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Abstract. The purpose of this paper is to lay the foundations for a quantitative theory
of relations among discriminants of hermitian RG-modules which are induced by char-
acter relations. This is accomplished by introducing an invariant δ(M) attached to an
RG-module M which plays the role of a correction term in such relations and to study
its functorial properties such as localization and induction theorems, behaviour with re-
spect to exact sequences, triviality etc. By means of this formalism it is shown that this
invariant may be computed in many cases.

An application of this invariant is the class number relation of R. Brauer (1951) and,

by using the formalism mentioned above, also that of Dirichlet (1842).

1. Introduction

A hundred and fifty years ago Dirichlet[Di2] proved the following theorem which
he considered to be “one of the most beautiful theorems of the theory of complex
numbers” ([Di1], p. 508).

Theorem 1.1 (Dirichlet, 1842) The class number h(K) of Dirichlet’s biqua-
dratic field K = Q(

√
d,
√
−d), where d > 1 is square-free, is given by the formula

h(K) = 1
2Qh(d)h(−d).(1.1)

Here h(±d) denotes the class number of the quadratic field Q(
√
±d) and

Q =
{

1 if N(εK) = ±1
2 if N(εK) = ±i,(1.2)

where εK denotes a fundamental unit of K, except in the case that K = Q(ζ8)
where εK = ζ8 denotes an eighth root of unity, and N(εK) = NK/Q(i)(εK) denotes
its “partial norm”.
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Dirichlet’s own proof of this theorem was by analytic techniques, but in 1896
Hilbert[Hi] gave an algebraic proof of this result. In 1922 Herglotz[He] extended
this theorem to arbitrary biquadratic fields, and this was further generalized by
Kuroda[Ku] in 1950 (see also Kubota[Kb] and Walter[Wa2]).

For a general Galois number field, Nehrkorn[Neh] obtained in 1933 some inter-
esting partial results. The first significant progress, however, was achieved in 1951
by R. Brauer[Br] who proved the following theorem.

Theorem 1.2 (Brauer, 1951) Let K be a Galois extension of Q with Galois
group G. Suppose G is non-cyclic, so that we have a non-trivial character relation∑

H≤G

nH1∗H = 0,(1.3)

where the sum extends over all subgroups of G and 1∗H denotes the permutation
character attached to G/H. Then the class numbers h(KH) of the fixed fields
KH , H ≤ G, satisfy the relation∏

H

h(KH)nH =
∏
H

(w(KH)[G : H])nH · J =
∏
H

(w2(KH)[G : H])nH · J,(1.4)

where w(L) = |U(L)tor| denotes the number of roots of unity in the field L and
w2(L) = |U(L)(2)

tor| the number of those of 2-power order, and J is an “invariant”
which depends only on the Z[G]-module structure of the group of units U(K) of K
(and on {nH}).

By using the Jordan–Zassenhaus Theorem that there are up to isomorphism
only a finite number of ZG-lattices of bounded rank, Brauer derived the follow-
ing corollary which may be viewed as a qualitative generalization of Dirichlet’s
theorem:

Corollary 1.3 Fix a group G and a character relation (1.3). Then, as K runs
over all Galois extensions of Q with group G, the product∏

H

h(KH)nH

assumes only finitely many values.

Brauer’s proof consists of two main steps. In the first he uses the Artin for-
malism to derive from the character relation (1.3) the relation∏

H

ζKH (s)nH = 1(1.5)

among the Dedekind zeta-functions, and from this he obtains the relation∏
H

h(KH)nH =
∏
H

(w(KH)reg(KH)−1)nH(1.6)
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by comparing residues at s = 1. Here, reg(L) denotes the regulator of L.
His second step consists of a detailed study of the right hand side of (1.6), and

culminates in the proof of the regulator relation

J =
∏
H

([G : H]reg(KH))−nH ,(1.7)

where J is a certain invariant of the ZG-module U(K) which is defined as the prod-
uct of suitable indices of unit groups. Brauer’s exposition is somewhat difficult
to follow in this step, but a much more transparent treatment with considerable
simplifications was given by C. Walter[Wa1] in 1979. In particular, Walter clari-
fied Brauer’s use of the Minkowski units by showing that they play the role of a
“comparison sublattice”.

In this paper we shall follow in the second step a different approach, one that
was in part inspired by Arakelov theory for number fields (cf. Neukirch[Neu] or
Szpiro[Sz]). The underlying idea here is that the regulator of a number field K
may be viewed as the discriminant of the group of units U(K) with respect to a
suitable bilinear form (or metric), a fact that is implicit in the Arakelovian point
of view of number theory. In the case that K/Q is Galois with group G, then
M = U(K) is a Z[G]-module with a G-equivariant metric ρ; following the usage
of Scharlau[Sch], such a pair (M,ρ) will be called a hermitian Z[G]-module.

Viewed in this light, it is natural to expect that Brauer’s theorem may be de-
duced from a very general theorem on relations among discriminants of hermitian
ZG-modules, and this turns out to be indeed the case.

The theorem in question is based on the observation that if {nH} defines a
character relation (1.3), then the expression

δ∗(M) =
∏
H

disc(MH , h|MH )nH(1.8)

does not depend on the choice of the hermitian structure h on the ZG-module
M and hence defines an invariant δ∗(M) = δ∗({nH},M) of the ZG-module M .
On the other hand, we can also view equation (1.8) as a discriminant relation,
one that includes Brauer’s regulator relation (1.7) as a special case, once we have
interpreted regulators as discriminants (cf. Theorem 2.7).

Here it should be emphasized that the invariant δ∗(M), although closely related
to Brauer’s invariant J , is nevertheless substantially different from that of Brauer
since its definition does not require the existence of a “comparison sublattice”.
As a result, the entire theory becomes not only more flexible and more functorial
but also much more general in that the general discriminant theorem (Theorem
2.5) also applies to hermitian Z[G]-modules which have no obvious comparison
submodules. A typical example here is the Mordell–Weil lattice of an elliptic
curve for which one can therefore obtain an analogue of Brauer’s theorem, as will
be shown in a subsequent paper.
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While the above discriminant relation (1.8) suffices to prove Brauer’s class
number relation and its corollary, it sheds little light on the value of the invariant
δ∗(M). The main purpose of this paper, therefore, is to introduce a formalism
with which the invariant δ(M) may be computed in many cases and thereby to
lay the foundations for a quantitative theory of discriminant relations induced by
character relations. This is accomplished by studying some functorial properties of
the δ-invariant such as localization, reciprocity theorems, behaviour with respect
to exact sequences etc. In particular, it will be shown how to deduce Dirichlet’s
theorem directly by examining the Z[G]-module structure of U(K) (cf. Proposition
2.18d)).

