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1 Introduction

In his fundamental book, Shimura [Sh1] showed that each (Hecke) T-eigen-
function f ∈ S2(N) on Γ1(N) gives to an abelian subvariety Af ⊂ J1(N) on
the Jacobian variety of the modular curve X1(N)/Q, and in a subsequent
paper [Sh2] he explained that such Hecke eigenfunctions give more naturally
rise to quotient varieties A′f of J1(N). The purpose of this note is to show that
both these constructions (and more) follow from a general “dictionary” that
translates statements about subvarieties of abelian varieties into statements
about ideals of the associated endomorphism algebras.

To explain this more precisely, let A be an abelian variety over an ar-
bitrary field K, and let Sub(A/K) = {B ≤ A} denote the set of abelian
subvarieties B of A (which are defined over K). Then the aforementioned
dictionary translates this set into the set IdE of right ideals of the endomor-
phism algebra E = EndK(A)⊗Q of A as follows:

Theorem 1.1 The map B 7→ I(B) := {f ∈ E : Imf ⊂ B} defines an
inclusion-preserving bijection

IA/K : Sub(A/K)
∼→ IdE

between the set of abelian subvarieties of A/K and the set of right ideals of
E = End0

K(A). Furthermore, if B1, B2 ∈ Sub(A/K) are any two abelian
subvarieties, then there is a canonical (functorial) isomorphism

Hom0
K(B1, B2) := HomK(B1, B2)⊗Q ∼→ HomE(I(B1), I(B2)).

From this theorem (which is a special case of Theorem 2.4 below) one
obtains as a consequence that if V is any faithful (left) E-module, then there
is a natural bijection between Sub(A/K) and certain algebraic subspaces of
V ; cf. section 3. In the case that V is finitely generated, this yields (via the
Morita theorems) the following result.
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Corollary 1.2 Let V be a faithful, finitely generated left E-module. Then
the map B 7→ WE(B) := I(B)V defines an inclusion-preserving bijection

WA/K : Sub(A/K)
∼→
Ẽ
Sub(V )

between the set of abelian subvarieties of A/K and the set of left Ẽ-submodules
of V , where Ẽ = EndE(V ).

Two (natural) examples for which this result can be applied directly are
the following.

Example 1.3 (a) If K ⊂ C, then the assignment B 7→ H1(B) ⊂ H1(A) :=
H1((A⊗C)an,Q) defines an inclusion-preserving bijection between the set of
abelian subvarieties of A/K and the set of left EndE(H1(A))-submodules of
H1(A).

(b) If K = Q, then the assignment B 7→ T0(B) ⊂ T0(A), where T0(A) de-
notes the tangent space of A at the origin, defines an inclusion-preserving bi-
jection between Sub(A/Q) and the set of left EndE(T0(A))-modules of T0(A).

Now this last example is actually the dual version of the one that gives
rise to the Shimura construction, for the space S2(N,Q) ⊂ S2(N) of cusp
forms of weight 2 on Γ1(N) with rational Fourier expansions can naturally
be identified with the space of homomorphic 1-forms H0(X1(N),Ω1

X1(N)/Q) '
T0(J1(N))∗, which is the dual space of the tangent space T0(J1(N)). We thus
require either an identification of T0 with its dual space or a dual version of
the above corollary. As we shall see, both these methods are feasible and
lead to Shimura’s two constructions.

More precisely, Shimura’s first construction (in [Sh1]) may be deduced
from the following general statement.

Corollary 1.4 Let A/Q be an abelian variety, and suppose that there exists a
commutative subring T ⊂ E = End0

Q
(A) such that both T0(A) and T0(A)∗ are

free T-modules of rank 1. Fix a T-module isomorphism ϕ : T0(A)∗
∼→ T0(A).

Then for any T-submodule W ⊂ T0(A)∗, there is a unique abelian subvariety
BW ∈ Sub(A/Q) such that T0(BW ) = ϕ(W ).

As will be explained in section 5, this can be applied directly to the case
A = J1(N) (cf. Theorem 5.1); in fact, in this case Shimura[Sh2] constructed
an explicit isomorphism ϕ.
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A more natural method is to work with the module Ω(A) = T0(A)∗ di-
rectly. Since this is a right E-module, we require a “dual version” of Corol-
lary 1.2 for such modules. In this case, however, one has replace the set
Sub(A/K) by either the set Sub(Â/K) of abelian subvarieties of the dual
abelian variety Â, or equivalently, by the set Quot(A/K) of all abelian quo-
tient varieties of A/K, i.e. by the set consisting of all (equivalence classes
of) pairs (C, p) where p : A → C is a surjective homomorphism of abelian
varieties such that Ker(p) is also an abelian variety; cf. section 4 below.

The precise analogue of Corollary 1.2 is given in Theorem 4.4. As a
special case of this, one obtains

Theorem 1.5 If A is an abelian variety defined over Q and p : A→ C is a
quotient of A, then the assignment (C, p) 7→ p∗Ω(C) ⊂ Ω(A) := H0(A,Ω1

A/Q)
induces a bijection

WΩ : Quot(A/Q)
∼→ Sub(Ω(A))

Ẽ

between the set of abelian quotients of A/Q and the set of right Ẽ-submodules
of Ω(A), where Ẽ = EndE(Ω(A)).

In particular, if there exists a commutative subring T ⊂ E such that Ω(A)
is a free T-module of rank 1, then for every T-submodule W ⊂ Ω(A) there
exists a unique abelian quotient pW : A→ CW such that p∗WΩ(CW ) = W . In
addition, dimCW = dimQW .

As will be explained in section 5, the above theorem applies in particular
to the case that A = J1(N) is the Jacobian of the modular curve X1(N)/Q
and T = TQ is the Hecke algebra of J1(N), and we thus obtain a different
characterization (and proof) of the (second) Shimura construction [Sh2].

2 Subvarieties of an Abelian Variety

As in the introduction, fix an arbitrary ground field K and let A,B, . . . denote
abelian varieties defined over K. Throughout, we shall freely use the basic
facts about abelian varieties as presented in Milne[Mi] and Mumford[Mu].
Some other standard facts (not explicitly mentioned there) are the following.

