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1 Introduction

If C/K is a curve of genus 2 over an algebraically closed field K, then it comes
equipped with a canonical quadratic form qC called its refined Humbert invariant ;
cf. [K1], [K4]. This invariant is useful because many geometric properties of C are
reflected in arithmetic properties of the quadratic form qC ; cf. [K1], [K5], [K7].

For example, the property that the Jacobian JC of C is isogeneous to the self-
product E × E for some elliptic curve E/K with complex multiplication can be
characterized by a property of the form qC ; cf. Theorem 4 below. For convenience,
let us call a curve C/K with this property a curve of CM product type. In this case
the invariant qC can be viewed as an equivalence class of positive integral ternary
quadratic forms.

For such a curve C/K, it turns out that there are only finitely many isomorphism
classes of curves C ′/K which have the “same” refined Humbert invariant. The purpose
of this paper is to determine this number precisely.

To state the result, let dC = d(qC) denote the discriminant of qC (in the sense
of Brandt[B1] or of Watson[Wa]), and let ∆C = ∆qC

:= dC/16. Furthermore, let
κC = κqC

≥ 1 be defined as follows. If qC is a primitive form, then κqC
= −I1(qC)/16,

where I1(q) is the genus invariant of a ternary form q (as defined by Brandt[B1]), and
if qC is imprimitive, then κqC

= −I1(qC/4).

Theorem 1 If C/K is a curve of genus 2 of CM product type, then the number NC

of isomorphism classes of genus 2 curves C ′/K whose refined Humbert invariant qC′

is equivalent to that of C is given by the formula

(1) NC = 2ω(κC)h(∆C)
|Aut(C)|
|Aut(qC)|

,

where ω(κC) denotes the number of distinct prime divisors of κC, and h(∆C) de-
notes the number of proper equivalence classes of positive primitive binary forms of
discriminant ∆C.

By using standard finiteness results, the above theorem implies the following in-
teresting fact.
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Corollary 2 For any algebraically closed field K and any integer n ≥ 1, there are
only finitely many isomorphism classes of genus 2 curves C/K of CM product type
such that NC ≤ n. Moreover, there exist infinitely many curves C/K of CM product
type such that NC > n.

The result of Theorem 1 is a special case of a more general formula which is valid
for any principally polarized abelian surfaces (A, θ) of CM product type. For this,
note that the refined Humbert invariant q(A,θ) is defined for any principally polarized
abelian surface (A, θ) (cf. §2), and that we have by definition that qC := q(JC ,θC), if
C/K is a curve of genus 2.

In order to generalize formula (1) to a principally polarized abelian surface (A, θ),
we first observe that all the quantities on the right hand of (1) naturally generalize to
more general ternary forms, with the exception of the factor |Aut(C)| (cf. §2 below).
But in [K7] it was shown that |Aut(C)| is given by an expression involving the number
r∗n(qC) of primitive representations of an integer n by qC . More precisely, we have by
Theorem 25 of [K7] that |Aut(C)| = 2a(qC), where for any form q we put

(2) a(q) := max(1, r∗1(q)) max(1, r∗4(q), 3r
∗
4(q)− 12).

This leads to the following generalization of Theorem 1.

Theorem 3 If (A, θ)/K is a principally polarized abelian surface of CM product type
with refined Humbert invariant q := q(A,θ), then there are only finitely many isomor-
phism classes of principally polarized abelian surfaces (A′, θ′)/K such that q(A′,θ′) is
equivalent to q. Moreover, if N(A,θ) denotes the number of these isomorphism classes,
then we have that

(3) N(A,θ) = 2ω(κq)+1h(∆q)
a(q)

|Aut(q)|
,

except when q is equivalent to x2 + 4κ(y2 + εyz + z2), for some κ > 1 and for some
ε = 0 or 1. In this exceptional case we have that

(4) N(A,θ) = (2ω(κ)−1 + 1 + ε)
h(−(4− ε)κ2)

2 + ε
.

Note that the exceptional case of Theorem 3 cannot occur when (A, θ) = (JC , θC)
is a Jacobian; cf. §3 below.

In §4 we present some explicit examples which show that in certain cases the curve
C/K is uniquely determined by its refined Humbert invariant qC ; cf. Proposition 14
and Examples 16 and 19.
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2 The quadratic forms qA and q(A,θ)

Let A/K be an abelian surface, where K is an arbitrary algebraically closed field
and let NS(A) = Div(A)/ ≡ denote its Néron-Severi group. (Here ≡ denotes the
numerical equivalence of divisors on A.) The intersection product (D1.D2) of divisors
D1, D2 on A defines an integral quadratic form qA on NS(A) which is given by the
formula qA(D) = 1

2
(D.D), for D ∈ NS(A). Since NS(A) ' Zρ, where ρ = ρ(A) is the

Picard number of A, the form qA is equivalent to an integral quadratic form q in ρ
variables, i.e. we have an isomorphism (NS(A), qA) ' (Zρ, q) of quadratic modules.
We then write qA ∼ q.

Now suppose that A has a principal polarization θ ∈ P(A). (Here and below,
P(A) ⊂ NS(A) denotes the set of principal polarization on A.) Then the quadratic
form q̃(A,θ) on NS(A) is defined by the formula

(5) q̃(A,θ)(D) = (D.θ)2 − 2(D.D), for D ∈ NS(A).

It is easy to see that q̃(A,θ)(D + nθ) = q(A,θ)(D), for all n ∈ Z, so q̃(A,θ) induces a
quadratic form q(A,θ) on the quotient module

NS(A, θ) = NS(A)/Zθ.

Moreover, the Hodge Index Theorem shows that q(A,θ) is a positive-definite form on
NS(A, θ) ' Zρ−1; cf. [K1]. The quadratic form q(A,θ) or, more correctly, the quadratic
module (NS(A, θ), q(A,θ)) is called the refined Humbert invariant of the principally
polarized abelian surface (A, θ); cf. [K3], [K4].

We observe that if (A, θ) ' (A′, θ′), i.e., if we have an isomorphism ϕ : A
∼→ A′ of

abelian surfaces such that ϕ∗(θ′) = θ, then we have an induced module isomorphism
ϕ∗ : NS(A′, θ′)

∼→ NS(A, θ) such that q(A′,θ′) = q(A,θ) ◦ ϕ∗, and hence the associated
quadratic modules are isomorphic. Equivalently, this means that q(A,θ) ∼ q(A′,θ′).

Suppose now that A is isogeneous to a product abelian surface E×E, where E/K
is an elliptic curve with complex multiplication, i.e. End(E) is isomorphic to an order
in an imaginary quadratic field. The set of such abelian surfaces may be classified as
follows.

Theorem 4 If A/K is an abelian surface, then the following conditions are equiva-
lent:

(i) A is isogeneous to a product E × E, for some CM elliptic curve E/K.

(ii) A is isomorphic to a product E1 × E2, where E1/K and E2/K are two isoge-
neous CM elliptic curves over K.

(iii) P(A) 6= ∅, and for one (and hence for any) θ ∈ P(A), the refined Humbert
invariant q(A,θ) is a ternary form such that q(A,θ)(D) = n2 is a positive square, for
some D ∈ NS(A, θ).
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Proof. (i) ⇒ (ii): If K = C, then this is due to Shioda and Mitani[SM]. For a general
ground field K, this is a special case of Theorem 2 of [K2].

(ii)⇒ (iii): Let θE1,E2 denote the product polarization on A′ := E1×E2, i.e., θE1,E2

is the image of the divisor E1 × {0} + {0} × E2 ∈ Div(A′) in NS(A′) = Div(A′)/≡.
Then θE1,E2 ∈ P(A′), and so P(A) 6= ∅ because if ϕ : A

∼→ A′ is any isomorphism,
then ϕ∗(θE1,E2) ∈ P(A).