In developing this formalism, it is advantageous to modify the above invariant
somewhat. First of all, since the unit groups invariably involve torsion — indeed,
the case distinction in Dirichlet’s Theorem is precisely due to the fact that the
ZG-module structure on U(K) cannot be read off from that of its torsion-free part
U(K) = U(K)/U(K)tor — it is useful to redefine the definition of a discriminant
in such a way as to be sensitive to its torsion subgroup. Moreover, by introducing
these modified discriminants, many proofs actually become simpler since these
new discriminants satisfy better functorial properties.

The second modification is to introduce a normalization factor when restrict-
ing a hermitian pairing h on M to its invariant submodule MH (cf. Notation
2.4). Although the resulting modified invariant δ(M) is just a minor variation of
the original one (cf. Remark 2.6 for the precise connection), this modification is
absolutely essential for the validity of many of the functorial properties such as
Frobenius reciprocity (Theorem 2.12) and the Triviality Theorem 2.9. Moreover,
it also turns out to be the natural choice for the hermitian pairings on unit groups
(cf. Proposition 8.2).

The basic method for proving the discriminant relation (1.8) and the other
results is to translate the character relation (1.3) into an isomorphism

M+ ⊗Q 'M− ⊗Q(1.9)

of QG-modules, where M+ and M− are certain permutation modules attached to
the character relation (1.3). Viewed in this way, the entire theory can generalized
as follows.

Given a non-degenerate ZG-module M and two ZG-modules M1 and M2 which
are symmetric (or self-dual), i.e. M∗i 'Mi, and which satisfy (1.9), the expression

δ(M1,M2;M) = dG(M1 ⊗M,h1 ⊗ h)dG(M2 ⊗M,h2 ⊗ h)−1(1.10)

does not depend on hermitian structure h on M nor on the unimodular hermitian
structures hi on Mi, and hence defines an invariant of M ; here,

dG(M,h) = disc(MG, 1
|G|h|MG).

Moreover, virtually all the functorial properties of the invariant δ∗({nH},M) can
be derived from the analogous properties of the invariant δ(M1,M2;M), as will
be shown in sections 6 and 7.
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This paper is organized as follows.
For the convenience of the reader we present in section 2 an overview of the

main definitions and results of the paper. In this overview we focus only on the
results for the invariant δ({nH},M), but it should be emphasized that virtually
all the theorems here are special cases of the theorems of section 6 which apply
more generally to the invariant δ(M1,M2;M).

In section 3 we define and study the functorial properties of the (modified)
discriminant of a bilinear R-module. For this purpose we first introduce the content
ideal χ(f) attached to a linear map f : M → N , which extends the notion of the
content ideal χ(T ) of a torsion module (cf. Bourbaki[BCA]) and also that of the
“Herbrand quotient” of Fulton[Fu], Appendix A.2, and which reduces to the “q-
invariant” of Tate[Ta] in the case that R = Z. This will then be used to define the
relative invariant χ(f, g) of two R-linear maps f, g : M → N which refines and
generalizes the relative invariant of Bourbaki attached to submodules. Finally, the
discriminant will be defined as a suitable relative invariant.

In section 4 we define hermitian RG-modules and study their functoriality
properties via the process of (co)induction and restriction. In particular, we shall
formulate several versions of a generalized Frobenius reciprocity theorem for her-
mitian RG-modules. While the presentation here is much more elaborate than
is necessary for our purposes, it should be viewed as a contribution towards an
equivariant Arakelov theory.

In section 5 we construct the fundamental invariant δ(M1,M2;M). By intro-
ducing suitable Grothendieck rings, it is possible to view this invariant as a pairing
and thereby work with it more efficiently.

In section 6 we formulate and prove the main properties of the invariant
δ(M1,M2;M). As was mentioned above, most of these properties are natural
generalizations of the properties of the invariant δ({nH},M) which are presented
in section 2: the theorem on discriminant relations, the Uniform Boundedness The-
orem, the theorems on induction and inflation, behaviour with respect to exact
sequences, and the Triviality Theorem.

In section 7 we interpret the results of section 6 in terms of character relations
and thereby prove the theorems stated in section 2.

Finally, in section 8 we apply the above theory to study relations among S-
regulators and S-class numbers of number fields by calculating the δ-invariant of
the group US(K) of S-units. As an application, we prove Dirichlet’s Theorem and
a generalization of Brauer’s Theorem.

This paper developed out of the joint work [KR2] with M. Rosen, whom I would
like to thank very much for the many fruitful discussions as well as for his interest
and encouragement throughout the project. In addition, I have also benefitted
from discussions with J. Ritter and A. Weiss. Finally, I would like to gratefully
acknowledge support from the Natural Sciences and Engineering Research Council
of Canada (NSERC).
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2. Main results

Throughout this paper, the following notations and assumptions are in effect. Let

R be a principal ideal domain,
K = Quot(R) denote its quotient field,
L ⊃ K be an extension field,
G a finite group with char(K) 6 | n = |G|,
RG = R[G] the group ring of G with coefficients in R.

Actually, virtually all of the results below are valid if R is a Dedekind domain
or even an arbitrary integrally closed noetherian domain, but for simplicity we
restrict to the case of a principal ideal domain since it is the most general ring
required for the applications which use mainly the case R = Z and L = R.

The following definitions are fundamental for the entire paper and will be dis-
cussed in more detail in the next sections.

Definition 2.1 An L-valued hermitian RG-module is a pair (M,h), where M is
a finitely generated RG-module and

h : M →M∗ ⊗ L = HomR(M,L)

is an RG-linear map. Here M∗ = HomR(M,R) denotes the contragredient RG-
module. We call (M,h) non-degenerate if the induced map

h⊗ L : M ⊗ L→M∗ ⊗ L

is an isomorphism.
If G = {1} is the trivial group, then a hermitian RG-module (M,h) will be

called a bilinear R-module.

Remark 2.2 It follows from the definition that an RG-module M which admits
a non-degenerate L-valued RG-module structure h : M → M∗ ⊗ L satisfies the
symmetry condition M ⊗L 'M∗⊗L, or equivalently , M ⊗K 'M∗⊗K, which
says that the KG-module M ⊗K is isomorphic to its contragredient module (as
KG-modules). An RG-module M with this property will be called non-degenerate.