Proposition 2.1 (a) If f : A → B is an isogeny of abelian varieties, then
there is a unique isogeny f ′ : B → A such that

f ′ ◦ f = [e(f)]A,(1)
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where e(f) denotes the exponent of Kerf , i.e., the smallest integer n > 0
such that nKerf = 0. Moreover, we then also have that f ◦ f ′ = [e(f)]B.

(b) If λL : A→ Â is the canonical homomorphism defined by L ∈ Pic(A),
then for any homomorphism h : B → A of abelian varieties we have

λh∗L = h#λL := ĥ ◦ λL ◦ h.(2)

(c) If λ : A → Â is a polarization of A and h : B → A is a finite
homomorphism (i.e. Ker(h) is finite), then h#λ := ĥ ◦ λ ◦ h : B → B̂ is a
polarization of B. In particular, ĥ is surjective.

Proof. (a) Since Ker(f) ⊂ Ker([e(f)]A), such a unique factorization exists by
the universal property of quotients (viewing (B, f) as the quotient of A by
Ker(f)). Furthermore, if we write h = f ◦ f ′ : B → B and e = e(f), then
h ◦ f = f ◦ f ′ ◦ f = f ◦ [e]A = [e]B ◦ f , and hence h = [e]B because f is
surjective.

(b) This follows immediately from the definitions of λL, λh∗L and of ĥ.
(See also Lang[La], p. 130).

(c) It is enough to verify this over K, the algebraic closure of K. Then
λ = λL for some ample sheaf L ∈ Pic(A), and hence h∗L is also ample
(because h is finite). Thus h#λ = λh∗L is a polarization. In particular,
ĥ ◦ λ ◦ h is an isogeny and hence is surjective, and thus ĥ is also surjective.

The above facts lead to the following result which is of fundamental im-
portance for the proof of Theorem 1.1:

Corollary 2.2 Suppose h : B → A is a finite homomorphism and that λ :
A→ Â is a polarization. Put:

ph = ph,λ := ĥ ◦ λ : A→ B̂ and Nh = Nh,λ := (λB)′ ◦ ph : A→ B,(3)

where λB = h#λ : B → B̂ is the induced polarization on B and (λB)′ ◦ λB =
[eB]B with eB = e(λB). Then we have

Nh ◦ h = [eB]B,(4)

and so εh = εh,λ := 1
eB
h ◦Nh ∈ E = End0

K(A) is an idempotent of E.

Proof. By definition, Nh◦h = (λB)′◦ph◦h = (λB)′◦λB = [eB]B, which proves
(4). Thus εh ◦ εh = 1

e2B
h ◦ Nh ◦ h ◦ Nh = 1

e2B
h ◦ [eB]B ◦ Nh = 1

eB
h ◦ Nh = εh,

which means that εh is an idempotent.
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Remark. The above proposition applies in particular to the case when h =
jB : B ↪→ A is the inclusion map of an abelian subvariety B ≤ A. In this
case we shall write pB, NB and εB in place of pjB , NjB and εjB , respectively.

Notation. If A and B are abelian varieties, then the group HomK(A,B)
of K-homomorphisms is a lattice (of finite rank) in the Q-vector space
Hom0(A,B) = HomK(A,B) ⊗ Q. In particular, if A = B, then the K-
endomorphism algebra EndK(A) is a free Z-algebra and a lattice in the (finite
dimensional) Q-algebra E = EA/K := End0

K(A) = EndK(A)⊗Q.
For any f ∈ HomK(B,A), its image Im(f) ⊂ A is an abelian subvariety

of A. Since Im(nf) = Im(f ◦ [n]B) = Im(f), for any non-zero n ∈ Z, we can
extend this definition to f ∈ Hom0

K(B,A) by setting Im(f) := Im(nf) ⊂ A,
where n ∈ Z is chosen such that nf ∈ HomK(B,A) (and n 6= 0).

If B ≤ A is an abelian subvariety, then put

I(B) = IA/K(B) = {f ∈ EA/K : Im(f) ⊂ B}.

Note that I(B) is a right ideal of E because we have Im(f+g) ⊂ Im(f)+Im(g)
and Im(f ◦ g) ⊂ Im(f), for all f, g ∈ E.

Proposition 2.3 If B ≤ A is an abelian subvariety of A, then

I(B) = jBHom0
K(A,B) = εB,λE,(5)

where λ : A→ Â is any polarization of A.

Proof. Clearly, jBHom0
K(A,B) ⊂ I(B). Conversely, if f ∈ I(B), then

Im(f) ⊂ B, and so we can write f = jB ◦ f ′ for some f ′ ∈ Hom0
K(A,B).

Thus f ∈ jBHom0
K(A,B), which proves the first equality of (5).

To prove the second equality, it clearly enough to show that

Hom0
K(A,B) = NB,λE.(6)

Now if f ∈ HomK(A,B), then by (4) we have f = 1
eB
NB,λ ◦ (jB ◦f) ∈ NB,λE,

and so Hom0
K(A,B) ⊂ NB,λE. This proves (6) since the other inclusion is

trivial.

The above proposition is the main tool required for proving Theorem 1.1
of the introduction, as we shall now see. In fact, we shall prove the following
slightly more precise version of this theorem:
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Theorem 2.4 The above map B 7→ I(B) := jBHom0
K(A,B) = {f ∈ E :

Imf ⊂ B} defines a lattice-preserving bijection

IA/K : Sub(A/K)
∼→ IdE

whose inverse is given by BA/K(a) = aA :=
∑

f∈a Im(f). In particular,
IA/K(B) is a two-sided E-ideal if and only if B is E-stable, i.e. if and only if
f(B) ⊂ B, for all f ∈ E.

Furthermore, for any B1, B2 ∈ Sub(A/K) there is a unique functorial
isomorphism

(IA/K)B1,B2 : Hom0
K(B1, B2)

∼→ HomE(I(B1), I(B2))(7)

such that for any h ∈ E with h(B1) ⊂ B2 we have

(IA/K)B1,B2(h|B1)(x) = hx, for all x ∈ I(B1).(8)

Proof. We first show that IA/K and BA/K are inverses of each other. For this,

fix a polarization λ : A → Â. Then for any B ∈ Sub(A/K) we have by
equation (5) that BA/K(IA/K(B)) = BA/K(εB,λE) = Im(εB,λ) = Im(NB,λ) =
B, the latter because NB,λ : A→ B is surjective (cf. (4)).