Now let θ ∈ P(A). Then rank(NS(A, θ)) = ρ(E1×E2)−1 = rank(Hom(E1, E2))+1
by Corollary 24 of [K3]. Since E1 ∼ E2 are isogeneous CM elliptic curves by (ii), it
follows that rank(Hom(E1, E2)) = 2, so rank(NS(A, θ)) = 3, and hence q(A,θ)) is a
ternary form.

Moreover, by Theorem 1.5 of [K1] we know that if E ≤ A is an elliptic subgroup
on A, then q(A,θ)([E]) = (E.θ)2 > 0, where [E] ∈ NS(A, θ) denotes the image of E in
NS(A, θ). Since E = ϕ−1(E1 × {0}) ≤ A, we see that (iii) holds.

(iii) ⇒ (i): Let θ ∈ P(A), and let D ∈ NS(A, θ) be such that q(A,θ)(D) = n2 > 0.
Then D 6= 0, so we can write D = mD′, where m ≥ 1 and D′ is primitive in NS(A, θ),

and hence q(A,θ)(D
′) =

(
n
m

)2
. By Theorem 1.5 of [K1] there exists an elliptic subgroup

E ≤ A such that [E] = D′. Thus, by Poincaré, A is isogeneous to E × A′, for some
abelian subvariety A′ of A (cf. [Mu], p. 173). Since dim(A) = 2, it follows that
dim(A′) = 1, so A′ = E ′ is an elliptic curve, and hence A ∼ E × E ′.

By hypothesis, rank(NS(A, θ)) = 3, so 4 = ρ(A) = ρ(E×E ′) = rank(Hom(E, E ′))+
2, i.e., rank(Hom(E, E ′)) = 2. This means that E and E ′ are isogeneous CM curves,
so A satisfies (i).

In view of property (ii), we call any surface satisfying these properties a CM
abelian product surface. (In the introduction these were called abelian surfaces of CM
product type.) Note that property (iii) gives a characterization of such surfaces in
terms of the refined Humbert invariant q(A,θ).

We recall from [K3], [K4] and [Ki] some basic arithmetic facts about the forms
qA and q(A,θ) for such a surface. To state these, we will use discriminant disc(f) =
d(f) of an integral quadratic form f as defined in Watson[Wa], p. 2. Moreover,
the content cont(f) of such a form is the gcd of its values. (It is easy to see that
when f is a ternary form, then cont(f) = t is the “coefficient-divisor” of [B1].) If
cont(f) = 1, then f is said to be primitive; cf. [Wa], p. 4. In addition, the basic
invariants Ik(f) for k = 1, 2 of an integral primitive ternary form f are defined as
in Brandt[B1]. (These invariants are closely related to the invariants Ω and ∆ as
defined in Dickson[Di].) More precisely, |I1(f)| = cont(adj(f)), where adj(f) denotes
the adjoint of f as defined in Watson[Wa], p. 25, and the sign is assigned so that
the reciprocal Ff := adj(f)/I1(f) of f is a positive definite form when f is positive
definite. Furthermore, I2(f) := I1(Ff ).

Proposition 5 Let A ' E × E ′ be a CM abelian product surface, and let qE,E′

denote the degree form on Hom(E, E ′). Let ∆ = d(qE,E) denote its discriminant and
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κ = cont(qE,E′) its content. If θ ∈ NS(A) is a principal polarization, then

(6) d(qA) = ∆ and d(q(A,θ)) = 16∆.

Moreover, if c := cont(q(A,θ)), then c = 1 or 4, and we have that

(7) I1(q(A,θ)/c) = −16κ

c2
and I2(q(A,θ)/c) =

c∆

κ2
.

Proof. We have that rank(Hom(E, E ′)) = 2 because E and E ′ are isogeneous CM
elliptic curves, and so qE,E′ is a binary quadratic form. It thus follows from Corollary
24 of [K3] that det(qA) = − det(qE,E′), where (as in [K3]) det(f) denotes the determi-
nant of the associated Gram matrix M(f). Thus, since rank(NS(A)) = 4, it follows
from [Wa], p. 2, that d(qA) = det(qA) = − det(qE,E′) = d(qE,E′). This proves the first
equality of (6).

The second equality of (6) follows from Proposition 9 of [K3]. Indeed, by that re-
sult we have that det(q(A,θ)) = −25 det(qA), so d(q(A,θ)) = −1

2
det(q(A,θ)) = 24 det(qA) =

16d(qA) = 16∆. This proves (6).
If c = 1, i.e., if q(A,θ) is primitive, then formula (7) follows from Propositions 25

and 18 of [K6]. If c > 1, then by Corollary 14 of [Ki] and the proof of Proposition 17 of
[Ki], we see that c = 4, and so in this case (7) follows directly from that proposition.

In view of the above result, it is useful to introduce the following notation (which
was already used in Theorem 3).

Notation. If q is a positive ternary quadratic form such that c := cont(q) = 1 or 4,
then put

∆q := d(q)/16 and κq := −c2I1(q/c)/16.

It is clear from the definition that the form q(A,θ) is determined by the form qA

and an element θ with qA(θ) = 1; this is the so-called θ-construction in [K4]. We now
show conversely that the ternary form q(A,θ) determines the quaternary form qA (up
to equivalence). More precisely, we prove the following result.

Theorem 6 Let A1 and A2 be two CM abelian product surfaces, and let θi ∈ NS(Ai)
be a principal polarization on Ai, for i = 1, 2. If q(A1,θ1) is equivalent to q(A2,θ2), then
qA1 is equivalent to qA2.

To prove this result, we will use several facts which were proven elsewhere. The
first concerns the p-adic equivalence class of the form q(A,θ), where the p-adic equiva-
lence of two integral forms f1 and f2 is defined as in Jones[Jo], p. 82, and is denoted
by f1 ∼p f2. Recall also that f1 and f2 are genus-equivalent if f1 ∼p f2, for all primes
p (including p = ∞). We let gen(f1) denote the set of (equivalence classes of) integral
forms f2 which are genus-equivalent to f1.
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Proposition 7 Let A = E × E ′ be a CM abelian product surface, and let θ be a
principal polarization on A. If fq := x2 ⊥ 4q, where q = qE,E′ is the degree form, then

(8) q(A,θ) ∼p fq, for all odd primes p.

Furthermore, if q(A,θ) is primitive, then (8) also holds for p = 2, and so in this case
q(A,θ) is genus-equivalent to fq.

Proof. The first assertion (8) follows immediately from Corollary 19 of [K4] because
by equation (29) of [K6] we know that fq ∼ q(A,θE,E′ ), where θE,E′ is the product
polarization on A. The second assertion follows from Theorem 20 of [K4], as is
explained in the proof of Proposition 25 of [K6].

In order to state the next result, we recall from [K6] and [Ki] that if f : M → Z
is a quadratic form on a module M , then R(f) := {f(x) : x ∈ M} denotes the set of
values represented by f , and if a, m are integers, then

Ra,m(f) := {n ∈ R(f) : n ≡ a (mod m)}.

Proposition 8 Let A = E × E ′ be a CM abelian product surface, and let θ be a
principal polarization on A. If q(A,θ) is imprimitive, then d(qE,E′) ≡ 0 (mod 4) and
R3,4(qE,E′) 6= ∅. In particular, κ := cont(qE,E′) is odd. Furthermore, there exists
n ∈ R3,4(qE,E′) such that n

κ
∈ R(Fq(A,θ)/4).

Proof. The first assertions follow immediately from Proposition 15 of [Ki]. Moreover,
the last assertion follows from Propositions 16 and 19 of [Ki]. To see this, put n =
qE,E′(h), where h ∈ Hom(E, E ′) is as in Proposition 19 of [Ki]. Then by Propositions
16 and 19 of [Ki] we have that n ∈ R3,4(qE,E′) and that n

κ
∈ R(Ff ), where Ff denotes

the reciprocal of the primitive form f := q(A,θ)/4.

We are now ready to prove Theorem 6.

