 0) = H∗[4, 4, 4]

where C2 = Z/2Z, V4 = C2 × C2, and Dn is the dihedral group of order 2n.

Proof. The first equality is obvious since every curve 〈X〉 ∈ M2(C) is hyperelliptic,
and the second is clear from (1). The uniqueness of the hyperelliptic involution shows
that M2(C2, 1) = M2(C4, 0), so the third equality holds. The last 2 equalities follow
directly from Theorem 4(a) of [K5].

Moreover, it follows from the discussion on p. 141 of [AP] that M2(G, 0) is either
empty or consists of single point, if G is not one of the above cases. Furthermore, it
easy to see that M2(G, 1) = ∅ if G 6= C2. Thus, the above list is complete. 2

Remark 9.8 The curves belonging to H∗
4 , H∗[4, 0, 4] and to H∗[4, 4, 4] have the fol-

lowing explicit equations:

(a) y2 = x(x− 1)(x− α)(x− β)(x− αβ) (Jacobi, 1832)

(b) y2 = x(1− x2)(1− κ2x2) (Legendre, 1832)

(c) y2 = x6 + ax3 + 1 (Bolza, 1888)

Note that Accola and Previato [AP] give on p. 142 the associated period matrices
for these curves (and others).
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10 The structure of H(q)

The aim of this section is to describe all the irreducible components of the generalized
Humbert schemes H(q) in the case that q ∈ Q(N2) and thus answer Question 8. As
an application, we can then prove the second part of Theorem 4.1 and also Theorem
7.1.

For this, we’ll use the (modified) “basic construction map”

β̃N = βN ◦ ΦN : Y (N) = X(N)×X(N)
ΦN→ ZN

βN→ HN2 ,

where, as above, ΦN : X(N) ×X(N) → ∆∗
N\(Y (N) = ZN is the quotient map and

βN is the basic construction map of §3.
Thus, since H(q) ⊂ HN2 , we can expect that H(q) can be described by the images

of suitable curves on the product surface X(N)×X(N). These “suitable curves” are
the modular correspondences on Y (N) = X(N)×X(N).

10.1 The modular correspondences TN
α

We begin by recalling the classical definition of the modular correspondences on the
product surface X(N)×X(N) which were introduction by Klein[K] in 1880.

Notation. For d ≥ 1, let Md denote the set of primitive (integral) matrices of
determinant d. Thus,

Md = Γ(1)αdΓ(1), where Γ(1) = SL2(Z), and αd = ( 1 0
0 d ) .

Proposition 10.1 (Klein) For each α ∈Md there is an irreducible curve

TNα ⊂ X(N)×X(N)

which depends only on the double coset ±Γ(N)αΓ(N).

Proof. Klein/Fricke[KF], p. 597, or Shimura[Sh], p. 170. 2

Remark 10.2 Analytically TNα is constructed as follows. Recall first that

X(N) = Γ(N)\H, where Γ(N) = Ker(SL2(Z) → SL2(Z/NZ))

is the principal congruence subgroup of level N . Now if α ∈ Md, and if Γα ⊂ H× H

denotes the graph of α, where we view α as a fractional linear transformation on the
upper half-plane H, then the modular correspondence TNα is the image of Γα with
respect to the quotient map

H× H → (Γ(N)\H)× (Γ(N)\H) = X(N)×X(N).
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10.2 The quadratic form of a modular correspondence

In order to connect the modular correspondences TNα with the H(q)’s, it is useful to
associate to each α ∈ Md and N ≥ 1 a binary quadratic form qNα in the following
way.

Notation. For α ∈Md and N ≥ 1 put

qNα := [N2, 2mt,m2(t2 + 4d)/N2].

Here, t = trace(βα), where β = ( 1 0
0 −1 ) and m|N is given by

(6) N/m = gcd(x− w, y, z,N), if βα = ( x y
z w ) .