Now we also have IA/K(BA/K(a)) = a, for all a ∈ IdE. To see this, write
a = εE, for some idempotent ε ∈ E; such an ε exists by [CR], p. 44, since
E semi-simple. Then B := BA/K(a) = Im(ε), and so ε ∈ IA/K(B) = εB,λE
by (5), i.e. εE ⊂ εB,λE. To prove the opposite inclusion, we first show that
εjB = jB. To see this, choose an n > 0 such that g := nε ∈ EndK(A).
Then g2 = ng and so g ◦ jB = [n]A ◦ jB because if b = g(a) ∈ Im(g)(K)
then g(b) = g2(a) = ng(a) = nb. Thus, εjB = jB, and hence εεB,λ = εB,λ.
(Composing both sides with 1

eB
NB,λ.) Thus εB,λ ∈ εE and so a = εE =

εB,λE = IA/K(B) = IA/K(BA/K(a)). Therefore, the maps IA/K and BA/K are
inverses of each other and hence both are bijections.

Note that since BA/K(fE) = Im(f), the above implies that for any f ∈ E
we have I(B) = fE⇔ Im(f) = B, and so

fI(B) = I(f(B)), for all B ∈ Sub(A/K)(9)

because fI(B) = fεB,λE and Im(fεB,λ) = f(Im(εB,λ) = f(B). Thus, if B
is E-stable, then clearly I(B) is a two-sided ideal. Conversely, if I(B) is a
two-sided ideal, then f(Im(g)) = Im(fg) ⊂ B, for all f ∈ E and g ∈ I(B).
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Thus, if we take g = εB,λ and use the fact that Im(εB,λ) = B, then we see
that B is E-stable, as claimed.

Now since both IA/K and BA/K are inclusion-preserving, we have

B1 ⊂ B2 ⇔ I(B1) ⊂ I(B2), for all B1, B2 ∈ Sub(A/K),(10)

and so it follows that IA/K is lattice-preserving, i.e. that we have

I(B1 +B2) = I(B1) + I(B2) and I((B1 ∩B2)0) = I(B1) ∩ I(B2),(11)

because B1 + B2 (resp. (B ∩ B2)0)) is the smallest (resp. largest) abelian
subvariety containing (resp. contained in) B1 and B2.

To construct the map (IA/K)B1,B2 , put

IA/K(h)(x) = jB2 ◦ h ◦ y, for x = jB1 ◦ y ∈ I(B1);(12)

note that the right hand side is uniquely determined by x (and h) because jB1

is injective. Thus, this rule defines an element I(h) ∈ HomE(I(B1), I(B2)).
We observe that I(h) satisfies (8) because if h(B1) ⊂ B2, then h ◦ jB1 =

jB2 ◦h′ for a unique h′ ∈ Hom0
K(B1, B2), and hence I(h|B1)x := I(h′)x

(12)
= jB2 ◦

h′ ◦ y = h ◦ jB1 ◦ y = h ◦ x, as claimed.
To see that the (additive) map h 7→ I(h) is injective, suppose that I(h) =

0. Then, since jB2 is injective, we have h ◦ y = 0, for all y ∈ Hom0
K(A,B1).

In particular, h ◦ NB1,λ = 0 and so h = 0 since NB1,λ is an epimorphism.
Thus (IA/K)B1,B2 is injective.

To show that (IA/K)B1,B2 is surjective, we shall use the elementary result
in ring theory (analogous to Lemma (3.19) of [CR], p. 45) that for any idem-
potents ε1, ε2 ∈ E, the left multiplication map f 7→ lf := (x 7→ fx) defines
(by restriction to ε1E) an isomorphism

ε2Eε1
∼→ HomE(ε1E, ε2E).

Applying this here to the idempotents εi = εBi,λ = jBi ◦ N ′Bi (where N ′Bi =
1
eBi
NBi,λ), we see that each ϕ ∈ HomE(I(B1), I(B2)) has the form ϕ =

(lε2fε1)|I(B1), for some f ∈ E. From this the surjectivity of (IA/K)B1,B2 follows
because by (8) (with h = ε2fε1) we have the formula

I(N ′B2
◦ f ◦ jB1) = (lε2fε1)|I(B1), for all f ∈ E.(13)
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Finally, we note that these isomorphisms are functorial in the sense that
if h ∈ Hom0

K(B1, B2) and g ∈ Hom0
K(B2, B3), then we have

IA/K(g ◦ h) = IA/K(g) ◦ IA/K(h).(14)

Indeed, if x = jB1y ∈ I(B1) then we have (I(g) ◦ I(h))(x) = I(g)(I(h)(x)) =
I(g)(jB2 ◦ h ◦ y) = jB3 ◦ g ◦ h ◦ y = I(g ◦ h)(x).

Remark 2.5 (a) The above theorem has a convenient reformulation in terms
of categories: it asserts that IA/K defines a canonical isomorphism of cate-
gories

IA/K : Sub0
A/K

∼→ Id
E
.(15)

Here Sub0
A/K denotes the full subcategory of the category Ab0

/K “of abelian

varieties up to isogeny’ (cf. [Mu], p. 172) defined by Sub(A/K) (i.e. Sub0
A/K

is the category whose objects are the elements of Sub(A/K) and whose mor-
phisms from B1 to B2 are given by Hom0

K(B1, B2)), and similarly, Id
E

denotes
the full subcategory of the category Mod

E
defined by the right ideals of E,

where Mod
E

denotes the category of (finitely generated) right E-modules.

(b) The above theorem is partially connected with the result of Lange[Lan]
(cf. [LB], p. 126) that the map B 7→ εB,λ defines a bijection

Sub(A/K)
∼→ {symmetric idempotents of E}

between the set of abelian subvarieties of A/K and the set of idempotents
ε ∈ E which are symmetric with respect to Rosati involution a 7→ a∗ =
λ−1 ◦ â ◦ λ defined by λ. (Indeed, this result is easily deduced from Theorem
2.4.) However, this bijection is not so useful for module-theoretic analysis
below (cf. section 3). In addition, this bijection depends on the choice of the
polarization λ (and hence is less functorial).