Proof of Theorem 6. For i = 1, 2, let Ei/K and E ′
i/K be two (isogeneous) CM

elliptic curves such that Ai ' Ei × E ′
i. We first observe that it suffices to show that

the given hypothesis implies that the binary forms q1 := qE1,E′
1

and q2 := qE2,E′
2

are
genus-equivalent, i.e., that

(9) gen(q1) = gen(q2).

Indeed, since we have that

(10) qAi
∼ xy ⊥ (−qi), for i = 1, 2,

by [K3], Proposition 23 (or by [K4], formula (6)), it follows from Remark 27 of [K4]
that (9) implies that qA1 ∼ qA2 , as desired.
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To prove that (9) holds, we will distinguish two cases.

Case 1. q := q(A1,θ1) is primitive.

Since q is primitive, so is q(A2,θ2) ∼ q. Thus, by Proposition 7 we have that q(Ai,θi) ∈
gen(fqi

), for i = 1, 2. Thus, gen(fq1) = gen(fq2) because q(A1,θ1) ∼ q(A2,θ2), and so
x2 + 4q1 ∼p x2 + 4q2, for all primes p ≥ 2. Since x2 is a form of unit determinant
in the sense of Jones[Jo], it follows from the Cancellation Theorem 37 of [Jo] that
2q1 ∼p 2q2, for all primes p ≥ 2, and so gen(2q1) = gen(2q2) because 2q1 and 2q2 are
both positive binary forms. Then also gen(q1) = gen(q2), which proves (9) in this
case.

Case 2. q = q(A1,θ1) is imprimitive.

Since q is imprimitive, so is q(A2,θ2) ∼ q, and hence both have content c = 4 by
Proposition 5. Since Ik(q(A1,θ1)/4) = Ik(q(A2,θ2)/4), for k = 1, 2, it therefore follows
from (7) that q1 and q2 have the same content κ and the same discriminant ∆. Thus,
q′i := qi/κ are two primitive binary forms of the same discriminant ∆′ = ∆/κ2. It is
clear that (9) follows once we have shown that gen(q′1) = gen(q′2).

To prove this, we will use Theorem 3.21 and Lemma 3.20 of Cox[Co] which state
that gen(q′1) = gen(q′2) if and only if q′1 and q′2 have the same “complete character”.

This latter condition is defined as follows. For an odd prime p, let χp denote the

Legendre character which is defined by χp(a) =
(

a
p

)
, for a ∈ Z, and put χ−4(n) =

δ(n) = (−1)(n−1)/2 and χ8(n) = ε(n) = (−1)(n2−1)/8, for n ≡ 1 (mod 2). (Here and
below we will use the χn notation of [B1] instead of the δ, ε notation of [Co].) Then
the list of assigned characters of discriminant ∆′ is X(∆′) := {χp : p|∆′} ∪ Xs(∆

′),
where Xs(∆

′) ⊂ Xs := {χ−4, χ8, χ−4χ8} is the set of supplementary characters which
is given in the table on p. 55 of [Co]. For each χ ∈ X(∆′), the value χ(q′i) := χ(ri)
does not depend on the choice of ri ∈ R(q′i), provided that gcd(ri, ∆

′) = 1. Thus, by
Cox[Co], loc. cit., we have that gen(q′1) = gen(q′2) if and only if

(11) χ(q′1) = χ(q′2), for all χ ∈ X(∆′).

It thus suffices to verify (11). For this, we recall that there is a similar theory of
assigned characters for primitive ternary forms; cf. Smith[Sm] and Brandt[B1], [B2].

We will first apply this theory to the ternary forms fqi
, for i = 1, 2. Since fqi

is primitive and fqi
∼ q(Ai,θEi,E′

i
) (cf. the proof of Proposition 7), it follows from

Proposition 5 that

(12) d(fqi
) = 16∆, I1(fqi

) = −16κ and I2(fqi
) = ∆′, for i = 1, 2.

Let p be an odd prime. Since q(A1,θ1) ∼ q(A2,θ2) by hypothesis, it follows from (8)
that fq1 ∼p q(A1,θ1) ∼p q(A2,θ2) ∼p fq2 . This (together with (12)) implies that also their
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reciprocals Fi := Ffqi
are p-adically equivalent (for p odd); cf. Proposition 8 of [Ki].

Furthermore, from that proposition we also obtain that

(13) χp(n1) = χp(n2), ∀ odd p|∆′, ∀ni ∈ R(Fi) with gcd(ni, ∆
′) = 1, i = 1, 2.

Now by formula (44) of [K4] we have that Fi ∼ (−∆′κ)x2 ⊥ q′i, so R(q′i) ⊂ R(Fi),
for i = 1, 2. Thus, if p is an odd prime with p|∆′, then χp ∈ X(∆′), so if ni ∈ R(q′i)
with gcd(ni, ∆

′) = 1, then by (13) we obtain that χp(q
′
1) = χp(n1) = χp(n2) = χp(q

′
2).

This means (11) holds for all χ ∈ X(∆′) \Xs(∆
′).

It thus remains to show that (11) also holds for χ ∈ Xs(∆
′). For this, note first

that by Proposition 8 we have that ∆′ ≡ ∆ ≡ 0 (mod 4). As in [Co], p. 55, put
n := −∆′

4
.

Suppose first that n ≡ 3 (mod 4). Then Xs(∆
′) = ∅ by [Co], so there is nothing

to prove. Next, suppose that n ≡ 1 (mod 4), so Xs(∆
′) = {χ−4} by [Co]. Now by

Proposition 8 there exists ni ∈ R3,4(qi), so n′
i := ni

κ
∈ R1,2(qi) because κ is odd. Thus,

for i = 1, 2, we have that χ−4(q
′
i) = χ−4(n

′
i) = χ−4(κ)−1χ−4(ni) = −χ−4(κ) because

ni ≡ 3 (mod 4), and so χ−4(q
′
1) = χ−4(q

′
2). Thus, (11) holds in this case as well.

We are thus left with the case that n ≡ 0 (mod 2), i.e., that ∆′ ≡ 0 (mod 8). In
this case we will make use of the supplementary characters of the reciprocals Ffi

of
the forms fi = q(Ai,θi)/4, for i = 1, 2. By hypothesis, f1 ∼ f2, and by Proposition
5 we see that fi is a primitive ternary form with genus invariants I1(fi) = −κ and
I2(fi) = 4∆′. Since ∆′ ≡ 0 (mod 8), we have that I1(Ffi

) = I2(fi) ≡ 0 (mod 32).
By Brandt[B1], p. 337, this implies that χ−4, χ8 and χ−8 := χ−4χ8 are assigned
characters of Ffi

. This means that if χ ∈ Xs = {χ−4, χ8, χ−8}, and if i = 1, 2, then
we have that

(14) χ(r) = χ(r′), for all r, r′ ∈ R1,2(Ffi
).

Now let χ ∈ Xs(∆
′) ⊂ Xs. Then χ(q′i) = χ(ni), for any ni ∈ R1,2(q

′
i). By

Proposition 8 there exists ni ∈ R1,2(q
′
i) ∩ R1,2(Ffi

). Now since f1 ∼ f2, we also have
that Ff1 ∼ Ff2 and so R1,2(Ff1) = R1,2(Ff2), and so n1, n2 ∈ R1,2(Ff1). Thus, by (14)
we obtain that χ(q′1) = χ(n1) = χ(n2) = χ(q′2), for all χ ∈ Xs(∆). This proves that
(11) holds in all cases, and hence also (9), as desired.

3 The number N(A,θ) of isomorphism classes

The purpose of this section is to prove the main results stated in the introduction. Let
〈A, θ〉 denote the isomorphism class of a principally polarized abelian surface (A, θ),
and let A2(K) denote the set of isomorphism classes of principally polarized abelian
surfaces (A, θ)/K. When (A, θ)/K is a fixed principally polarized abelian surface,
put

N(A,θ) := {〈A′, θ′〉 ∈ A2(K) : q(A′,θ′) ∼ q(A,θ)}.
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By Theorem 4, it is clear that if A is a CM abelian product surface, then so is A′, for
any 〈A′, θ′〉 ∈ N(A,θ). As in the introduction, let us put

N(A,θ) = |N(A,θ)|.