Proposition 10.3 (Key Lemma) (a) If α ∈ Md, and N ≥ 1, then qNα ∈ Q(N2).
Moreover, if m is defined by (6), then

(7) disc(qNα ) = −16m2d and gcd(N/m, d) = 1,

(b) If q ∈ Q(N2), then there are unique positive integers m|N and d such that (7)
holds, and there is a (primitive) matrix α ∈Md such that q ∼ qNα .

Proof. (a) This is Corollary 12 of [K5]. (Note that the statement of that corollary has
a typo: “N -primitive” should be a replaced by “primitive”.)

(b) The existence and uniqueness ofm and d satisfying (7) is proven in Proposition
7 of [K5], and the existence of α ∈ Md with q ∼ qNα follows from Proposition 15 (or
from Theorem 16) of [K5]. 2

Definition. The forms q ∈ Q(N2) which satisfy (7) will be called forms of type
(N,m, d).

10.3 The structure theorem

We now come to the main structure theorem for theH(q)’s in the case that q ∈ Q(N2).
This states that H(q) is a union of certain modular curves which are obtained as the
images of modular correspondences with respect to the “basic construction map” β̃N .
To justify the term “modular curve”, we first observe:

Proposition 10.4 For each α ∈Md and N ≥ 1, the image

T
N

α := β̃N(TNα ) ⊂ HN2 ⊂ A2

of the modular correspondence TNα is a closed irreducible curve on HN2 and on A2.
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Proof. By Proposition 10.1 we know that TNα is a closed irreducible curve on Y (N) =
X(N) ×X(N), hence β̃N(TNα ) is also a closed and irreducible curve on HN2 and on
A2 because βN and hence β̃N is a finite morphism; cf. Theorem 3.3. 2

Theorem 10.5 (Structure Theorem) If q is a binary form of type (N,m, d), then

(8) H(q) =
⋃
α

T
N

α ,

where the union is over all α ∈ Md such that qNα ∼ q. This is a finite union because
for α1, α2 ∈Md we have that

(9) γβα1γ
−1 ≡ ±βα2 (modN), for some γ ∈ Γ(1) ⇒ T

N

α1
= T

N

α2
.

The proof of the Structure Theorem 10.5 will be discussed in more detail in the
next section. Here we observe that we can use it to complete the proofs of Theorems
4.1 and 7.1. For this, we first note the following consequence of Theorem 10.5.

Corollary 10.6 Let qi ∈ Q(N2
i ), for i = 1, 2. Then

(10) |H(q1) ∩ H(q2)| = ∞ ⇔ H(q1) = H(q2) ⇔ q1 ∼ q2.

Proof. If q1 ∼ q2, then H(q1) = H(q2), and if H(q1) = H(q2), then H(q1) ∩H(q2) =
H(q1) is infinite, sinceH(q1) is a (non-empty) union of irreducible curves by Theorems
8.1 and 10.5. (Note that qi has type (Ni,mi, di) for some mi|Ni by Proposition
10.3(b).) Thus, it suffices to show that |H(q1) ∩ H(q2)| = ∞⇒ q1 ∼ q2.

Now since H(qi) is a union of irreducible curves by Theorem 10.5, it follows that
|H(q1) ∩ H(q2)| <∞ except when H(q1) and H(q2) have a common component. By

Theorem 10.5, such a component has the form T
N

α with qNα ∼ qi, for i = 1, 2. But
then q1 ∼ q2, which proves (10). 2

Proof of Theorem 4.1. The first assertion follows from Corollary 8.2, and the second
follows from (8). 2

Proof of Theorem 7.1. Since H(q) = ∅, if r > 3 (cf. Proposition 5.2(c)), we may
assume that r ≤ 3.

If r = 1, then q = N2x2 because q → N2. Thus H(q) = HN2 by Proposition
5.2(b), and so H(q) is a closed subset of A2 by Theorem 3.3 because βN is a finite
and hence a proper morphism. Moreover, HN2 is irreducible (hence equidimensional)
of dimension 2 = 3− r by Theorem 3.3 (or by Theorem 2.2).