(c) Note that it follows from equation (7) of the above theorem that if
B1, B2 ∈ Sub(A/K) are two abelian subvarieties, then

B1 is isogenous to B2 ⇔ I(B1) ' I(B2) (as E-modules).

From this it follows easily that if B,B1, . . . , Br ∈ Sub(A/K) then

B ∼ Bn1
1 × . . .×Bnr

r ⇔ I(B) ' I(B1)n1 ⊕ . . .⊕ I(Br)
nr .(16)

Note that this statement immediately implies Theorem 1 of [KR].
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3 Algebraic Subspaces of E-Modules

As before, let A/K be an abelian variety and E = End0
K(A). In this section

we suppose that we have a faithful representation

ρ : E = End0
K(A)→ EndF (V )

where V is a finite-dimensional vector space over a field F ⊃ Q. In other
words, V is a left E⊗ F -module which is faithful as an E-module.

Definition. An F -subspace W ⊂ V is called E-algebraic if it is of the form

W = Im(ρ(a)), for some a ∈ E.

The set of all E-algebraic subspaces of V is denoted by Alg
E
(V ) = Alg

E,ρ(V ).

Remarks. (a) It is easy to see that the sum and intersection of algebraic
subspaces is again algebraic, as will be clear from the proof of Theorem 3.1.

(b) Let ẼF := EndE⊗F (V ) = {f ∈ EndF (V ) : fρ(a) = ρ(a)f, for all f ∈
E}. Then every W ∈ Alg

E
(V ) is a left ẼF -submodule of V , i.e.

Alg
E
(V ) ⊂

ẼF
Sub(V ).(17)

(Indeed, if w ∈ W = Im(ρ(a)), then w = ρ(a)(v) for some v ∈ V and then
we have for f ∈ ẼF that fw = f(ρ(a)(v)) = ρ(a)(f(v)) ∈ Im(ρ(a)) = W .)

The set Alg
E
(V ) of E-algebraic subspaces of V is connected to the set

Sub(A/K) of abelian subvarieties in the following way.

Theorem 3.1 The map B 7→ WE(B) = Wρ(B) := I(B) ⊗E V = I(B)V =∑
b∈I(B) Imρ(b) induces a lattice-preserving bijection

WE = WE,V : Sub(A/K)
∼→ Alg

E
(V );

in particular, the sum and intersection of algebraic subspaces is again alge-
braic. Furthermore, WE(B) is a (left) E-submodule of V if and only if B is
an E-stable subvariety.

Proof. By hypothesis, the ring homomorphism ρ : E → A := EndF (V ) is
injective and hence faithfully flat because E is semi-simple. (Use the criterion
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of [Bou], Prop. I.3.9(b) (p. 33) and the fact that every E-module is projective
and hence flat). Thus, the map a 7→ ρ∗a = a⊗E A = aA defines an injection

ρ∗ : IdE ↪→ IdA

because we have ρ−1(aA) = a, for all a ∈ IdE by [Bou], loc. cit.
Next we use the well-known fact that the map a 7→ WV (a) := aV = a⊗AV

defines a bijection
WV : IdA

∼→ SubF (V )

between the set of right ideals of A and the set of F -subspaces of V . (This
is in fact a special case of the Morita theorem(s) which are used below in the
proof of Theorem 3.2; note that here EndA(V ) = F .)

Now by definition we have WE(B) = I(B)V = (I(B)A)V = WV (ρ∗I(B)),
so WE = WV ◦ ρ∗ is the composition of two injections and hence is injective.
Furthermore, since I(B) = εB,λE by Proposition 2.3, we see that

WE(B) = WV (ρ(εB,λ)A) = Im(ρ(εB,λ)),(18)

for any polarization λ of A. This shows that WE(B) is E-algebraic, so WE

maps into the subset Alg
E
(V ). Conversely, if W = Im(ρ(a)) is E-algebraic

(with a ∈ E), then by Theorem 2.4 there exists B ∈ Sub(A/K) such that
I(B) = aE, and thenWE(B) = Im(ρ(a)) = W . ThusWE has image Alg

E
(V ).

Note that WE = WV ◦ ρ∗ ◦ IA/K is lattice-preserving because each of the
maps since IA/K , ρ∗ and WV has this property.

To prove the last statement, suppose first that B is E-stable. Then I(B)
is a two-sided E-ideal (cf. Th. 2.4) and so for f ∈ E we have fWE(B) =
fI(B)V ⊂ I(B)V = WE(B), and hence WE(B) is an E-submodule of V .

Conversely, if WE(B) is an E-submodule, then for any f ∈ E we have
fI(B)AV = fWE(B) ⊂ WE(B) = I(B)AV , so fI(B)A ⊂ I(B)A (by Morita)
and hence fI(B) ⊂ I(B) (by faithful flatness). Thus, I(B) is a two-sided
E-ideal and so B is E-stable by Theorem 2.4.

In general, it is difficult to give a good characterization of the set Alg
E
(V )

of algebraic subspaces of V . However, if the coefficient field can be chosen
to be F = Q, then such a characterization is indeed possible:

Theorem 3.2 If V is a finitely generated, faithful left E-module, then a
subspace W ⊂ V is algebraic if and only if W is a left Ẽ-submodule of
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V , where Ẽ = EndE(V ). Thus the map WE induces a (lattice-preserving)
bijection

WE = WE,V : Sub(A/K)
∼→

Ẽ
Sub(V ).

Furthermore, for any two abelian subvarieties B1, B2 ∈ Sub(A/K) there is
a functorial isomorphism

(WE)B1,B2 : Hom0
K(B1, B2)

∼→ Hom
Ẽ
(WE(B1),WE(B2))(19)

such that for any h ∈ E with h(B1) ⊂ B2 we have

(WE)B1,B2(h|B1)(w) = hw, for all w ∈ WE(B1).(20)

Proof. First note that since V is a finitely generated faithful E-module and E
is semi-simple, E is a direct factor of V n (for some n). Thus by [CR], Lemma
(3.39), V is a (pro)generator of EMod (in the sense of [CR], p. 56, 60). Next,
view V as an (E, Ẽop)-bimodule (where Ẽop denotes the opposite ring of Ẽ =
EndE(V )), and put Q = HomE(V,E). Then P := V and Q (together with
maps described on [CR], p. 59) satisfy the hypotheses of Morita’s Theorem
([CR], p. 60), and so in particular (by [CR], Theorem (3.54)(vi)) the map
a 7→ a⊗E V defines a (lattice-preserving) bijection

TV : IdE
∼→ Sub(V )

Ẽop
=
Ẽ
Sub(V ).