Definition 2.3 The discriminant of an L-valued bilinear R-module (M,h) is the
(principal) R-submodule of L defined by

disc(M,h) = χ(Mtor)−1 det(h(xi, xj)) ·R,

where x1, . . . xn ∈ M is a basis of M = M/Mtor, with Mtor denoting the torsion
submodule of M . Furthermore, h(xi, xj) = h(xi)(xj), and χ(· · ·) denotes the
content ideal in the sense of Bourbaki [BCA]. (In particular, if R = Z then
χ(Mtor) = |Mtor| · Z.)



Discriminants of hermitian R[G]-modules 7

To define the invariant δ({nH},M), we introduce the following notation.

Notation 2.4 For a hermitian RG-module (M,h) and a subgroup H ≤ G, define
the bilinear R-module InvH(M,h) by

InvH(M,h) = (InvH(M), invH(h)),

where InvH(M) = MH = {m ∈ M : hm = m} denotes the R-submodule of
H-invariant elements and

invH(h) = 1
|H|h

H : MH → (M∗ ⊗ L)H = (M∗)H ⊗ L

denotes the induced map on the invariant spaces multiplied by the factor 1
|H| .

The reason for introducing this normalization factor will be explained below; cf.
Theorems 2.9 and 2.12, and also section 4.

With these definitions and notations we have:

Theorem 2.5 (Discriminant Relation) Let {nH}H≤G define a character rela-
tion (1.3). Then we have:

a) (Existence) For any non-degenerate RG-module M there is a unique prin-
cipal fractional R-ideal

δ(M) = δR({nH},M)

such that for any non-degenerate L-valued hermitian RG-structure on M we have:

δ(M) =
∏
H

discR(InvH(M,h))nH .(2.1)

b) (Additivity) The invariant δR({nH},M) is bi-additive:

δR({nH},M1 ⊕M2) = δR({nH},M1) · δR({nH},M2),
δR({nH +mH},M) = δR({nH},M) · δR({mH},M).

c) (Base change) If R′ ⊃ R is a principal ideal domain then we have:

δR′(M ⊗R R′) = δR(M) ·R′.

d) (Support) We have δR(M) · R[ 1
n ] = R[ 1

n ], so δR(M) is supported on the
prime ideals dividing n = |G|.

e) (Localization) The following localization formula is valid:

δR(M) =
⋂
p|n

δRp(Mp);(2.2)

here, the intersection runs over all prime ideals p of R which contain n = |G|. In
particular, if M and M ′ are in the same genus (i.e. Mp 'M ′p, for all p|n), then

δR(M) = δR(M ′).(2.3)
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Remark 2.6 In the applications one is often interested in the (unnormalized)
product

δ∗R({nX},M) =
∏
X

discR(MH , h|MH )nH(2.4)

in place of the product (2.1) which is calculated using the normalization introduced
in Notation 2.4. However, it is easy to relate this quantity to the invariant δ:

δ∗({nH},M) = ε({nH},M)δ({nH},M),(2.5)

where
ε({nH},M) =

∏
H

|H|nHrk(MH).(2.6)

In particular, it follows that all the assertions of Theorem 2.5 remain true when
we replace δ by δ∗.

We note that it follows from (2.5) that the invariant of the trivial module
M = R is given by

δR({nH}, R) =
∏
H

|H|−nH ·R(2.7)

because it is immediate that δ∗({nH}, R) = R.

In order to be able to deduce Brauer’s results from Theorem 2.5, we need to
relate the δ-invariant of the unit group U(K) to the regulators of the subfields of
K. As a consequence of the formalism of δ-invariants introduced below, this can
be done more generally for the group US(K) of S-units of K:

Theorem 2.7 (Class Number Relation) Let K be a Galois extension of a
number field K0 with Galois group G, and let S be a finite set of places of K which
is G-invariant and contains the set S∞ of infinite places. Then the invariant of
the the S-unit group US(K) of K, viewed as a Z[G]-module, is given by

δZ({nH}, US(K)) =
∏
H

(
regH\S(KH)2

w(KH)

)nH
δZ({nH},Z)δZ({nH},Z[S])−1,

where regH\S(KH) denotes the S̄-regulator of KH with respect to the set S̄ = H\S
of places of KH , and the δ-invariants δZ({nH},Z) and δZ({nH},Z[S]) are given
by (2.7) and (2.19), respectively.

We thus obtain the following relation among the S-class numbers hH\S(KH)
of the intermediate fields KH of K/K0:∏

H

hH\S(KH)2nH = δ(Z)δ(US(K))−1δ(U(K)tor)−1δ(Z[S])−1.(2.8)

Moreover, if the (finite) places of S are tamely ramified over K0 (e.g. if S = S∞),
then δZ({nH},Z[S]) = Z, and so the above class number relation reduces to∏

H

hH\S(KH)2nH = δ(Z)δ(US(K))−1δ(U(K)tor)−1.(2.9)
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If G, {nH} and #S are fixed, then, as was explained in the introduction,
it follows immediately from the Jordan-Zassenhaus Theorem that the expression
(2.8) assumes only finitely many values as K varies over all Galois extensions of
Q with Galois group G. However, this result also follows from the following much
more general and more precise theorem:

Theorem 2.8 (Uniform Boundedness) For each character relation (1.3) there
is an element r = r({nH}) ∈ R\{0} such that for any non-degenerate RG-module
M we have

[Mtor]Nrrk(M)δR({nH},M) ⊂ R, [Mtor]Nrrk(M)δR({nH},M)−1 ⊂ R,

where N =
∑
|nH |.

Note that this theorem is considerably stronger than Brauer’s result. Not
only is the bound here uniform in the rank of M , but the result is also valid
for arbitrary principal ideal domains R, not only for those for which the Jordan–
Zassenhaus theorem holds. Furthermore, as the proof shows, it is possible to give
fairly explicit interpretation of the “denominator” r above: its essential constituent
is the “genus defect” attached to a character relation, which measures the failure
of the character relation to be trivial as a genus class (cf. sections 6 and 7 for
further explanations).

In view of the above class number relation (2.8), it would be desirable to be
able to compute the invariant δR(M) for all (non-degenerate) RG-modules M .
While this task seems to be quite difficult in general, the following formalism can
be used to compute this invariant in many cases.