If r = 2, i.e., if q is a binary quadratic form, and if H(q) 6= ∅, then q ∈ Q(N2), and
then by Theorem 10.5 we know that H(q) is a finite union of modular curves of the

form T
N

α = β̃N(TNα ). By Proposition 10.4, these are all closed and irreducible curves
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on HN2 , so H(q) is a closed subset of HN2 which is equidimensional of dimension
1 = 3− r.

Finally, if r = 3, then by Lemma 10.7 below we have that H(q) is a finite set, so
H(q) is equidimensional of dimension 0 = 3− r, if H(q) 6= ∅. 2

In the above proof we had used the following fact which is interesting in itself
since it does not require the hypothesis that q primitively represents a square.

Lemma 10.7 If q is a ternary form, then there exists an integer N ≥ 1 and binary
quadratic forms qi ∈ Q(N2) with q1 6∼ q2 such that H(q) ⊂ H(q1) ∩ H(q2). In
particular, H(q) is a finite set.

Proof. The last assertion follows from (10), so it is enough to prove the first. Moreover,
if H(q) = ∅, then this assertion holds trivially by taking any two forms qi ∈ Q(N2)
with q1 6∼ q2; for example, we can take qi = [N2, 0, 4di], with d1 6= d2.

Thus, assume that there exists (A, λ) ∈ H(q). Then q(A,λ) ∼ q (cf. the proof of
Proposition 5.2(c)), so ρ(A) = r+ 1 = 4. By the structure theorems for End(A), this
implies that A ∼ E × E, where E/C is a CM elliptic curve; cf. [vdG], p. 207.

Thus, A has an elliptic subgroup E1 ∼ E; put N = (E1.θλ) as in §6. Then by
Proposition 10(a) of [K4] there exists an elliptic curve E2/C and an anti-isometry
ψ : E1[N ] → E2[N ] such that (A, λ) ' (Jψ, λψ) in the notation of Theorem 3.3. This
means that (E1, E2, ψ) is an N -presentation of (A, λ).

To construct q1 and q2, let di be two values which are primitively represented
by the degree form qE1,E2 of Hom(E1, E2), which is a positive binary quadratic form
because E1 ∼ E2 ∼ E are CM elliptic curves. By elementary quadratic form theory
(cf. Cox[Co], Lemma 2.25), we can choose d1 and d2 such there exists a prime p|d2 with
p - 2Nd1. Then by Theorem 25 of [K5], there exists mi|N such that q(A,ψ) → qi, where
qi is a form of type (N,mi, di), so in particular, qi ∈ Q(N2). Since disc(qi) = −16m2

i di,
we see that disc(q1) 6= disc(q2) because p|disc(q2) but p - disc(q1). Thus q1 6∼ q2. Since
q ∼ q(A,λ) → qi, we have by Proposition 5.2(a) that H(q) ⊂ H(q1)∩H(q2), as desired.
2

11 Method of proof

The first main technique for studying the points lying on the Humbert surface HN2

is closely related to the basic construction (cf. §3). This gives rise to the following
terminology which was introduced in [K4]:

Definition. An N-presentation of a principally polarized abelian surface (A, λ) is
a 4-tuple (E1, E2, ψ, π) where Ei/C are elliptic curves, ψ : E1[N ] → E2[N ] is an
anti-isometry, and

π : E1 × E2 → A
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is an isogeny such that Ker(π) = Graph(−ψ) and such that

π∗θλ ≡ N(θ1 + θ2),

where θλ is the theta-divisor of (A, λ) and θi = pr∗i (0Ei), where pri : E1 ×E2 → Ei is
the ith projection for i = 1, 2.

Remark 11.1 It follows from the basic construction (cf. §3 or [K4], Proposition 10)
that

(A, λ) has an N -presentation ⇔ 〈A, λ〉 ∈ HN2 .