But by definition TV (a) = aV = WV (ρ∗(a)) (in the notation of the proof
of Theorem 3.1), and so it follows that WE = TV ◦ IA/K yields the desired
bijection.

To prove the second assertion, we first recall that Morita’s theorem (in the
above context) also yields that the functor TV = ∗ ⊗ V : Mod

E
→ Mod

Ẽop
=

Ẽ
Mod is an equivalence of categories (cf. [CR], Th. (3.54)(v)) and that hence
TV induces a (functorial) isomorphism

HomE(a, b)
∼→ Hom

Ẽop
(aV, bV ), for all a, b ∈ IdE.

Note that by viewing the right Ẽop-modules aV , bV as left Ẽ-modules, we
have a canonical identification Hom

Ẽop
(aV, bV ) = Hom

Ẽ
(aV, bV ), and so (19)

follows by combining the above identification with that of (7). Explicitly, this
isomorphism is given by the formula

(WE)B1,B2(h)(w) = ρ(jB2 ◦ h ◦ f)v = ρ(jB2 ◦ h ◦N ′B1
)w,(21)
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in which h ∈ Hom0
K(B1, B2), w = ρ(jB1 ◦ f)v ∈ WE(B1) = I(B1)V with

f ∈ Hom0
K(A,B1) and v ∈ V , and N ′B1

= 1
eB1

NB1,λ. [Indeed, by construction

we have WE(h)(w) = TV (IA/K(h)ρ(jB1 ◦f)v) = ρ(IA/K(h)(jB1 ◦f))v
(12)
= ρ(jB2 ◦

h ◦ f)v = ρ(jB2 ◦ h ◦ N ′B1
◦ jB1 ◦ f))v = ρ(jB2 ◦ h ◦ N ′B1

)w.] Note that this
formula immediately implies (20).

Remark 3.3 Note that if we take V = E in Theorem 3.2, then the isomor-
phism Ẽ = EndE(E) ' Eop induces a canonical identification

Ẽ
Sub(E) = IdE,

and so Theorem 2.4 is actually a special case of Theorem 3.2.

The following corollary is of fundamental importance for the Shimura
construction.

Corollary 3.4 In the situation of Theorem 3.2, suppose that there exists
a commutative subring T ⊂ E such that V is a free T-module of rank 1
(or, more generally, such that the image of T in EndQ(V ) is a maximal
commutative subalgebra). Then for every T-submodule W ⊂ V there is a
unique abelian subvariety BW ⊂ A such that WE(BW ) = W and we have a
natural ring embedding

θW : EndT(W ) ↪→ End0
K(BW )

such that θW (ρ(t)|W ) = t|BW , for all t ∈ T. In particular, we have an induced
embedding θ′W : T/AnnT(W ) ⊂ EndT(W ) ↪→ End0

K(BW ).

Proof. First note that if V is a free T-module of rank 1, then V ' T, and
so EndT(V ) ' EndT(T) = T. Thus EndT(V ) = ρ(T), the image of T in
EndQ(V ), which means that ρ(T) is a maximal commutative subalgebra.
But then Ẽ = EndE(V ) ⊂ EndT(V ) = ρ(T), and so every T-submodule
is a fortiori an E-submodule, and every T-homomorphism is also an Ẽ-
homomorphism. Thus, the first assertion follows directly from Theorem 3.2,
as does the second by taking θW = (W−1

E
)|EndT(W ).

As we shall see presently, most of the interesting examples of faithful
E-modules V arise from faithful (covariant) functors

F : Ab/K → Vec/F

from the category of abelian varieties to the category Vec/F of (finite dimen-
sional) F -vector spaces. Some examples of such functors are the following.

12



Example 3.5 (a) (Homology functor) Suppose that K ⊂ C. Then we
can view AC := A ⊗K C as a complex analytic space, and so homology
theory yields a faithful functor H1 : Ab/K → Vec/Q which is defined by
H1(A) = H1(Aan

C
,Q); cf. [Mu], p. 176.

(b) (Tangent space functor) Suppose that char(K) = 0. Then the
tangent space T0(A) of A at the origin is a K-vector space of dimension
d = dim(A), and we obtain a faithful functor T0 : Ab/K → Vec/K . (To see
that T0 is faithful, reduce to the case K = C and use [Mu], p. 176(top).)

(c) (Tate module functor) Let K be any field and fix a prime ` 6=
char(K). For any abelian variety A/K, its Tate module T`(A) := T`(A⊗K)
a free Z`-module of rank 2d and so T 0

` (A) = T` ⊗Q` is a Q`-vector space of
dimension 2d. Moreover, the induced functor T 0

` : Ab/K → Vec
Q`

is faithful
by [Mu], p. 176ff.

Now if we have a faithful functor F : Ab/K → Vec/F , then the above
theorems can be restated in the following manner.

Theorem 3.6 If F : Ab/K → Vec/F is a faithful (covariant) functor from
the category of abelian varieties to the category Vec/F of (finite dimensional)
F -vector spaces, then the map B 7→ WF(B) = Im(F(jB)) = I(B)F(A) ⊂
F(A) induces for each A/K a lattice-preserving bijection

WF = WF ,A/K : Sub(A/K)
∼→ AlgF(F(A))

between the set of abelian subvarieties of A/K and the set AlgF(F(A)) =
{Im(F(a)) : a ∈ E} of F-algebraic subspaces of F(A).

Moreover, if F = Q, then for every abelian variety A/K we have the
identification

AlgF(F(A)) =
Ẽ
Sub(F(A))

where Ẽ = EndE(F(A)) and E = End0
K(A), and the map h 7→ F(h) induces

for any B1, B2 ∈ Sub(A/K) a (functorial) isomorphism

(WF)B1,B2 : Hom0
K(B1, B2)

∼→ Hom
Ẽ
(F(B1),F(B2)),(22)

where we view F(Bi) as an Ẽ-module via the identification F(jBi) : F(Bi)
∼→

WF(Bi).