Theorem 2.9 (Triviality) If M is a non-degenerate RG-module which is coho-
mologically trivial then its invariant is also trivial:

δR({nH},M) = R.(2.10)

The above theorem may be viewed as a justification for the normalization
factor introduced in the definition of δ, as well as for the unusual definition of the
discriminant of RG-modules M which may have R-torsion. A further justification
of the latter is also given by the validity of the following result:

Theorem 2.10 (Exact Sequence Formula) Let

0→M ′
f→M

g→M ′′ → 0

be an exact sequence of RG-modules. If any two of the modules M, M ′ and M ′′

are non-degenerate, then so is the third, and for any character relation we have

δ({nH},M) = δ({nH},M ′)δ({nH},M ′′)ψ({nH}, g)2,(2.11)
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where

ψ({nH}, g) =
∏
X

χ(Coker(gX : H0(X,M)→ H0(X,M ′′)))nX

=
∏
X

χ(Ker(f : H1(X,M ′)→ H1(X,M)))nX .

Combining these two theorems yields the following remarkable consequence:

Corollary 2.11 Let

0→M ′ → Pr → · · · → P1 →M ′′ → 0

be an exact sequence of non-degenerate RG-modules. If the Pi are cohomologically
trivial, then for any character relation {nH} the δ-invariants of M ′ and M ′′ are
connected by the formula

δ({nH},M ′) = δ({nH},M ′′)(−1)r ·
∏
H

χr(H,M ′)2nH ,(2.12)

where the truncated Euler characteristic χr(G,M) is defined by

χr(G,M ′) =
r∏
q=1

χ(Hq(G,M ′))(−1)q+1
(2.13)

The above corollary allows us to compute the δ-invariant of one RG-module
in terms of another one. The following induction/restriction formalism, on the
other hand, relates the δ-invariant of (certain) RG-modules to those of modules
belonging to subgroups of G.

Theorem 2.12 (Induction) Let X ≤ G be a subgroup. If M , respectively N , is
a (non-degenerate) RG-module, respectively RX-module, and {nH}H≤G, respec-
tively {mY }Y≤X , defines a character relation of G, respectively of X, then we
have

δR(indGX({mY }),M) = δ({mY }, resGX(M)),(2.14)
δR(resGX({nH}), N) = δ({nH}, indGX(N)),(2.15)

where the induced character relation indGX({mY }) = {m∗H}H≤G is defined by ex-
tension by 0 (i.e. m∗H = mH , if H ≤ X and m∗H = 0 otherwise), and the restricted
character relation resGX({nH}) = {n∗Y }Y≤X is defined by the formula

n∗Y =
∑
H

nHm(H,Y )(2.16)

where m(H,Y ) = #{g ∈ G : gHg−1 ∩ X = Y }/(|H|[X : Y ]).
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Note that although the above coefficients m(H,Y ) of resGH are actually ra-
tional numbers, the denominators disappear if one collects those terms together
which belong to conjugate subgroups; this is possible since the δ-invariant does
not change if we replace in a character relation a subgroup by a conjugate.

The above notation suggests that Theorem 2.12 is closely connected to a
“Frobenius induction theorem”. This is indeed the case, for the result is de-
duced from the “Frobenius induction theorem for hermitian RG-modules” (Theo-
rem 4.16).

As an illustration of the above theorem we present the following examples.
The first two follow from the fact that cyclic groups have no non-trivial character
relations and that the process of restriction and induction preserves character
relations.

Example 2.13 a) If M = indGX(N) is induced from a cyclic subgroup X ≤ G,
then for every character relation {nH} we have

δR({nH},M) = R.(2.17)

b) If G acts tamely on the G-set S in the sense that all stabilizers are cyclic,
then for the associated permutation module R[S] we have

δR({nH}, R[S]) = R.(2.18)

c) For any G-set S we have

δR({nH}, R[S]) =
∏

s∈G\S

∏
H

∏
g∈H\G/Gs

|H ∩ gGsg−1|−nH ·R,(2.19)

where Gs denotes the stabilizer of a point s ∈ S.

Another useful induction-type theorem is the following result which relates the
δ-invariants of modules which are lifted (or “inflated”) from quotient groups.

Theorem 2.14 (Inflation) Let X � G be a normal subgroup of G and let Q =
G/X denote the quotient group.

a) Let M be a non-degenerate RG-module and {nY }Y≤Q be a character relation
of Q. Then, viewing the invariant module MX as an RQ-module, we have

δR(infQG ({nY }),M) = δR({nY },MX),(2.20)

where the lifted character relation infQG ({nY }) = {n∗H} is given by n∗H = 0 if
H 6≥ X and by

n∗H =
∑

Y∼H/X

nY /[G : NG(H)],
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if H ≥ X; here the sum extends over all Y ≤ Q which are conjugate to H/X.
b) For every non-degenerate RQ-module M and character relation {nH} of G

we have
δ∗R({nH}, ResQG(M)) = δ∗R(indQG({nH}),M),(2.21)

where the induced character relation indQG({nH}) = {nY/X}Y/X≤Q is defined by

nY/X =
∑
H

H·X=Y

nH .

In terms of the δ-invariant, equation (2.21) may be written as

δR(indQG({nH}),M) = εX({nH},M)δR({nH}, ResQG(M)),(2.22)

where εX is defined by

εX({nH},M) = ε(indQG({nH}),M)ε({nH}, ResQG(M))−1(2.23)

=
∏
H

|H ∩ X|nHrk(MH).

Actually, Theorems 2.12 and 2.14 are just two special cases of a theorem which
relates the δ-invariants of modules which are restricted and/or (co)induced via
an arbitrary group homomorphism f : G1 → G2; cf. Theorem 7.8 for a precise
statement.

As with restriction to subgroups, the process of inflation and quotient-induction
preserves character relations. Thus, if we use once more the fact that cyclic groups
have no non-trivial character relations, then we obtain from the above theorem
the following examples.