The first step is to count the number of non-isomorphic abelian surfaces A′/K,
which appear in the set N(A,θ). To formulate this, let 〈A〉 denote the isomorphism
class of an abelian surface A/K. For a given quadratic form q, let us define

N (q) := {〈A〉 : q(A,θ) ∼ q, for some θ ∈ P(A)}

as the set of isomorphism classes of abelian surfaces A/K such that q(A,θ) is equivalent
to q, for some θ ∈ P(A). Note that if q(A,θ) is a ternary form which represents a square,
then we see that N (q(A,θ)) is a subset of the set of isomorphism classes of CM abelian
product surfaces by Theorem 4.

In order to find |N (q(A,θ))| in this case, recall from the previous section that the
form q(A,θ) determines the form qA (up to equivalence); cf. Theorem 6. This fact is
the key tool to complete the first step because it provides the relation between the
set N (q(A,θ)) and the set N (A), where

N (A) := {〈A′〉 : A′ ∼ A, qA′ ∼ qA}

denotes the set of isomorphism classes of abelian surfaces A′/K which are isogeneous
to a given A and whose intersection form qA′ is equivalent to qA. The advantage
of studying this set is that [K2] gives an explicit formula for the cardinality |N (A)|
when A is a CM abelian product surface. We now prove the following result, which
will complete the first step.

Proposition 9 Let A = E1×E2 be a CM abelian product surface, and let θ ∈ P(A).
Put q := q(A,θ), and let q1 := qE1,E2. Then we have that

(15) N (q) = N (A).

Moreover, if we put ∆′ = d(q1)/ cont(q1)
2, then

(16) |N (q)| =
h(∆′)

g(∆′)
,

where g(∆′) denotes the number of genera of discriminant ∆′.

Proof. We first observe that

(17) End0(Ei) ' Q(
√

d(q1)), for i = 1, 2.
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Indeed, since E1 and E2 are two isogeneous CM elliptic curves, we have that F :=
End0(E1) ' End0(E2) is an imaginary quadratic field, and by Corollary 42 of [K2] we
have that d(q1) = lcm(fE1 , fE2)

2∆F , where ∆F is the discriminant of F and fEi
is the

endomorphism conductor of Ei as defined in [K2]. From this, (17) follows because
F ' Q(

√
∆F ).

To prove (15), suppose first that 〈A′〉 ∈ N (q), so by definition there is a θ′ ∈ P(A′)
such that q(A′,θ′) ∼ q. Since A is a CM abelian product surface, so is A′ by Theorem
4, and hence we have by Theorem 6 that qA ∼ qA′ . Thus, in order to show that
〈A′〉 ∈ N (A), it suffices to prove that A ∼ A′.

Now since A′ is a CM product surface, we have that A′ ' E ′
1 × E ′

2, for some
isogeneous CM elliptic curves E ′

1/K and E ′
2/K. If we put q′1 := qE′

1,E′
2
, then by (6)

we see that d(q1) = d(q)/16 = d(q(A′,θ′))/16 = d(q′1). Thus, equation (17) (applied

to E ′
i) shows that End0(E ′

i) ' Q(
√

d(q′1)) = Q(
√

d(q1)) ' End0(Ei), for i = 1, 2,
and so it follows that Ei ∼ E ′

i; cf. Proposition 36 of [K2]. It thus follows that
A′ ' E ′

1 × E ′
2 ∼ E1 × E2 = A, and hence 〈A′〉 ∈ N (A).

To prove the opposite inclusion, let 〈A′〉 ∈ N (A), so we have that qA′ ∼ qA.
Hence, since θ ∈ P(A), it follows from Proposition 29 of [K6] that q ∼ q(A′,θ′), for
some θ′ ∈ P(A′), which proves that 〈A′〉 ∈ N (q), and so (15) follows.

To prove (16), we will use Corollary 70 of [K2]. To apply it, note first that there
exists an elliptic curve E/K with E ∼ Ei such that the discriminant ∆E of the
order End(E) equals d(q1). Indeed, by Proposition 29 of [K2] there exists an E ∼ Ei

such that fE = lcm(fE1 , fE2), and so by Corollary 42 of [K2] we have that d(q1) =
lcm(fE1 , fE2)

2∆F , where F = End0(E) ' End0(Ei), and so d(q1) = f 2
E∆F = ∆E.

We thus have that A ' E1 ×E2 ∼ E ×E. Moreover, by (10) we know that qA ∼
xy ⊥ (−q1), so it follows that N (A) = Nq1 := {A′ ∼ E × E : qA′ ∼ xy ⊥ (−q1)}/'.
We thus see that formula (16) follows directly from that given in Corollary 70 of [K2].

The second step in finding a formula for N(A,θ) is to determine the number of
isomorphism classes of principal polarizations θ′ on a given abelian surface A′ with
〈A′〉 ∈ N (q(A,θ)). For this, we will use the results of [K7] and [K8]. As in those papers,
let

P(A, q) := {θ ∈ P(A) : q(A,θ) ∼ q}

denote the set of principal polarizations θ on A such that q(A,θ) is equivalent to a
given quadratic form q. By Theorem 9 of [K7] we know that the automorphism group
Aut(A) of A acts on P(A, q), so we can consider the set P(A, q) := Aut(A)\P(A, q)
of orbits of P(A, q) under this action. We now show that the number N(A,θ) can be
expressed in terms of a sum of the cardinalities of suitable sets P(Ai, q).

Proposition 10 Let (A, θ) be a principally polarized abelian surface, where A is a
CM abelian product surface, and let q = q(A,θ). If A1, . . . , An is a system of represen-
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tatives of the finite set N (q), then

(18) N(A,θ) = {〈Ai, θi〉 : θi ∈ P(Ai, q), for 1 ≤ i ≤ n},

and hence

(19) N(A,θ) =
n∑

i=1

|P(Ai, q)|.

In particular, N(A,θ) < ∞.

Proof. If 〈A′, θ′〉 ∈ N(A,θ), then by definition 〈A′〉 ∈ N (q) and θ′ ∈ P(A′, q) because
q(A′,θ′) ∼ q(A,θ) = q. Thus, A′ ' Ai, for some 1 ≤ i ≤ n, and hence the left hand side
of (18) is contained in the right hand side.

To prove the opposite inclusion, let 〈Ai, θi〉 be an element contained in the right
hand side of (18), so 〈Ai〉 ∈ N (q) and θi ∈ P(Ai, q). This implies that q(Ai,θi) ∼ q =
q(A,θ), and hence 〈Ai, θi〉 ∈ N(A,θ), which verifies (18).

To verify (19), recall first from Proposition 9 that N (q) is a finite set, so the sum
on the right hand side of (19) is a finite sum.

Next we observe that if 〈Ai, θi〉 = 〈Aj, θj〉, then in particular Ai ' Aj and so
i = j. Thus, 〈Ai, θi〉 = 〈Aj, θj〉 if and only if i = j and θi and θj lie in the same
Aut(Ai)-orbit of P(Ai, q). This means that for each i, the number of 〈A′, θ′〉 ∈ N(A,θ)

with A′ ' Ai is equal to |P(Ai, q)|, and so (19) follows from (18).
Since P(Ai, q) is always a finite set (cf. Theorem 1 of [K7], together with formula

(7) of [K7]), it follows from (19) that N(A,θ) = |N(A,θ)| is also finite.