A second ingredient for studying points on HN2 is a useful modular description

of the modular correspondences TNα and hence of their images T
N

α . This allows us to

find an N -presentation of the elements 〈A, λ〉 ∈ TNα (C).
Such a modular description was determined in [K6]. Specializing this to our

situation, we obtain:

Proposition 11.2 Let α ∈ Md, and let z := 〈E,E ′, ψ〉 ∈ ZN(C), where N ≥ 2.
Then z ∈ ΦN(TNα ) if and only if there exists a cyclic isogeny f : E → E ′ of degree d
and a (symplectic) level N-structure φ : (Z/NZ)× (Z/NZ)

∼→ E[N ] such that

(11) ψ−1 ◦ f|E[N ] = φ ◦ [βα]N ◦ φ−1,

where [βα]N ∈ End((Z/NZ)2) denotes the endomorphism of (Z/NZ)2 defined by the
matrix βα mod N . Here, as before, β =

(
1 0
0 −1

)
.

Proof. This follows easily from the modular description given in Theorem 10 of [K6].
2

Proof of Theorem 10.5. (Sketch; full details in [K7]). Let z = 〈E,E ′, ψ〉 ∈ ΦN(TNα ),

where α ∈Md, so βN(z) = 〈Jψ, λψ〉 ∈ T
N

α . Thus, , if π : E×E ′ → Jψ is the quotient
map, then (E,E ′, ψ, π) is an N -presentation of (Jψ, λψ). Moreover, by Proposition
11.2 we know there exists a cyclic isogeny f : E → E ′ of degree d such that (11) holds.
It thus follows from Proposition 28 and Proposition 11 of [K5] that q(Jψ ,λψ) → qNα ,

and so T
N

α ⊂ H(qNα ) = H(q), for any q ∼ qNα ; cf. Proposition 5.2(a). This shows that
the right hand side of (8) is contained in the left hand side.

Conversely, let 〈A, λ〉 ∈ H(q), so q(A,λ) → q. By using Theorem 31 of [K5]
(together with [K5], Lemma 30) we can find an N -presentation (E,E ′, ψ, π) of (A, λ)
and a cyclic isogeny f : E → E ′ of degree d such that (11) holds for some α ∈ Md

and some level N -structure φ : (Z/NZ)2 → E[N ]. Thus z = 〈E,E ′, ψ〉 ∈ ΦN(TNα ) by

Proposition 11.2 and so 〈A, λ〉 = βN(z) ∈ TNα . This proves (8).

20



To prove the assertion (9), note that if α1, α2 ∈Md, then by [K6], Proposition 15
and Lemma 11, we have that

TNα1
= TNα2

⇔ α2 ≡ ±α2 (modN).

Using this and the modular description of ΦN , we see that

(12) ΦN(TNα1
) = ΦN(TNα2

) ⇔ γβα1γ
−1 ≡ ±βα2 (modN), for some γ ∈ Γ(1),

and from this (9) follows because T
N

αi
= βN(ΦN(TNαi )), for i = 1, 2. 2

In order to deduce Theorems 9.1 and 9.2 from the Structure Theorem 10.5, further
work is necessary. In view of (8) and (9), this leads to the study the following three
problems:

1. Determine the SL2(Z/NZ)-conjugacy classes of the matrices α (modN).

2. Study the ±-action on the conjugacy classes.

3. Examine the converse of implication (9).

The solutions of these problems will now be discussed in turn.

1. Conjugacy classes of matrices. By an easy extension of the work of Nobs[No],
who treated the case of a prime power N = pr, it is possible to determine explicit
representatives for the SL2(Z/NZ)-conjugacy classes of 2× 2 matrices mod N .

Notation. For an integral 2× 2 matrix α =
(
x y
z w

)
∈M2(Z) and integer N ≥ 2 put

gα,N = gcd(x− w, y, z,N).

Note that gα,N depends only on α (modN) and that gα,N is invariant under conjuga-
tion by SL2(Z); cf. [K5], Corollary 13. Furthermore, for t, d ∈ Z put

SN(t, d) = {a ∈ (Z/NZ)× : ∃(ξ, η) ∈ Z2 with ξ2 + tξη + dη2 ≡ a (modN)}.