Example 2.15 a) If M is an R-module on which RG acts trivially, then we have

δR({nH},M) = δR({nH}, R)rk(M) =
∏
H

|H|−nHrk(M)R;(2.24)

this generalizes and gives another proof of (2.7).
b) If M = MX for some normal subgroup X�G with cyclic quotient Q = G/X,

then
δR({nH},M) = εX({nH},M)−1R.(2.25)

Corollary 2.16 If M is an RG-module which is a torsion module then

εX({nH},M) = 1,

and so equation (2.21) holds with δ∗ replaced by δ.
In particular, if M = MX is a torsion module which is invariant under a

normal subgroup X �G with a cyclic quotient G/X, then

δR({nH},M) = R.(2.26)
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Remark 2.17 This corollary applies in particular to the case that M = U(K)(p),
the p-primary component of the torsion subgroup of the unit group of a galois
extension K/K0 as in Theorem 2.7, provided that p > 2. Thus, in the notation
of Theorem 1.2 we obtain Brauer’s relation (i.e. the second equality in (1.4)) as a
special case: ∏

wp(KH)nH = 1, if p > 2.(2.27)

It is perhaps illuminating to compute the δ-invariant in some easy non-trivial
cases. Specifically, we shall prove the following result from which Dirichlet’s The-
orem follows immediately:

Proposition 2.18 Let G = Z/pZ × Z/pZ be the elementary abelian group of
order p2, and put n{1} = −1, nG = −p and nH = 1 for |H| = p. Then {nH} is a
character relation of G which is the only one up to integral multiples. Moreover:

a) Suppose M is a ZG-module which is a finite cyclic abelian group. Then
δ(M) := δZ({nH},M) = Z except in the case when G acts faithfully on the p-
primary subgroup M (p) ⊂ M . Moreover, in the exceptional case we have p = 2,
8 |m = |M | and δ(M) = 2Z.

b) If M is an RG-module such that G acts trivially on M = M/Mtor, then

δ(M) = p(p−1)rk(M)
∏
H

χ(M/MH)2nH δ(Mtor)−1.(2.28)

In particular, δ(R) = p(p−1)R.

c) Suppose M is a non-degenerate RG-module of rank 1 such that G acts non-
trivially on M . Then p = 2 and there is a unique subgroup X = 〈σ〉 ≤ G of order
2 such that M

X
= M . Moreover,

δ(M) = 1
2δ(Mtor)χ(M/(Mtor +MX))2(2.29)

= 2δ(Mtor)χ(Ĥ0(X,Mtor))2χ(Ĥ0(X,M))−2.

d) Suppose M is a non-degenerate ZG-module such that M is as in c) and Mtor

is as in a). In addition, assume that σ acts on Mtor by multiplication by −1 and
that 4 |m = |Mtor|. Then there is a unique subgroup Y ≤ G such that MY

4 = M4,
where M4 = {x ∈M : 4x = 0}, and we have

δ(Mtor)δ(M) = 2|Ĥ0(Y,M)|−2.(2.30)

Moreover, |Ĥ0(Y,M)| = 1 if there is an element x ∈M such that NY (x) generates
MY , and |Ĥ0(Y,M)| = 2 otherwise.
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3. Content ideals, relative invariants and
discriminants

The purpose of this section is to define and study the content ideal χ(f) attached
to an R-module homomorphism f : M → N . This invariant extends the notion of
a content ideal χ(T ) attached to a torsion module (cf. Bourbaki[BCA], ch. VII.4.5)
and reduces to the “q-invariant” q(f) of Tate[Ta] in the case that R = Z. We then
define the relative invariant χ(f, g) of two R-module homomorphisms f, g : M →
V ⊗K L which is a slight refinement and generalization of the relative invariant
χ(M1,M2) of Bourbaki[BCA], ch. VII.4.6, which is attached to two submodules
M1,M2 of a K-vector space V . This refinement will then be used to define the
discriminant of an L-valued bilinear R-module (M,h).

3.1. Content ideals. As before, R is a principal ideal domain, and all R-modules
are tacitly assumed to be finitely generated. If T is any torsion R-module, then
its content ideal χ(T ) is defined as the product

χ(T ) = µ1 · · ·µrR(3.1)

of its invariant factors µ1|µ2| · · · |µr. Alternatively, by the well-known formula
relating invariant factors to determinants, we can also define χ(T ) as the determi-
nant

χ(T ) = det(f) ·R,(3.2)

where
0→ Rn

f→ Rn → T → 0,(3.3)

is a presentation of T . From the latter definition it is immediate that we have the
formula

χ(Coker(f)) = det(f) ·R(3.4)

for every f ∈ EndR(Rn), provided we set χ(T ) = 0, if T is not a torsion R-module.
Furthermore, we see that the invariant χ(T ) agrees with that of Bourbaki[BCA],
ch. VII.4.5. In particular, it follows from [BCA] that χ(T ) is additive on exact
sequences, i.e. if

0→M1 →M2 →M3 → 0

is an exact sequence of R-modules then we have

χ(M2) = χ(M1) · χ(M3).(3.5)

We next want to define the content ideal χ(f) of an R-linear map f : M → N .
If f is an R-isogeny in the sense that Ker(f) and Coker(f) are torsion modules,
then its content ideal is the (fractional) R-ideal defined by

χ(f) = χR(f ;M,N) = χ(Coker(f)) · χ(Ker(f))−1.(3.6)



Discriminants of hermitian R[G]-modules 15

As above, it is useful to extend the symbol χ(f) to all f ∈ HomR(M,N) by setting
χ(f) = 0 whenever f is not an R-isogeny. We thus have by (3.2) that

χ(f) = det(f)R,(3.7)

if f ∈ EndR(M) and M is a free R-module. More generally, if M and N are free
R-modules with bases x1, . . . , xm and y1, . . . , yn, respectively, then we have

χ(f) = det(A)R,(3.8)

where A denotes the matrix of f with respect to these bases, and det(A) = 0 if
the matrix A is not square.

Remark 3.1 If R′ ⊃ R is a principal ideal domain which contains R and M is
an R-module, then the content ideal of the extended module M ⊗R R′ is given by
the formula

χR′(M ⊗R R′) = χR(M) ·R′(3.9)

because on the one hand M is a torsion R-module if and only if M⊗R′ is a torsion
R′-module and on the other hand the sequence (3.3) remains exact after tensoring
with R′. Thus, if f : M → N is an R-linear map, then the content ideal of the
extended map f ⊗R′ : M ⊗R R′ → N ⊗R R′ is given by

χR′(f ⊗R′) = χR(f) ·R′.(3.10)

The following “functorial” properties of the content ideal are easily verified (cf.
Tate[Ta], p. 58).

Proposition 3.2 If f : M1 → M2 and g : M2 → M3 are two R-module homo-
morphisms, then

χ(g ◦ f) = χ(g) · χ(f).(3.11)

Corollary 3.3 Let f : M1 → M2 be an R-module homomorphism and M ′i ⊂
Mi, (i = 1, 2) two R-submodules such that f(M ′1) ⊂ M ′2. Then, if f ′ = f|M ′1 :
M ′1 →M ′2 denotes the restriction of f to M ′1, we have

χ(f)χ(M1/M
′
1) = χ(f ′)χ(M2/M

′
2).(3.12)

Proposition 3.4 Let

0 → M1
f→ M2

g→ M3 → 0
↓ h1 ↓ h2 ↓ h3

0 → M ′1
f ′→ M ′2

g′→ M ′3 → 0

(3.13)

be a commutative diagram of R-homomorphisms with exact rows. Then we have

χ(h2) = χ(h1)χ(h3),(3.14)

except possibly in the case that neither Ker(h3) nor Coker(h1) are torsion mod-
ules. Furthermore, if any two of the hi’s are isogenies, then so is the third and
(3.14) holds.
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In the sequel it will often be convenient to treat the torsion and free part of a
module separately. To this end we introduce the following notation.