To analyze N(A,θ) further, we will make use of a formula for the cardinality of
the set P(A, q) found in [K7] and [K8]. One of the ingredients of this formula is the
quantity a(q) which was mentioned in (2), and which used certain “representation
numbers” r∗n(q). These numbers are defined as follows. If n > 0 is an integer, and if
q is a positive ternary form, then the number of primitive representations of n by q
is defined by

r∗n(q) := |{(x1, x2, x3) ∈ Rn(q) : gcd(x1, x2, x3) = 1}|,

where Rn(q) := {(x1, x2, x3) ∈ Z3 : q(x1, x2, x3) = n} denotes the set of all represen-
tations of an integer n by q.

Proposition 11 Let A = E ×E ′ be a CM abelian product surface, and suppose that
P(A, q) is nonempty. Let ∆ = d(qE,E′) denote the discriminant of the degree map
qE,E′, and let κ = cont(qE,E′) be its content, and put ∆′ = ∆/κ2. If q is not equivalent
to x2 + 4κ(y2 + εyz + z2), for any κ > 1 and ε = 0 or 1, then we have that

(20) |P(A, q)| =
2ω(κ)+1g(∆′)h(∆)a(q)

|Aut(q)|h(∆′)
.
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On the other hand, if q is equivalent to x2 + 4κ(y2 + εyz + z2), for some κ > 1 and
for some ε = 0 or 1, then we have that

(21) |P(A, q)| = (2ω(κ)−1 + 1 + ε)
h((ε− 4)κ2)

2 + ε
.

Proof. Since P(A, q) is non-empty, there is a θ ∈ P(A) with q(A,θ) ∼ q. Note that q is
a ternary form by Theorem 4.

To prove (20), suppose first that q does not represent 1. Then (20) follows directly
from Theorem 3 and formula (7) of [K7]. (Note that in this case (2) reduces to the
formula (3) of [K7]; cf. Corollary 18 of [K8].)

Next, if q represents 1 but is not equivalent to x2 + 4κ(y2 + εyz + z2), for any
κ > 1 and ε ∈ {0, 1}, then from the proof of Corollary 18 of [K8] we see that
a(q) = 2 max(1, r∗4(q)), and hence (20) follows from Theorem 1 of [K8] together with
formula (7) of [K7].

We are thus left with the case that q ∼ x2 + 4κ(y2 + εyz + z2), for some κ > 1
and ε ∈ {0, 1}. Put qε,κ := κ(y2 + εyz + z2), so cont(qε,κ) = κ and d(qε,κ)/κ

2 =
ε − 4. Since x2 + 4κ(y2 + εyz + z2) = fqε,κ in the notation of [K4], the formula
given in the proof of Proposition 53 of [K4] shows that I1(q) = I1(fqε,κ) = −16κ and
d(q) = d(fqε,κ) = 16κ2(ε − 4). It thus follows from Proposition 5 that in this case
∆ = d(qE,E′) = κ2(ε− 4) and ∆′ = ε− 4.

Put u(∆′) := |Aut+(qε,κ/κ)| (as in [K8]). Thus, u(∆′) = 4 + 2ε, as is well-known;
cf. [Jo], Theorem 51a. Moreover, since h(∆′) = 1 (cf. Theorem 7.30 of [Co]), we also
have that g(∆′) = 1, and so we obtain from Proposition 20 of [K8] that

|P(A, q)| = (2ω(κ) + u(∆′)− 2)
2g(∆′)h(∆)

|Aut(qε,κ)|h(∆′)
= (2ω(κ) + 2 + 2ε)

2h(∆)

|Aut(qε,κ)|
.

This shows that (21) holds because |Aut(qε,κ)| = 2u(∆′) = 8 + 4ε.

It follows from the above proposition together with Proposition 5 that |P(Ai, q)|
does not depend on the choice of 〈Ai〉 ∈ N (q).

Corollary 12 Let A be a CM abelian product surface. If P(A, q) is nonempty, then

(22) |P(A, q)| = |P(A′, q)|, for every 〈A′〉 ∈ N (q).

Proof. By hypothesis, A ' E1 × E2, for some isogeneous CM elliptic curves Ei/K.
Since P(A, q) 6= ∅, there is a θ ∈ P(A) such that q(A,θ) ∼ q, and so 〈A〉 ∈ N (q).

Let 〈A′〉 ∈ N (q). Then by definition there exists a θ′ ∈ P(A′) such that q(A′,θ′) ∼
q ∼ q(A,θ), and hence A′ is again a CM abelian product surface by Theorem 4. Thus,
A′ ' E ′

1 × E ′
2, for some isogeneous CM elliptic curves E ′

i/K. Since q(A′,θ′) ∼ q(A,θ),

12



we have that d(q(A′,θ′)) = d(q(A,θ)), cont(q(A′,θ′)) = cont(q(A,θ)) and that I1(q(A′,θ′)) =
I1(q(A,θ)). It thus follows from Proposition 5 that

(23) d(qE′
1,E′

2
) = d(qE1,E2) and cont(qE′

1,E′
2
) = cont(qE1,E2).

Now if q(A′,θ′) is not equivalent to x2 +4κ(y2 +εyz +z2), for any κ > 1 and ε ∈ {0, 1},
then the same is true for q(A,θ) ∼ q(A′,θ′), and then formula (20), together with (23),
shows that |P(A, q)| = |P(A′, q)|. On the other hand, if q(A′,θ′) ∼ x2+4κ(y2+εyz+z2),
for some κ > 1 and ε ∈ {0, 1}, then the assertion follows from (21).

We are now ready to prove Theorem 3.

Proof of Theorem 3. By hypothesis, A satisfies condition (i) of Theorem 4, so by that
theorem there exist two isogeneous CM elliptic curves Ei/K such that A ' E1 ×E2.
In addition, q := q(A,θ) is a ternary form. Thus N(A,θ) < ∞ by Proposition 10.

Let ∆ = d(qE1,E2) and κ = cont(qE1,E2). Then from (6), (7) and the definitions
we see that ∆q = ∆ and that κq = κ. Put ∆′ = ∆/κ2.

Now if q is not equivalent to fqε,κ := x2 + 4κ(y2 + εyz + z2), for any κ > 1 and
ε ∈ {0, 1}, then (3) follows from (19), (22),(16) and (20) because

N(A,θ) =
∑

〈Ai〉∈N (q)

|P(Ai, q)| = |N (q)||P(A, q)|

(16)
=

h(∆′)

g(∆′)
|P(A, q)| (20)

=
h(∆′)

g(∆′)

2ω(κ)+1g(∆′)h(∆)a(q)

|Aut(q)|h(∆′)

= 2ω(κ)+1h(∆)
a(q)

|Aut(q)|
= 2ω(κq)+1h(∆q)

a(q)

|Aut(q)|
.

On the other hand, if q ∼ fqε,κ , for some κ > 1 and some ε ∈ {0, 1}, then
h(∆′) = g(∆′) = 1, as we saw in the proof of Proposition 11. This implies by (16)
that |N (q)| = 1, so N(A,θ) = |P(A, q)| by (19), and hence (4) follows from (21).

We will now deduce Theorem 1 from Theorem 3. For this, recall (from [Mi], for
example) that if C/K is a curve of genus 2, then its Jacobian JC is an abelian surface
and the image j(C) of C via the canonical embedding j : C ↪→ JC is an ample divisor
on JC . Furthermore, the image θC ∈ NS(JC) of j(C) in the Néron-Severi group is a
principal polarization. We then write qC := q(JC ,θC) for its associated refined Humbert
invariant.

It turns out that whether or not a given principally polarized abelian surface (A, θ)
is a Jacobian can be determined from its refined Humbert invariant q(A,θ). Indeed, by
by Proposition 6 of [K3] we have that

(24) (A, θ) ' (JC , θC), for some curve C/K ⇔ q(A,θ)(D) 6= 1,∀D ∈ NS(A, θ).
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This result, together with Torelli’s Theorem, implies that that the number NC

defined in the introduction equals the number N(JC ,θC), if C is of CM product type.
More precisely:

Lemma 13 If C/K is a curve of genus 2, then the map C ′ 7→ (JC′ , θC′) induces a
bijection NC

∼→ N(JC ,θC), where NC denotes the set of isomorphism classes 〈C ′〉 of
curves C ′/K of genus 2 such that qC′ ∼ qC. Thus, if C/K is of CM product type,
then NC = N(JC ,θC).