13



Proof. By functoriality, the map a 7→ F(a) defines a ring homomorphism

ρ := ρF ,A/K : EndK(A)→ EndF (F(A)).

Since F is faithful, the map ρ is injective, and hence ρ extends to an injective
ring homomorphism ρ : E = End0

K(A)→ EndF (F(A)).
Since clearly Alg

E,ρ(F(A)) = AlgF(F(A)), the first assertion follows
from Theorem 3.1 once we have shown that Wρ(B) = WF ,A/K(B). Now
since F(NB,λ) ◦ F(jB) = eBidF(B), the map F(NB,λ) is surjective (and
F(jB) is injective) and hence by (18) we obtain Wρ(B) = Im(ρ(εB,λ)) =
Im(F(jB) ◦F(NB,λ)) = Im(F(jB)) = WF ,A/K(B), as desired. Note also that
I(B)F(A) = WF(B) by Theorem 3.1.

Now suppose that F = Q. Then F(A) is a finitely generated faithful
E-module, and so the second assertion follows directly from Theorem 3.2.

To verify the last assertion, first note that the map g 7→ Φ(g) := F(jB2)−1◦
g ◦ F(jB1) defines an isomorphism

Φ : Hom
Ẽ
(WF(B1),WF(B2))

∼→ Hom
Ẽ
(F(B1),F(B2)).

Thus, if we put (WF)B1,B2 = Φ ◦ WE, then by (19) we obtain an isomor-
phism (22). Moreover, since (WF)B1,B2(h) = F(h) if h ∈ Hom0

K(B1, B2)
(because by (21) we have WE(h) = F(jB2 ◦h ◦N ′B1

)|WF (B1) = F(jB2) ◦F(h) ◦
F(N ′B1

)|WF (B1) = Φ−1(F(h))), the last assertion follows.

Remark. Note that Example 1.3 of the introduction is an immediate con-
sequence of Example 3.5 and Theorem 3.6. Similarly, Corollary 1.4 follows
immediately from Example 1.3(b) and Corollary 3.4.

4 Quotient Varieties

In the previous sections we saw that the set IdE of right ideals of E =
End0

K(A) naturally corresponds to the set Sub(A/K) of abelian subvarieties
of A/K, and that there is a similar assertion for finitely generated faithful left
E-modules V (in place of E); cf. Theorem 3.2 and Remark 3.3. Here we shall
now show that there is an analogous dual statement involving the set EId of
left ideals which then generalizes to an assertion involving right E-modules.
In this case, however, the set Sub(A/K) has to be replaced by either the
set Sub(Â/K) of subvarieties of the dual abelian variety Â or by the set
Quot(A/K) of all abelian quotients of A/K which is defined as follows.
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Definition. If A/K is an abelian variety, then we call a homomorphism
p : A → C an abelian quotient if p is surjective and if Ker(p) is an abelian
subvariety of A. Furthermore, if p′ : A → C ′ is another abelian quotient,
then p′ is called equivalent to p if there exists an isomorphism h : C

∼→ C ′

such that p′ = h ◦ p. The set of equivalence classes of abelian quotients of A
is denoted by Quot(A/K).

Remark 4.1 (a) Note that if p : A→ C is any surjective homomorphism of
abelian varieties, then p is faithfully flat and hence (C, p) is the quotient of
A by Ker(p).

(b) If p : A → C is any homomorphism of abelian varieties, then it is
well-known (cf. [La], p. 216) that

p is an abelian quotient ⇔ p̂ : Ĉ → Â is injective.(23)

It thus follows that for any such p there is a finite homomorphism jp :C→A
such that

p ◦ jp = [eC ]C ,(24)

for some integer eC > 0. [Indeed, apply Corollary 2.2 to h = p̂ : Ĉ ↪→ Â and
take jp := κ−1

A ◦ N̂p̂ ◦ κC .]

Proposition 4.2 The map (C, p) 7→ Im(p̂) defines a bijection

D = DA/K : Quot(A/K)
∼→ Sub(Â/K).

Proof. For B ∈ Sub(Â/K) put D′(B) = (B̂, ĵB ◦ κA). Then by the above
equivalence (23) we see that D′(B) ∈ Quot(A/K) and that D and D′ are
inverses of each other.

We can use the above bijection to prove the following dual version of
Theorem 2.4.

Theorem 4.3 The map (C, p) 7→ ÎA/K(C, p) := Hom0(C,A)p induces a bi-
jection

ÎA/K : Quot(A/K)
∼→ EId

whose inverse is given by the map CA/K(a) = (Ca, pa), where Ca = A/rE(a)A,
rE(a) = {f ∈ E : af = 0} is the right annihilator of a and pa : A → Ca is

15



the quotient map. Moreover, for any pair Ci = (Ci, pi) ∈ Quot(A/K) there
is a functorial isomorphism

(ÎA/K)C1,C2
: Hom0

K(C1, C2)
∼→ HomE(Î(C2, p2), Î(C1, p1))(25)

such that for any h ∈ E with the property that p2 ◦ h = h′ ◦ p1, for some
h′ ∈ Hom0

K(C1, C2), we have

(ÎA/K)C1,C2
(h′)(x) = xh, for all x ∈ ÎA/K(C2, p2).(26)

Proof. Since f 7→ f̂ induces an isomorphism E = EA/K
∼→ Ê

op := E
op

Â/K
, we

have an induced bijection DE : EId
∼→
Êop

Id = Id
Ê
. Now

DE ◦ ÎA/K = IÂ/K ◦DA/K .(27)

because DE(ÎA/K(C, p)) = {f̂ : f ∈ Hom0
K(C,A)p} = p̂Hom0

K(Â, Ĉ) =

IÂ/K(p̂(Ĉ)) = IÂ/K(DA/K(C, p)), and so we see that ÎA/K is a bijection since
DA/K , DE and IÂ/K are all bijections.

Next we show that CA/K : EId → Quot(A/K) is the inverse of ÎA/K .

Since ÎA/K is a bijection, it is enough to verify that CA/K(ÎA/K(C, p)) '
(C, p), for all (C, p) ∈ Quot(A/K), and for this it is enough to show that
Ker(p) = rE(ÎA/K(C, p))A or, equivalently (by Theorem 2.4) that

IA/K(Ker(p)) = rE(ÎA/K(C, p)).(28)

Now if f ∈ E, then f ∈ IA/K(Ker(p)) ⇔ Im(f) ⊂ Ker(p) ⇔ p ◦ f = 0.