Notation 3.5 If M is an R-module, then Mtor ⊂M denotes its torsion submod-
ule and

πM : M →M = M/Mtor

the quotient map onto the quotient module M = M/Mtor. Furthermore, if f :
M → N is a homomorphism, then we let

ftor : Mtor → Ntor

f : M → N

denote the induced maps.

By applying Proposition 3.4 to the exact sequences induced by πM and πN , we
easily obtain the following formulae:

χ(f) = χ(ftor)χ(f)(3.15)
χ(ftor) = χ(Mtor)−1χ(Ntor)(3.16)
χ(f) = χ(f)χ(Mtor)χ(Ntor)−1(3.17)

In particular, if M ' N , then we have

χ(ftor) = R and χ(f) = χ(f).(3.18)

In what follows we will need to know the relation of the content ideal χ(f) of
a homomorphism f : M → N to that of its dual map f∗ : M∗ → N∗, where, as
before, M∗ = HomR(M,R).

Proposition 3.6 The content ideal χ(f∗) of the dual map is related to the content
ideal χ(f) of f : M → N by the formula

χ(f∗) = χ(f)χ(ftor)−1 = χ(f)χ(Mtor)χ(Ntor)−1.(3.19)

Proof. If M and N are free modules with bases x1, . . . xm, and y1, . . . yn, respec-
tively, and A denotes the matrix of f with respect to these bases, then the matrix
of f∗ with respect to the dual bases x∗i and y∗j is the transpose At. We thus have
by (3.8) that

χ(f) = det(A)R = det(At)R = χ(f∗),

which is (3.19) in this case.
In the general case we note that M

∗
= M∗, N

∗
= N∗ and f

∗
= f∗. Applying

the case just treated to f , we therefore have

χ(f∗) = χ(f∗) = χ(f) = χ(f)χ(Mtor)χ(Ntor)−1,

the latter equality resulting from (3.17). In view of (3.16), this proves (3.19).
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3.2. Relative invariants. As in the previous section, let L ⊃ K be an extension
field of K = Quot(R). As was indicated there, we shall be interested in R-
homomorphisms h : M → V , where V is a (finite dimensional) L-vector space.

Definition 3.7 An R-submodule M ⊂ V is called non-degenerate with respect
to L (or L-non-degenerate) if M has an R-module basis which is also an L-basis
of V . Since every (finitely generated) R-submodule M ⊂ V is free (because R
is a principal ideal domain), it follows that M is non-degenerate if and only if
LM = V and rankR(M) = dimL(V ). In particular, if L = K, then a non-
degenerate submodule M ⊂ V is just a lattice in the sense of Bourbaki[BCA],
VII.4.1.

If M is an R-module and f : M → V is R-linear, then f is said to be non-
degenerate (with respect to L) if f(M) is a non-degenerate submodule of V and
Ker(f) is a torsion module (and hence Ker(f) = Mtor).

Definition 3.8 If M1 and M2 are two non-degenerate submodules of V , then
their relative invariant is defined by

χ(M1,M2) = χR,L(M1,M2;V ) = det(α)R,(3.20)

where α ∈ AutL(V ) is any automorphism of V such that

α(M2) = M1.(3.21)

Furthermore, if fi : Mi → V , i = 1, 2 are two R-linear maps which are non-
degenerate, then their relative invariant is defined by

χ(f1, f2) = χ(f1, f2;V ) = χ((M1)tor)−1χ((M2)tor)χ(f1(M1), f2(M2)).(3.22)

Remark 3.9 a) Note that in the above definition the right hand side of (3.20) does
not depend on the choice of α, for if β is another choice satisfying (3.21), then β =
γ1 ◦α ◦ γ2 with γi ∈ AutR(Mi), and so detL(β)R = detR(γ1) detL(α) detR(γ2)R =
det(α)R since det(γi) ∈ R×. We thus see by [BCA], VII.4.6, equation (6), that
in the case that L = K the relative invariant χ(M1,M2) coincides with that of
Bourbaki.

b) The above Definition 3.8 may be extended to the case that M1 is degenerate
by observing that since M2 is non-degenerate, we can always find α ∈ EndL(V )
such that (3.21) holds, at least if rankR(M1) ≤ dim(V ) (see c) below). Thus
Definition 3.20 still makes sense (provided we set we set χ(M1,M2) = 0 when
rank(M1) > dim(V )), and we obtain

χ(M1,M2) = 0 ⇐⇒ M1 is degenerate.(3.23)

In a similar manner we can extend the symbol χ(f1, f2) to the case that f2 is
non-degenerate and f1 is arbitrary by setting

χ(f1, f2) = 0(3.24)
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whenever f1 is degenerate.

c) More explicitly, Definition 3.8 may be written as follows. Let x1, . . . , xm
and y1, . . . , yn be R-bases of the submodules M1 and M2, respectively. Since M2

is L-non-degenerate by hypothesis, we can find cij ∈ L such that

xi =
n∑
j=1

cijyj , for 1 ≤ i ≤ m,(3.25)

and so we have
χ(M1,M2) = det(cij)R,(3.26)

where we set det(C) = 0 if the matrix C is not square.

The following properties of the symbol χ(f1, f2) follow immediately from the
definitions:

χ(f2, f1) = χ(f1, f2)−1;(3.27)
χ(f1, f3) = χ(f1, f2)χ(f2, f3);(3.28)

χ(α ◦ f1, f2)) = det(α)χ(f1, f2);(3.29)

here, as before, the fi are non-degenerate R-linear maps to V and α ∈ AutL(V ) is
an automorphism. There are analogous properties for the symbol χ(M1,M2), but
we do not need these here.