Proof. It is clear from the definitions that the given rule induces a map ϕC : NC →
N(JC ,θC). This map is injective by Torelli’s Theorem; cf. Theorem 12.1 in [Mi]. More-
over, ϕC is surjective because if 〈A, θ〉 ∈ N(JC ,θC), then q(A,θ) ∼ q(JC ,θC). Since q(JC ,θC)

does not represent 1 by (24), it follows that also q(A,θ) does not represent 1, and so
by (24) again we have that (A, θ) ' (JC′ , θC′), for some curve C ′/K of genus 2. Since
qC′ = q(JC′ ,θC′ ) ∼ q(A,θ) ∼ q(JC ,θC) = qC , we see that 〈C ′〉 ∈ NC , so 〈A, θ〉 = ϕC(〈C ′〉)
lies in the image of ϕC . Thus, ϕC is surjective and hence bijective.

If C is of CM product type, then JC is a CM abelian product surface by Theorem
4, and so N(JC ,θC) < ∞ by Proposition 10. Thus, the first assertion shows that
NC := |NC | = |N(JC ,θC)| = N(JC ,θC).

Proof of Theorem 1. Since C is of CM product type, we have by Lemma 13 that
NC = N(JC ,θC). As was mentioned in its proof, JC is a CM abelian product surface.
By (24) we know that qC = q(JC ,θC) cannot represent 1, so qC cannot be equivalent to
one of the exceptional forms of Theorem 3, and hence it follows from that theorem
that

NC = N(JC ,θC) = 2ω(κqC
)+1h(∆qC

)
a(qC)

|Aut(qC)|
.

Since qC represents a square by Theorem 4, we have by Theorem 25 of [K7] that

(25) 2a(qC) = |Aut(C)|,

and so (1) follows.

Proof of Corollary 2. To prove the first assertion, fix an integer n ≥ 1 and let

Qn = {qC : C/K is a curve of genus 2 of product CM type with NC ≤ n}/∼

denote the set of equivalence classes of those refined Humbert invariants which arise
from curves C/K of genus 2 of product CM type with NC ≤ n. It clearly suffices to
show that |Qn| < ∞ because by definition the number of isomorphism classes of such
curves with a given q ∈ Qn is equal to NC ≤ n.

Now if q ∈ Qn, then by Theorem 4 we know that q is a positive ternary form
and so |Aut(q)| ≤ 48 because |Aut+(q)| ≤ 24 by Theorem 105 of [Di] and because
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|Aut(q)| = 2|Aut+(q)| since −1 ∈ Aut(q) \Aut+(q). We thus obtain from (1) that if
q is in Qn, then

h(∆q)

48
≤ 2ω(κq)h(∆q)

|Aut(C)|
|Aut(q)|

= NC ≤ n.

Now if q ∈ Qn, then ∆q = d(q)/16 is a negative quadratic discriminant by Proposition
5. But by the celebrated result of Heilbronn[He] we know that there are only finitely
many negative discriminants ∆ such that h(∆) ≤ 48n, so there exists a bound Bn

such that h(∆) ≤ 48n ⇒ |∆| ≤ Bn. We therefore see that Qn is a subset of the set

Q̃n = {q : q is a positive ternary form with |d(q)| ≤ 16Bn}/∼ .

Now by Theorem 11 of [Wa], there are up to equivalence only finitely many forms of
a given rank and discriminant, so Q̃n is a finite set, and hence so is its subset Qn.
This proves the first assertion.

In order to prove the second assertion, it suffices in view of the first assertion
to show that there exist infinitely many non-isomorphic genus 2 curves C/K of CM
product type.

To verify this, we first show that the set ACM(K) = {〈A〉} consisting of the set
of isomorphism classes of CM abelian product surfaces A/K is infinite. If char(K) =
0, then this follows immediately from Theorem 71 of [K2] (and its proof) because
there are clearly infinitely many negative discriminants ∆ ≡ 0, 1 (mod 4), and hence
there are infinitely many equivalence classes of positive binary quadratic forms. If
char(K) = p > 0, then this follows from Remark 73 of [K2] because there exist
infinitely many negative numbers ∆ with ∆ ≡ 1 (mod 4p), so there exist infinitely
many positive binary quadratic forms whose discriminant ∆ satisfies (∆

p
) = 1.

Next, let A∗
CM(K) denote the subset of ACM(K) consisting the isomorphism

classes of those CM abelian product surfaces A/K which contain a smooth genus
2 curve C/K. By Theorem 2 of [K4] we know that |ACM(K) \ A∗

CM(K)| ≤ 15, so
A∗

CM(K) is also an infinite set.
Now if C/K is a smooth genus 2 curve lying on an abelian surface A/K, then

A ' JC (by the universal property of the Jacobian), and so if C ⊂ A, where 〈A〉 ∈
A∗

CM(K), then C is a curve of CM product type. Furthermore, since C ' C ′ implies
that JC ' JC′ , it therefore follows that the infinitely many non-isomorphic abelian
surfaces in A∗

CM(K) give rise to infinitely many non-isomorphic curves C/K of CM
product type, as claimed. This proves the second assertion.

4 Examples

In this section, we want to illustrate how Theorem 1 can be applied to some explicit
cases. In this context, the following result discusses some cases satisfying NC = 1.
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Proposition 14 Let A/K be a CM abelian product surface, and let θ ∈ P(A) be
a principal polarization on A. Suppose that κq(A,θ)

= 1 and that h(∆) = 1, where
∆ = ∆q(A,θ)

. Then A ' E × E, where E/K is up to isomorphism the unique CM
elliptic curve such that End(E) has discriminant ∆.

Conversely, if E/K is a CM elliptic curve such that h(∆) = 1, where ∆ is the
discriminant of End(E), then A = E × E is a CM abelian product surface, and
∆q(A,θ)

= ∆, κq(A,θ)
= 1, for every principal polarization θ ∈ P(A) on A. In addition,

we have that N(A,θ) = 1 and |Aut(q(A,θ))| = 2a(q(A,θ)).
In particular, if C is a curve of CM product type with κC = 1 and h(∆C) = 1, then

NC = 1, |Aut(C)| = |Aut(qC)| and JC ' E × E, where E/K is up to isomorphism
the unique elliptic curve such that End(E) has discriminant ∆C.

Proof. Since A/K is a CM abelian product surface, we have that A ' E1×E2, where
Ei/K are two isogeneous CM elliptic curves Ei/K. By Proposition 5 we have that
d(qE1,E2) = d(q(A,θ))/16 = ∆q(A,θ)

= ∆ and cont(qE1,E2) = κq(A,θ)
= 1. Thus, qE1,E2

is a primitive positive binary quadratic form of discriminant ∆. Since h(∆) = 1
by hypothesis, qE1,E2 is equivalent to the principal form 1∆ of discriminant ∆, and
hence qE1,E2 represents 1. Thus, there exists an h ∈ Hom(E1, E2) with deg(h) = 1, so
E := E1 ' E2, and hence qE1,E2 ∼ qE,E. This means that End(E) has discriminant
∆, and that A ' E × E.

Since h(∆) = 1, then, as is well-known, the isomorphism class of the elliptic curve
E/K is uniquely determined by the fact that the endomorphism ring of E/K has
discriminant ∆; cf. [K2], equation (55).

Conversely, suppose that A = E × E where E/K is a CM elliptic curve, and let
∆ be the discriminant of End(E). Then ∆ = d(qE,E) (by definition), and clearly
cont(qE,E) = 1 because 1E ∈ End(E). Thus, by Proposition 5 (and the definitions)
we have that ∆q(A,θ)

= ∆ and κq(A,θ)
= 1, for every θ ∈ P(A).