As in [No], it is easy to see that SN(t, d) is a subgroup of (Z/NZ)×.

The following result gives an overview of the SL(Z/NZ)-conjugacy classes of ma-
trices α (modN).

Proposition 11.3 (a) Let α ∈ M2(Z) and N ≥ 2, and put g = gα,N and m = N
g
.

Then there exist integers x, t, d, z, z′ ∈ Z with 0 ≤ x < g and zz′ ≡ 1 (modm) such
that

(13) γαγ−1 ≡ xI + g

(
0 −dz′
z t

)
(modN), for some γ ∈ SL2(Z).
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(b) Let g|N and put m = N
g
. If α1, α2 ∈M2(Z) have the form

αi = xi + g

(
0 −diz′i
zi ti

)
,

where 0 ≤ xi < g and ziz
′
i ≡ 1 (modm), for i = 1, 2, then the following conditions are

equivalent:

(i) There exists γ ∈ SL2(Z) such that γα1γ
−1 ≡ α2 (modN).

(ii) We have that x1 = x2, t1 ≡ t2 (modm), d1 ≡ d2 (modm), and a ∈ Sm(t1, d1),
where a ≡ z1z

′
2 (modm).

This leads to the following result which refines the Structure Theorem 10.5.

Theorem 11.4 Let q be a form of type (N,m, d) and put g = N
m

. Then there exist
integers x, t and δ with 0 ≤ x < g such that if z1, . . . , zs is a system of representatives
of (Z/mZ)×/Sm(t, δ), and if α1, . . . , αs ∈Md are primitive matrices such that

βαi ≡ xI + g

(
0 −δz′i
zi t

)
(modN),

where ziz
′
i ≡ 1 (modm), for 1 ≤ i ≤ s, then

(14) H(q) =
s⋃
i=1

T
N

αi
.

In particular, the number of irreducible components of H(q) satisfies the estimate

(15) |Irr(H(q))| ≤ im(t, δ) := |(Z/mZ)× : Sm(t, δ)|.

Remark 11.5 The above is a shortened version of Theorem 40 of [K7], which also
gives the precise recipe of how x, t, and δ are determined from q.

Thus, to find an upper bound for the number of irreducible components of H(q), it
suffices by (15) to bound the index im(t, δ). For prime powers m, Nobs[No] computed
Sm(t, d) and hence also im(t, d). Using this, we obtain:

Proposition 11.6 Let t, δ ∈ Z be integers and put ∆m(t, δ) = gcd(t2− 4δ,m). Then

(16) im(t, δ) ≤ 2ω(∆m(t,δ)),

except when 8|∆m(t, δ), in which case im(t, δ) ≤ 2ω(∆m(t,δ))+1. Furthermore, equality
holds in (16) if 2 - ∆m(t, δ).
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Remark 11.7 In [K7] it is shown that in the situation of Theorem 11.4 we have that

(17) ∆m(t, δ) = gcd(c(q),m),

where, as before, c(q) is the content of the form q. Using this, we see that Theorem
9.1 follows immediately from (15) and (16).

2. The ±-action on conjugacy classes. In view of the explicit representatives of
the SL2(Z/NZ)-conjugacy classes of matrices given in Proposition 11.3, it is an easy
exercise to determine when the ±-action identifies some of the SL2(Z/NZ)-conjugacy
classes or not. For example, the following result follows easily from Proposition 11.3.

Lemma 11.8 Let α1, . . . , αs ∈ Md be as in Theorem 11.4, and suppose that N is
odd. If x 6= 0 or if t 6≡ 0 (modm), then we have that

(18) −βαi 6≡ γβαjγ
−1 (modN), for 1 ≤ i, j ≤ s and all γ ∈ SL2(Z).

Remark 11.9 (a) If x and t do not satisfy the conditions of Lemma 11.8, then
q ∼ [N2, 0, 4d], so q has type (N,N, d). This explains why this form plays a special
role in Theorem 9.2.