The relative invariants are closely connected to the content ideals defined above.
To see this, suppose first that M1 and M2 are two non-degenerate submodules of
V with M1 ⊂M2. Since both have the same rank, the quotient module M2/M1 is
a torsion R-module and we have by comparing (3.4) with (3.20):

χ(M1,M2) = χ(M2/M1).(3.30)

More generally, if M1 and M2 are two non-degenerate submodules of V which
are commensurable in the sense that there exists a non-degenerate submodule
M ⊃M1 +M2 containing M1 and M2, then we have by (3.30) and (3.28):

χ(M1,M2) = χ(M/M1) · χ(M/M2)−1.(3.31)

Note that in this case M3 = M1∩M2 (as well as M1 +M2) is also non-degenerate,
and so we also have

χ(M1,M2) = χ(M1/M3)−1 · χ(M2/M3).(3.32)

From these formulae we see that if fi : Mi → V , i = 1, 2 are two non-degenerate
R-linear maps which are commensurable in the sense that M = f1(M1) + f2(M2)
is a non-degenerate submodule of V , then we have
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χ(f1, f2) = χ(f1;M1,M) · χ(f2;M2,M)−1,(3.33)

where we regard the fi as R-linear maps fi : Mi →M ⊂ V . In view of this formula,
which follows immediately from the definition (3.22) and from (3.31), many of the
properties of content ideals can be transferred to the relative invariants. For
example, if gi : Ni →Mi are R-isogenies, then by (3.11) and (3.33) we obtain the
formula

χ(f1 ◦ g1, f2 ◦ g2) = χ(g1)χ(g2)−1χ(f1, f2),(3.34)

at least when f1 and f2 are commensurable. However, this formula is easily ver-
ified to be correct in the general case. Indeed, since fi and fi ◦ gi are clearly
commensurable, we obtain by (3.28) and the proven case of (3.34) that

χ(f1 ◦ g1, f2 ◦ g2) = χ(f1 ◦ g1, f1)χ(f1, f2)χ(f2, f2 ◦ g2)
= χ(g1)χ(f1, f1)χ(f1, f2)χ(g2)−1χ(f2, f2)
= χ(g1)χ(g2)−1χ(f1, f2),

which proves (3.34) in general. Note that this formula continues to be true if we
drop the condition that f1 be an isogeny.

3.3. Discriminants of bilinear R-modules. Recall from the previous section
that an L-valued, bilinear R-module is a pair (M,h) consisting of an R-module M
and an R-linear map

h : M →M∗ ⊗ L = HomR(M,L).

We can also describe h by its associated bilinear map

βh : M ×M → L

which is given by the formula

βh(x, y) = h(x)(y),(3.35)

for βh and h determine each other via the formula (3.35). (Usually h = β̂ is called
the adjoint map of β = βh.) If no confusion results, then we will just write

h(x, y) = βh(x, y).

Definition 3.10 The discriminant of an L-valued bilinear R-module (M,h) is
defined as the relative invariant

discR,L(M,h) = χ(h, jM,L;V )(3.36)

where
jM,L = idM∗ ⊗ L : M∗ → V = M∗ ⊗ L
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denotes the canonical map jM,L(m) = m ⊗ 1. Note that j is trivially non-
degenerate (in the sense of Definition 3.7), so this relative invariant is always
defined.

Remark 3.11 a) If M = M is a free R-module with basis x1, . . . , xn, then its
discriminant is given by the determinant of the associated Gram matrix, i.e. we
have the formula

disc(M,h) = det(h(xi, xj)) ·R,(3.37)

which is the usual definition of the discriminant. To see this, note that if we let
x∗1, . . . , x

∗
n ∈M∗ denote the dual basis of x1, . . . , xn, then x∗1 ⊗ 1, . . . , x∗n ⊗ 1 is an

R-module basis of M2 = j(M∗) ⊂ V = M∗ ⊗ L and we have

h(xi) =
n∑
j=1

h(xi, xj)x∗j ⊗ 1.

Thus, if h(x1), . . . , h(xn) is a basis of M1 = h(M), then (3.37) follows from (3.26).
On the other hand, if h(x1), . . . , h(xn) are linearly dependent, then we have

det(h(xi, xj)) = 0 = disc(M,h),

where the latter equality holds by definition since M1 is degenerate, and so (3.37)
holds in all cases.

b) For an arbitrary bilinear R-module (M,h) we have

disc(M,h) = χ(Mtor)−1disc(M,h),(3.38)

where h : M → M
∗ ⊗ L = M∗ ⊗ L denotes the induced map (cf. Notation 3.5).

This is true because we have h = h ◦ πM and jM,L = jM,L and so we obtain from
(3.34) that disc(M,h) = χ(h, jM,L) = χ(πM )χ(h, jM,L) = χ(Mtor)−1disc(M,h).

c) It is natural to call (M,h) non-degenerate if h : M → M∗ ⊗ L has this
property. We then have by Remark 3.9b):

(M,h) is non-degenerate ⇐⇒ disc(M,h) 6= 0.

For future reference, let us note that discriminants are compatible with base-
change:

Proposition 3.12 Let L′ ⊃ L be an extension field of L and let R′ be a principal
ideal domain with R ⊂ R′ ⊂ L′. Then for any bilinear R-module (M,h) we have

discR′,L′(M ⊗R R′, h⊗R′) = discR,L(M,h) ·R′.(3.39)
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Proof. Write M ′ = M ⊗ R′. By flatness we have that M ′tor = Mtor ⊗ R′ , and so
we obtain from Remark 3.1 that

χ(M ′tor) = χ(M) ·R′.

Furthermore, since M
′

= M ⊗R′, it follows from (3.37) that

discR′L′(M ′, h⊗R′) = discR,L(M,h) ·R′,

and so the assertion follows in view of (3.38).

Corollary 3.13 For any bilinear R-module (M,h) we have

discR,L(M,h) =
⋂
p

discRp,L(Mp, hp),(3.40)

where the intersection is over all non-zero prime ideals p of R.

Proof. We have

discR,L(M,h) =
⋂
discR,L(M,h) ·Rp =

⋂
discRp,L(Mp, hp),

where the latter follows from (3.39).

There are various operations that can be performed on bilinear R-modules
(M,h). These will now be considered in turn and their effect on discriminants
determined.

The first of these is twisting an L-valued bilinear module (M,h) by an auto-
morphism α ∈ AutL(M∗ ⊗ L):

α · (M,h) = (M,αh) = (M,α ◦ h).(3.41)

A special case of this is the case that α = c · id is multiplication by an element
c ∈ L; in this case we shall also write

(M,h)(c) = (c · id)(M,h).