It remains to show that N(A,θ) = 1 and that 2a(q) = |Aut(q)|, where q = q(A,θ).
Now since κq = 1, we see that q is not one of the exceptional forms of Theorem 3,

and so it follows from (3) that N(A,θ) = 2a(q)
|Aut(q)| . Since a(q) = a(θ) by Corollary 17

of [K8] (where a(θ) is defined as in [K8]) and since a(θ) | |Aut+(q)| = 1
2
|Aut(q)|

by Proposition 16 of [K7], we see that N(A,θ) ≤ 1. But since N(A,θ) ≥ 1 (because
〈A, θ〉 ∈ N(A,θ)), it follows that N(A,θ) = 1 and 2a(q) = |Aut(q)|, as claimed.

The last assertion follows directly from the first part by using equation (25).

Remark 15 (a) If char(K) = 0 and if E/K is a CM elliptic curve such that h(∆E) =
1, where ∆E is the discriminant End(E), then E/K comes from an elliptic curve
defined over Q. An equation of such a curve, together with its j-invariant, is given in
the tables on p. 483 of Silverman[Si].

Similarly, if char(K) = p > 0, then the CM elliptic curves with h(∆E) = 1 are
obtained by reduction mod p from the corresponding CM curve over Q, provided that
(∆E

p
) = 1. On the other hand, if (∆E

p
) 6= 1, then there is no such CM elliptic curve.
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(b) In the situation of Proposition 14 there may not be a curve C/K satisfying
the given conditions. Indeed, if ∆ = −3,−4 or −7, then there is no such curve; cf.
Hayashida/Nishi[HN], Theorem 1, or [K4], Theorem 2, or the table in [K7].

We now want to show how Proposition 14 can be used to deduce the uniqueness
of a curve C/K when we start with a fixed ternary quadratic form.

Example 16 Consider the following ternary quadratic form

q(x, y, z) = 4x2 + 4y2 + 4z2 + 4yz + 4xz + 4xy.

If char(K) = 0, then up to isomorphism there is a unique genus 2 curve C/K such
that qC ∼ q. Moreover, |Aut(C)| = 48 and the Jacobian JC of C is isomorphic to
E × E, where E is given by the equation y2 = x3 + 4x2 + 2x and has j-invariant
j(E) = 26 · 35.

Proof. We first note that q/2 is an improperly primitive form (in the sense of Dickson
[Di]) because q/4 is a primitive form and the coefficient of the term yz (or of xy, or
of xz) of q/4 is odd. Thus, q satisfies condition (1) in Theorem 2 of [Ki], and also
condition (2) holds because q(1, 0, 0) = 4 is a square. Since char(K) = 0, it thus
follows from that theorem that there exists a principally polarized abelian surface
(A, θ) over K such that q(A,θ) ∼ q.

It is clear that q cannot represent 1, so it follows from (24) that (A, θ) ' (JC , θC),
for some genus 2 curve C/K. Note that since A/K is a CM abelian product surface
by Theorem 4, it follows that C is a curve of CM product type, so JC ' E1×E2, for
some isogeneous CM elliptic curves Ei/K.

In order to apply Proposition 14, we need to show that C satisfies the required
conditions. For this, we first compute the discriminant d(q). By definition (cf. [Wa],
p. 2) we have that d(q) = −1

2
det(A(q)), where A(q) is the coefficient matrix of q. In

our case we have that

A(q) =

8 4 4
4 8 4
4 4 8

 ,

so we see that d(q) = −8 · 16. Thus, by Proposition 5 we obtain that d(qE1,E2) =
−8. Since −8 is a fundamental discriminant, it follows that qE1,E2 is primitive, so
κq = cont(qE1,E2) = 1. Thus, C satisfies the hypotheses of Proposition 14 because
h(−8) = 1 (cf. Theorem 7.30 of [Co])), and so JC ' E ×E, where E is a CM elliptic
curve such that End(E) has discriminant −8. Since this determines E/K uniquely
up to isomorphism (cf. Proposition 14), we see from the first table on p. 483 of [Si]
that j(E) = 26 ·53 and from the second table there that E/K is given by the equation
y2 = x3 + 4x2 + 2x.
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To determine Aut(C), we can use either of two methods. The first consists of
computing r∗4(q). For this, we observe that clearly

{±(1, 0, 0),±(0, 1, 0),±(0, 0, 1),±(1,−1, 0),±(1, 0,−1),±(0, 1,−1)} ⊂ R4(q),

so r∗4(q) ≥ 12. We thus see from (2) that a(q) = 3r∗4 − 12 ≥ 24, so by (25) we obtain
that |Aut(C)| = 2a(q) ≥ 48. But since |Aut(C)| ≤ 48, for all such curves C/K (cf.
Theorem 25 of [K7]), it follows that |Aut(C)| = 48 (and that r∗4(q) = 12).

Alternately, we can determine |Aut(C)| by calculating |Aut(q)| = |Aut(q/2)|,
and for this we can use the method and tables of Dickson[Di], §82-83. Indeed, we
see that q/2 is the first entry of Table II on p. 185 of [Di], so we have by that table
that |Aut+(q/2)| = 24. (The method for computing this table is given in Theorem
105 of [Di].) We thus have that |Aut(q)| = 2|Aut+(q/2)| = 48, and hence also
|Aut(C)| = 48 by Proposition 14.

Remark 17 On can say more about the curve C/K which was constructed in Ex-
ample 16. Indeed, since here char(K) = 0, it is known that up to isomorphism there
is only one curve C/K with |Aut(C)| = 48, and so it follows that C is given by the
equation y2 = x(x4− 1); cf. [Ig], §8. Furthermore, we have that Aut(C) ' GL2(3) by
Theorem 2 of [SV]. In [AP], this curve is called the Burnside curve.

The next Example 18 uses again Proposition 14 to deduce the uniqueness of a
curve C/K for a given ternary quadratic form. This example also illustrates that
there may be two non-isomorphic curves of genus 2 on the same abelian surface.

Example 18 Consider the following two ternary quadratic forms

q1(x, y, z) = 4x2 + 5y2 + 8z2 − 4yz − 4xy and q2(x, y, z) = 4x2 + 4y2 + 8z2 − 4xz.

If char(K) = 0, then up to isomorphism there is a unique genus 2 curve Ci/K such
that qCi

∼ qi, for i = 1, 2. Moreover, |Aut(C1)| = 4 and |Aut(C2)| = 8, and
the Jacobian JCi

of Ci is isomorphic to E × E, where E is given by the equation
y2 = x3−595x+5586 and has j-invariant j(E) = 33 ·53 ·173. Furthermore, C1 6' C2.

Proof. For the first form q1, note first that q1(x, y, z) = (2x− y)2 + 4(y2 − yz + 2z2)
is the sum of two positive forms, and so q1 is a positive form. In fact, we easily see
that q1 ≥ 4, if (x, y, z) 6= (0, 0, 0), so q1 cannot represent 1.

As in Example 16, we can calculate the discriminants d(qi), for i = 1, 2 by com-
puting the determinant of A(qi). This gives d(qi) = −16 · 28, for i = 1, 2. Since
q1(1, 1, 1) = 32, the form q1 represents a square which is relatively prime to its dis-
criminant. Furthermore, since q1 ≡ y2 (mod 4), we see that q1 ≡ 0, 1 (mod 4). If
char(K) = 0, then it follows from Theorem 1 of [K6] that q1 ∼ q(A,θ), for some prin-
cipally polarized abelian surface (A, θ) over K. Moreover, as was mentioned above,
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q1 cannot represent 1, so it follows from (24) that (A, θ) ' (JC1 , θC1), for some genus
2 curve C1/K. As in Example 16, we conclude that C1 is of CM product type.