(b) If N is even, then there is an analogue of Lemma 11.8, but then there are more
exceptional cases. In this case the exceptional q’s are those of the form [N2, 0, 4d],
[N2, N2, (N

2
)2 +4d] and [N2, εN2, ( εN

2
)2 +d], where ε ∈ {0, 1} and d ≡ 1+εN (mod 4)

in the last case; cf. [K7].

3. The converse of the implication (9). This task is much more difficult than
the previous two, and complete results are not yet available, except when N is an
odd prime.

To understand the difficulties, recall from the proof of Theorem 10.5 that the
converse of (9) does hold for the modular curves on ZN ; cf. (12). However, since the
basic construction map βN : ZN → HN2 is generically 2 : 1 (cf. Theorem 3.3), we can
expect that distinct modular curves on ZN are mapped to the same modular curve

T
N

α on HN2 . However, we have the following result.

Proposition 11.10 Every modular curve ΦN(TNα ) on ZN is stable under the involu-
tion wN of Theorem 3.3. Thus, if

πN : ZN → Zsym
N = 〈wN〉\ZN

denotes the quotient morphism, then we have for α1, α2 ∈Md that
(19)
πNβN(TNα1

) = πNβN(TNα2
) ⇔ γβα1γ

−1 ≡ ±βα2 (modN), for some γ ∈ SL2(Z).
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Proof. (Sketch; details in [K7].) It is not difficult to see (cf. [K6]) that τN(TαN) = TNα∗ ,
where τ denotes the involution of X(N)×X(N) which interchanges the factors (cf.
Theorem 3.3) and α∗ = det(α)α−1 denotes the adjoint of α. Thus

wN(ΦN(TNα )) = ΦN(TNα∗).

Using Proposition 11.3 we see that βα∗ is conjugate mod N to βα, and so we obtain
that wN(ΦN(TNα )) = ΦN(TNα ) by (12). Thus ΦN(TNα ) is wN -stable, as claimed.

From this it follows that the map πN maps the modular curves on ZN bijectively
to those of Zsym

N , and so (19) follows from (12). 2

Remark 11.11 Since βN : ZN → HN2 is wN -invariant, it factors over πN as

βN = νN ◦ πN ,

where νN : Zsym
N → HN2 is finite and birational; cf. Theorem 3.3. Thus, νN is

generically an isomorphism, and so only finitely many of the modular curves on Zsym
N

are not mapped bijectively to HN2 ; these then lie in the inverse image of the conductor
locus of HN2 . The following result and Remark 11.13 below make this precise.

Theorem 11.12 Let q be a form of type (N,m, d) which satisfies the condition

(20) |{(x, y) ∈ Z2 : q(x, y) = N2, gcd(x, y) = 1}| = 2.

Then the converse of (9) holds for the matrices αi ∈Md with qNαi ∼ q.

Remark 11.13 If d > N4/(4m2), then the reduction theory of binary quadratic
forms shows that (20) holds. Thus, there are only finitely many H(q)’s on HN2

which fail to satisfy the condition (20) because for them the absolute value of the
discriminant of q is bounded by 4N4, and so there are only finitely equivalence classes
of such q’s.

Proof of Theorem 11.12. (Sketch; details in [K7]). Suppose that T
N

α1
= T

N

α2
, and

let 〈A, λ〉 ∈ T
N

αi
⊂ H(q) be a non-CM point, so q(A,λ) ∼ q. Then the hypothesis

T
N

α1
= T

N

α2
implies that there exist zi ∈ ΦN(TNαi ) such that β(z1) = βN(z2) = 〈A, λ〉.