Thus, if f ∈ IA/K(Ker(p)), then ÎA/K(C, p)f = Hom0
K(C,A)pf = 0, and

so f ∈ rE(ÎA/K(C, p)). Conversely, if ÎA/K(C, p)f = 0 then in particular
jp ◦ p ◦ f = 0, where jp ∈ HomK(C,A) is as in (24), and hence eC(p ◦ f) =
p ◦ jp ◦ p ◦ f = 0, which means that f ∈ IA/K(Ker(p)). This proves (28), and

hence that CA/K is the inverse of ÎA/K .

We now construct the bijection (ÎA/K)C1,C2
. For this, we first observe

that for any two left E-ideals a, b ∈ EId there is a canonical isomorphism

DE = (DE)a,b : HomÊ(DE(a), DE(b))
∼→ HomE(a, b)

such that for all f ∈ HomÊ(DE(a), DE(b)) we have

(DE(f)(x))ˆ = f(x̂), for all x ∈ a.(29)
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To define (ÎA/K)C1,C2
, let αi : Ĉi

∼→ Ĉ ′i := Im(p̂i) ∈ Sub(Â) be the unique
isomorphism such that p̂i = jĈ′i

◦ αi, and put for h ∈ Hom0
K(C1, C2)

(ÎA/K)C1,C2
(h) = DE((IÂ/K)Ĉ′2,Ĉ′1(α1 ◦ ĥ ◦ α−1

2 )).(30)

Clearly, (ÎA/K)C1,C2
defines an isomorphism (25) because DE and (IÂ/K)Ĉ′2,Ĉ′1

are both isomorphisms (the latter by Theorem 2.4), and one verifies without
difficulty (by using (8) and (29)) that (26) holds.

Remark. Note that the above proof shows that even though the ideal
Î(Ci, pi) only depends on the equivalence class of (Ci, pi), the above iso-
morphism (ÎA/K)C1,C2

: Hom0
K(C1, C2)

∼→ HomE(Î(C2, p2), Î(C1, p1)) actu-
ally depends on the choice of the pi’s.

Similarly, we have the following dual version of Theorem 3.2.

Theorem 4.4 If V is a faithful, finitely generated right E-module, then the
map (C, p) 7→ ŴE(C, p) := V ⊗E Î(C, p) = V Î(C, p) =

∑
g∈Hom0

K(C,A)
V (g◦p)

defines a bijection

ŴE = ŴE,V : Quot(A/K)
∼→ Sub(V )

Ẽ
.

whose inverse is given by CE,V (W ) = (CW , pW ), where CW = A/rE(W )A,
rE(W ) = {f ∈ E : Wf = 0} is the right annihilator and pW : A → CW
is the quotient map. Furthermore, for any two quotients Ci = (Ci, pi) ∈
Quot(A/K) we have an induced functorial isomorphism

(ŴE)C1,C2
: Hom0

K(C1, C2)
∼→ Hom

Ẽ
(ŴE(C2), ŴE(C1)).(31)

such that the analogue of (26) holds.

Proof. We can deduce this from Theorem 3.2 as follows. Let Ê = End0
K(Â)

and view V as a left Ê-module via the rule f̂ · v = vf , if v ∈ V and f ∈ E.
Then we have the identification (Ê)̃ = End

Ê
(V ) = EndE(V ) = Ẽ as subrings

of EndQ(V ), and this yields the identification (Ê)̃ Sub(V ) = Sub(V )
Ẽ
. Thus,

since WÂ/K and DA/K are both bijections (cf. Th. 3.2 and Prop. 4.2), so is

ŴE,V = W
Ê,V ◦DA/K .(32)

Moreover, since rE(V ÎA/K(C, p)) = rE(ÎA/K(C, p)) (because V is faithful), we

see by using Theorem 4.3 that CE,V is the inverse map of ŴE,V .
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Finally, the last assertion can be deduced from Theorem 3.2 by an argu-
ment similar to that of the proof of Theorem 4.3.

Just as covariant functors F : Ab/K → Vec/F give rise to left E-modules,
contravariant functors

G : Ab/K → Vec0
/F ,

give rise to right E-modules. The following are examples of such functors.

Example 4.5 (a) (Duals of covariant functors) Let DF : Vec/F
∼→

Vec0
/F denote the (contravariant) duality functor defined by DF (V ) = V ∗ =

Hom(V, F ). Clearly, if F : Ab/K → Vec/F is any faithful covariant functor,

then its “dual” F∗ = DF ◦ F : Ab/K → Vec0
/F is a faithful contravariant

functor. In particular, the duals of the functors H1, T0 and T 0
` considered

in Example 3.5 are called the cohomology functor H1 = (H1)∗, the cotangent
functor T ∗0 = (T0)∗ and the étale cohomology functor H1

et(·,Q`) = (T 0
` (·))∗,

respectively.

(b) (The functor of holomorphic differentials) Let char(K) = 0
and let Ω : Ab/K → Vec0

/K denote the functor of holomorphic differentials
defined by Ω(A) = H0(A,Ω1

A/K). Since the map ω 7→ ω0 ∈ T ∗0 (A) defines an
isomorphism of functors Ω ' T ∗0 , this functor is again faithful.

In particular, if K = Q, then V = Ω(A) satisfies the hypothesis of The-
orem 4.4 and so Theorem 1.5 of the introduction follows from Theorem 4.4
together with (the proof of) Corollary 3.4.

For contravariant functors, the dual analogue of Theorem 3.6 is the fol-
lowing result which is proven in a similar manner.