For the second form q2, note that q2/2 is an improperly primitive form because
q2/4 is a primitive form and the coefficient of the term xz of q2/4 is odd. Moreover,q2

is a positive form because q2(x, y, z) = 4(x2−xz+2z2)+4y2 is the sum of two positive
forms. Thus, q2 satisfies condition (1) in Theorem 2 of [Ki], and also condition (2)
holds because q2(1, 0, 0) = 22. If char(K) = 0, then it follows from that theorem
that there exists a principally polarized abelian surface (A′, θ′) over K such that
q2 ∼ q(A′,θ′). Furthermore, it is clear that q2 cannot represent 1, so it again follows
from (24) that (A′, θ′) ' (JC2 , θC2), for some genus 2 curve C2/K. Similarly, we
conclude that C2 is of CM product type.

In order to apply Proposition 14, we need to show that the Ci satisfy the required
conditions.

To begin, we have that ∆Ci
= d(qi)/16 = −28, and so h(∆Ci

) = 1 by Theorem
7.30 of [Co]. Next, to compute κCi

, recall from [B1] that the genus invariant |I1(q)|
of a primitive form q is the content of the adjoint form adj(q), which is defined by
the formula

A(adj(q)) = −2adj(A(q)) = −2 det(A(q))A(q)−1.

Hence, we see that |I1(q1)| = gcd(16 · 9, 16 · 8, 16 · 4, 16 · 4, 16 · 2, 16 · 8) = 16 and that
|I1(q2/4)| = gcd(8, 7, 4, 0, 4, 0) = 1, and thus κCi

= 1, for i = 1, 2 (by definition). This
shows that the Ci satisfy the hypotheses of Proposition 14, and so JCi

' Ei × Ei,
where Ei is a CM elliptic curve such that End(Ei) has discriminant −28, for i = 1, 2.
Since this determines Ei/K uniquely up to isomorphism (cf. Proposition 14), we
obtain that E1 ' E2 := E, and hence JCi

' E × E, for i = 1, 2. Furthermore, we
see from the first table on p. 483 of [Si] that j(E) = 33 · 53 · 173 and from the second
table there that E/K is given by the equation y2 = x3 − 595x + 5586, as asserted.

To determine |Aut(Ci)|, we can use two different methods as was mentioned in
Example 16. We use the first method to find |Aut(C1)|, and the second one to
calculate |Aut(C2)|.

The first method consists of computing a(q1), and this can be achieved by calcu-
lating r∗4(q1). But, this is already done in Corollary 30 of [K7], for primitive ternary
forms qC . Indeed, since q1 satisfies the inequalities of Theorem 103 of [Di], q1 is an
Eisenstein-reduced ternary form. Since q1 is primitive, we are in the situation of Corol-
lary 30 of [K7], and it follows from there that a(q1) = 2. Thus, |Aut(C1)| = 2a(q1) = 4
by equation (25).

To apply the second method to the form q2, we determine |Aut(q2)| = |Aut(q2/2)|.
Note that q2/2 is the sixth entry of Table II on p. 185 of [Di], and so we have by that
table that |Aut+(q2/2)| = 4, and thus |Aut(q2)| = 2|Aut+(q2/2)| = 8. Therefore, it
follows that |Aut(C2)| = |Aut(q2)| = 8 by Proposition 14.

Finally, we observe that C1 6' C2 because qC1 6∼ qC2 . Indeed, qC1 ∼ q1 is primitive,
whereas qC2 ∼ q2 is not, so qC1 6∼ qC2 .
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The following example shows that it is possible to have NC = 1 in a situation
where Proposition 14 does not apply.

Example 19 Let q be the primitive ternary quadratic form defined by

q(x, y, z) = 4x2 + 4y2 + 9z2 − 4xy.

If char(K) = 0 or if char(K) ≡ 1 (mod 3), then there exists (up to isomorphism) a
unique curve C/K such that qC ∼ q. Furthermore, |Aut(C)| = 12 and JC ' E1×E2,
where E1 is the elliptic curve given by y2 + y = x3 and E2 is the elliptic curve given
by y2 + y = x3 − 30x + 63. Moreover, j(E1) = 0 and j(E2) = −215 · 3 · 53.

Proof. Note first that q(x, y, z) = 4(x2 − xy + y2) + 9z2 is the sum of two positive
forms, so q is also positive. In fact, we see that q(x, y, z) ≥ 4, if (x, y, z) 6= (0, 0, 0),
so q cannot represent 1.

As in Example 16, we can calculate its discriminant by computing the determinant
of A(q). This gives d(q) = −16·27. Since q(2, 2, 1) = 52, the form q represents a square
which is relatively prime to its discriminant. Furthermore, since q ≡ z2 (mod 4), we
see that q ≡ 0, 1 (mod 4). If char(K) = 0, then it follows from Theorem 1 of [K6] that
q ∼ q(A,θ), for some principally polarized abelian surface (A, θ) over K. Similarly, if

p := char(K) > 0, then (d(q)/16
p

) = (−3
p

) = 1 by our hypothesis, and so it follows from

Theorem 28 of [K6] that q ∼ q(A,θ), for some principally polarized abelian surface
(A, θ) over K.

As was mentioned above, q cannot represent 1, so it follows from (24) that (A, θ) '
(JC , θC), for some genus 2 curve C/K. As in Example 16, we conclude that C is of
CM product type.

To show that C/K is uniquely determined by q, it suffices to show that NC = 1,
and for this we will use the formula (1). Thus, we need to compute the quantities on
the right hand side of (1).

To begin, we have that ∆C = d(q)/16 = −27, and so h(∆C) = 1 (by Theorem
7.30 of [Co]). Next, we see that |I1(q)| = gcd(16 · 9, 16 · 9, 48, 0, 0, 16 · 9) = 48 as was
discussed in Example 18, and thus κC = 3.

It remains to compute |Aut(C)| and |Aut(q)|. For this, observe that q is an
Eisenstein-reduced primitive ternary form, and we are thus in the situation of Corol-
lary 30 of [K7], and so it follows from there that a(q) = 6. Thus, |Aut(C)| = 2a(q) =
12 by equation (25).

Next, to compute |Aut(q)|, we will use Theorem 105 of [Di]. Since q is Eisenstein-
reduced, we see that the table on p. 180 of [Di] is applicable. We observe that the
cases of lines 2, 5 and 9 hold and that the others do not. These cases give us five
automorphs, and hence we have six automorphs including the identity. Since the
coefficients of the terms yz and xz are 0, we conclude that |Aut+(q)| = 6 · 2 = 12 by
the footnote on p. 180 of [Di], and so |Aut(q)| = 24.
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It therefore follows from (1) that NC = 2ω(3)h(−27) |Aut(C)|
|Aut(qC)| = 2·12

24
= 1, so C/K is

uniquely determined by q (up to isomorphism).
It remains to determine the structure of JC . Since C is of CM product type, we

have that JC ' E1 × E2, for some isogeneous CM elliptic curves E1 and E2. By (6)
and (7) and the above computations, we see that qE1,E2 is a binary quadratic form
of content 3 and discriminant −27. Moreover, by (17) we have that End0(E1) '
End0(E2) = Q(

√
−27) =: F , and so ∆F = −3.

As in the proof of Proposition 9, let fi = fEi
denote the conductor of the order

End(Ei) of F . Then by the first formula of (79) in [K2] we see that lcm(f1, f2)
2 =

d(qE1,E2
)

∆F
= −27

−3
= 9, and so it follows from the second formula of (79) in [K2] that

gcd(f1, f2) = lcm(f1,f2)
cont(qE1,E2

)
= 3

3
= 1. Thus, by interchanging E1 and E2, if necessary,

we may assume without loss of generality that f1 = 1 and f2 = 3. This means that
∆E1 = −3 and ∆E2 = −27. Since h(−3) = h(−27) = 1, the curves Ei/K are uniquely
determined (up to isomorphism) by their endomorphism discriminants, and so we see
from the first table of [Si] on p. 483 that j(E1) = 0 and that j(E2) = −215 · 3 · 53, and
from the second table that E1 and E2 are given by the asserted equations.
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