Using the hypothesis (20), one then shows that in fact z1 = z2. Since TNαi has infinitely
many non-CM points, it follows that ΦN(TNα1

) = ΦN(TNα2
), and so the converse of (9)

follows by using (12). 2

Proof of Theorem 9.2. If q ∈ Q(N2), then q has type (N,m, d) for some uniquem, d by
Proposition 10.3(b), so by (7) and the hypothesis we have 16m2d = |disc(q)| > 4N4,
or d > N4/(4m2). Thus, by Remark 11.13 we have that q satisfies (20). Thus, by
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Theorem 11.12 we know that the converse of (9) holds for the αi ∈ Md’s such that
qNαi ∼ q.

Moreover, since by hypothesis q 6∼ [N2, 0, 4d], we have by Remark 11.9(a) and
Lemma 11.8 and the converse of (9) that the αi’s of Theorem 11.4 give distinct

modular curves T
N

αi
onHN2 , and so by Theorem 11.4 we see that |Irr(H(q))| = im(t, δ),

and so the desired formula follows from Proposition 11.6 and Remark 11.7. 2

In the case that q does not satisfy condition (20), the analysis of the converse of
(9) is much more delicate. In the case of prime level N > 2, we have the following
technical result which (almost) suffices to prove Theorem 9.4.

Proposition 11.14 Let q ∈ Q(N,N, d), where N > 2 is prime. If condition (20)
does not hold for q, then N - d and N | c(q), so β−1

N (H(q)) ⊂ ZN consists of two
irreducible components. On the other hand, we have that

(21) H(q) is irreducible ⇔ N ≡ 3 (mod 4).

Proof. (Sketch; details in [K8].) This is rather technical. The first two assertions are
easily verified. Thus ω(gcd(c(q), N)) = 1, so we have by (12) and a refinement of
Theorem 11.4 and Proposition 11.6 that β−1

N (H(q)) consists of two distinct compo-
nents ΦN(TNαi ), i = 1, 2. Thus, the matrices αi ∈ Md are such that q ∼ qNα1

∼ qNα2
,

but βα1 is not mod N -conjugate to ±βα2.
To prove (21), suppose that zi ∈ ΦN(TNαi ) are non-CM points such that 〈A, λ〉 =

β(z1) = β(z2), so (A, λ) has two distinct N -presentations. A long and delicate compu-
tation using these two N -presentations shows that βα1 is mod N -conjugate to ±βα2

if and only p ≡ 1 (mod 4). Thus, if p ≡ 1 (mod 4), then we have a contradiction, so in
particular βN(TNα1

) and βN(TNα2
) are distinct (and intersect only in CM-points). On

the other hand, if p ≡ 3 (mod 4), then reversing the above argument shows that each
〈A, λ〉 ∈ H(q) (which is not a CM point) is the image of a point zi ∈ ΦN(TNαi ) on each

of the two components, so T
N

α1
= T

N

α2
= H(q). 2

To connect the the above hypotheses with those of Theorem 9.4, we observe the
following fact which is proved in [K8].

Lemma 11.15 If q be an imprimitive form of type (N,m, d), where N > 2 is prime,
then m = N . If in addition q 6∼ [N2, 0, 4d], then condition (20) does not hold for q if
and only if q is ambiguous.

Example 11.16 The generalized Humbert scheme H[9, 6, 9] ⊂ H9.

The form q = [9, 6, 9] has type (3, 3, 2) and condition (20) fails for q because ±(1, 0)
and ±(0, 1) are primitive solutions of q(x, y) = 9. (Note also that q ∼ [24, 24, 9], so q
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is an ambiguous form.) Thus, Proposition 11.14 shows that the converse of (9) does
not hold for q, and that H(q) is an irreducible curve; cf. also Theorem 9.4.

Note that (the proof of) Proposition 11.14 implies that H(q) lies in the conductor
locus of H9,i.e., in the (closed) subset of non-normal points of H9, so in particular
Zsym

3 6' H9, and so H9 is not normal. In fact, it turns out that HN2 is not normal for
any N ≥ 3; cf. [K8].
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153-176.

[FK2] G. Frey, E. Kani, Curves of genus 2 and associated Hurwitz spaces. Contemp.
Math. 487 (2009), 33–81.
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