Corollary 4.6 If G : Ab/K → Vec0
/Q is a faithful, contravariant functor

then for each A/K the map (C, p) 7→ ŴG(C, p) := Im(G(p)) ⊂ G(A) defines
a bijection

ŴG = ŴA/K,G : Quot(A/K)
∼→ Sub(G(A))

Ẽ
,

where Ẽ = EndE(G(A)) = {f ∈ End(G(A)) : (vf)a = (va)f,∀v ∈ G(A), a ∈
E}. Furthermore, the rule h 7→ G(h) defines for Ci = (Ci, pi) an isomorphism

(ŴG)C1,C2
: Hom0

K(C1, C2)
∼→ Hom

Ẽ
(G(C2),G(C1)),

where we view G(Ci) as a right Ẽ-module via the isomorphism G(p) : G(Ci)
∼→

ŴG(Ci, pi).
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5 Applications to Modular Curves

Let XΓ,C = Γ\H∗ be the complex modular curve attached to a subgroup
Γ ≤ SL2(Z) of level N ≥ 1, i.e. Γ0(N) ≤ Γ ≤ Γ1(N). (We could also take
Γ = Γ(N).) By Shimura[Sh1], XΓ,C has a “canonical” model X = XΓ/Q over
Q such that the map f 7→ fdz induces a natural identification S2(Γ,Q)

∼→
H0(X,Ω1

X/Q) where S2(Γ,Q) ⊂ S2(Γ) denotes the subspace of all cusp forms

of weight 2 on Γ whose Fourier expansion (at the cusp ∞) have rational
coefficients; cf. [Sh1], p. 156 and p. 140 or [DDT], p. 35. Thus, if J = JΓ/Q
denotes the Jacobian variety of XΓ, then we have a canonical identification

Ω(J) := H0(J,Ω1
J/Q) = H0(X,Ω1

X/Q) = S2(Γ,Q).

By Hecke’s theory, there is a commutative subring (called the Hecke al-
gebra) T = Q[{Tn}n≥1] ⊂ E = End0

Q
(J) such that S2(Γ,Q)∗ ' T0(J) is a free

T-module of rank 1; cf. [Sh1], Theorem 3.51 or [DDT], Lemma 1.34. Fur-
thermore, Ω(J) = S2(Γ,Q) is also a free T-module of rank 1, as can be seen
either from Atin-Lehner Theory (cf. [DDT], Lemma 1.35) or by constructing
an explicit T-module isomorphism

ϕΓ : S2(Γ,Q)
∼→ T0(J)

as in [Sh2], §2; cf. also [Sh1], Theorem 3.51. (Actually, Shimura constructs
only a T⊗C-module isomorphism ϕ̃ : S2(Γ) = S2(Γ,Q)⊗C ∼→ T0(J ⊗C) =
T0(J) ⊗ C, but it is easy to check that ϕ̃ is GQ-equivariant.) We are now
ready to prove the following generalization of the Shimura construction:

Theorem 5.1 Let W ⊂ S2(Γ,Q) be any T-submodule. Then:

(a) There exists a unique abelian subvariety BW ∈ Sub(JΓ) such that
ϕΓ(W ) = T0(BW ) ⊂ T0(J). Furthermore, dimBW = dimQW and there
exists a ring injection θ′W : EndT(W ) ↪→ End0(BW ) such that θ′W (t|W ) =
t|BW , for all t ∈ T.

(b) There exists a unique abelian quotient pW : JΓ → CW such that
p∗WΩ(CW ) = W . Furthermore, dimCW = dimQW and we have an injective
ring homomorphism θW : EndT(W ) ↪→ End0

Q
(CW ) such that θW (t|W ) ◦ pW =

pW ◦ t, for all t ∈ T.

Proof. (a) The first assertion follows directly from Corollary 1.4, and the
second is clear because dimBW = dimQ T0(BW ) = dimQW . Finally, the last
assertion follows from Corollary 3.4 (applied to ϕ(W ) ⊂ V = T0(J)).
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(b) This follows directly from Theorem 1.5, together with (the dual ana-
logue of) Corollary 3.4.

The classical Shimura construction is the following special case of the
above Theorem.

Example 5.2 (Shimura) Let f ∈ S2(Γ) be a (normalized) T-eigenfunction,
and put W̃f =

∑
Cfσ, where the sum is over all Aut(C)-conjugates of f .

Clearly, W̃f is Aut(C)-invariant and hence is of the form W̃f = Wf ⊗C for a
unique subspace Wf ⊂ S2(Γ,Q). Moreover, dimQWf = dimC W̃f = [Kf : Q],
where Kf is the field generated by the Fourier coefficients an(f) of f . Let
λf : T → Kf denote the canonical surjective homomorphism defined by
f |t = λf (t)f , for t ∈ T. (In particular, λf (Tn) = an(f), where Tn is the
n-th Hecke operator.) It is then immediate that AnnT(Wf ) = Ker(λf ), and
thus we have a natural injection Kf = T/AnnT(Wf ) ↪→ EndT(W ). Thus, by
the above theorem there exists an abelian subvariety Bf = BWf

≤ J = JΓ

and an abelian quotient p = pf : J → Cf := CWf
together with maps

θ′f : Kf ↪→ End0
Q

(Bf ) and θf : Kf ↪→ End0
Q

(Cf ) such that (Bf , θ
′
f ) and

(Cf , pf , θf ) satisfy the following conditions (which are in fact identical to
those of Theorems 1 and 2 of [Sh2]):

(i) Bf ∈ Sub(J/Q) and (Cf , pf ) ∈ Quot(J/Q).

(ii) θ′f : Kf ↪→ End0
Q

(Bf ) and θf : Kf ↪→ End0
Q

(Cf ) are injective ring
homomorphisms such that θ′f (an(f)) = (Tn)|Bf and θf (an(f)) ◦ pf = pf ◦ Tn,
for all n ≥ 1.

(iii) dimBf = dimCf = [Kf : Q].

(iv) T0(Bf ) = ϕΓ(Wf ) and p∗fΩ(Cf ) = Wf .

References

[Bou] N. Bourbaki, Commutative Algebra. Addison-Wesley, Reading,
1972.

[CR] C. Curtis, I. Reiner, Methods of Representation Theory I. J. Wi-
ley & Sons, New York, 1981.

[DDT] H. Darmon, F. Diamond, R. Taylor, Fermat’s Last Theorem.
In: Current Developments in Math. (R. Bott, et al, eds.) Intern.
Press Inc., Boston, 1995.

20



[KR] E. Kani, M. Rosen, Idempotent relations and factors of Jacobians.
Math. Ann. 284 (1989), 307–327.

[La] S. Lang, Abelian Varieties. Interscience Publ. Inc., New York, 1959.

[Lan] H. Lange, Normenendomorphismen abelscher Varietäten. J. reine
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