By formula (3.29) we have:

disc(M,αh) = det(α)disc(M,h);(3.42)

in particular,

disc((M,h)(c)) = disc((M, ch)) = crk(M)disc(M,h), if c ∈ L.(3.43)
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Another operation is the pullback of (M,h) with respect to two R-linear maps
f, g ∈ HomR(N,M); it is defined by

(f, g)∗(M,h) = (N, (g∗ ⊗ L) ◦ h ◦ f).(3.44)

Thus, the associated bilinear maps are related by the formula

βh′ = βh ◦ (f × g),(3.45)

where h′ = (g∗ ⊗ L) ◦ h ◦ f . If f = g then we shall write

f#(M,h) = (N, f#h) = (f, f)∗(M,h).(3.46)

Proposition 3.14 If dim(M ⊗K) = dim(N ⊗K), then we have

disc((f, g)∗(M,h)) = χ(f)χ(g∗)disc(M,h)(3.47)
= χ(f)χ(g)χ(Ntor)χ(Mtor)−1disc(M,h).

Proof. Since the second formula follows directly from Proposition 3.6, it is enough
to verify the first. Here we have by definition and (3.34)

disc((f, g)∗(M,h)) = χ((g∗ ⊗ L) ◦ h ◦ f, jN,L) = χ(f)χ((g∗ ⊗ L) ◦ h, jN,L).

Now if g is not an isogeny, then neither is g∗, and hence (g∗⊗L) ◦ h is degenerate
because dim(M∗ ⊗ L) = dim(N∗ ⊗ L). Thus, both sides of (3.47) are zero in this
case, and so we may assume henceforth that g is an isogeny. Then (g∗⊗L)◦jM,L =
jN,L ◦ g∗ : M∗ → N∗ ⊗ L is non-degenerate, so we have by (3.28) and (3.34)

χ((g∗ ⊗ L) ◦ h, jN,L) = χ((g∗ ⊗ L) ◦ h, (g∗ ⊗ L) ◦ jM,L)χ(jN,L ◦ g∗, jN,L)
= χ(h, jM,L)χ(g∗),

and hence the formula follows.

Corollary 3.15 If (M,h) is a bilinear R-module and M ′ ⊂M is a submodule of
finite index (i.e. M ′ ⊗K = M ⊗K), then

disc(M ′, h|M ′) = χ(M/M ′)2χ(Mtor)−1χ(M ′tor)disc(M,h).(3.48)

Proof. This follows from (3.47) by taking f = g : M ′ → M as the inclusion map;
recall that then χ(f) = χ(M/M ′) by definition.

The last operations which we consider here are the direct sum and tensor prod-
uct of two bilinear R-modules (M1, h1) and (M2, h2). These are defined by the
formulae

(M1, h1)⊕ (M2, h2) = (M1 ⊕M2, h1 ⊕ h2)(3.49)
(M1, h1)⊗ (M2, h2) = (M1 ⊗M2, h1 ⊗ h2),(3.50)
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where the maps h1 ⊕ h2 and h1 ⊗ h2 are the compositions

M1 ⊕M2
h1⊕h2→ (M∗1 ⊗ L)⊕ (M∗2 ⊗ L)

ρ→ (M1 ⊕M2)∗ ⊗ L,(3.51)

M1 ⊗M2
h1⊗h2→ (M∗1 ⊗ L)⊗ (M∗2 ⊗ L)

µ→ (M1 ⊗M2)∗ ⊗ L,(3.52)

where ρ : M∗1 ⊕M∗2 → (M1 ⊕M2)∗ and µ : M∗1 ⊗M∗2 → (M1 ⊗M2)∗ are the
canonical maps (cf. Bourbaki[BA], II.2.6 and II.4.4). Thus, for their associated
bilinear forms we have:

βh1⊕h2(x1 ⊕ x2, y1 ⊕ y2) = βh1(x1, y1) + βh2(x2, y2)(3.53)
βh1⊗h2(x1 ⊗ x2, y1 ⊗ y2) = βh1(x1, y1) · βh2(x2, y2).(3.54)

Proposition 3.16 We have

disc((M1, h1)⊕ (M2, h2)) = disc(M1, h1) · disc(M2, h2),(3.55)
disc((M1, h1)⊗ (M2, h2)) =(3.56)

χ((M1)tor ⊗ (M2)tor)−1disc(M1, h1)d2 · disc(M2, h2)d1 ,

where di = dimK(Mi ⊗K).

Proof. If M1 and M2 are free R-modules, then the discriminants are the de-
terminants of the corresponding Gram matrices and hence these formulae follow
from the usual identities for determinant of a direct sum (respectively, of a tensor
product) of matrices.

Now let M1 and M2 be arbitrary. Then (M1 ⊕M2)tor = (M1)tor ⊕ (M2)tor so
χ((M1 ⊕M2)tor) = χ((M1)tor) · χ((M2)tor) and hence the first equation follows.

Next, since Mi ' (Mi)tor ⊕M i we have

(M1 ⊗M2)tor = ((M1)tor ⊗ (M2)tor)⊕ (M1 ⊗ (M2)tor)⊕ ((M1)tor ⊗M2)
' ((M1)tor ⊗ (M2)tor)⊕ ((M1)tor)rkM2 ⊕ ((M2)tor)rkM1 ,

and so

disc(M1 ⊗M2) = χ((M1 ⊗M2)tor)−1disc(M1 ⊗M2)
= χ((M1)tor⊗(M2)tor)−1 ·χ((M1)tor))−d2 ·χ((M2)tor)−d1 ·disc(M1)d2 ·disc(M2)d1

= χ((M1)tor ⊗ (M2)tor)−1disc(M1)d2disc(M2)d1 ,

which proves the second equation.

Corollary 3.17 If (M1, h1) and (M2, h2) are non-degenerate bilinear R-modules,
then so are (M1, h1)⊕ (M2, h2) and (M1, h1)⊗ (M2, h2).

Proof. In view of Remark 3.11c), the hypothesis means that disc(Mi, hi) 6= 0,
for i = 1, 2. By formula (3.55), respectively (3.56), we see that disc((M1, h1) ⊕
(M2, h2)) 6= 0, respectively disc((M1, h1) ⊗ (M2, h2)) 6= 0, and so (M1, h1) ⊕
(M2, h2) and (M1, h1)⊗ (M2, h2) are non-degenerate by Remark 3.11c) again.
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4. Induced hermitian R[G]-modules

In this section we shall review the definition of a hermitian RG-module and study
the processes of (co)induction and restriction. In particular, we shall formulate
and prove several versions of a (generalized) Frobenius reciprocity theorem for
hermitian RG-modules.

4.1. Hermitian RG-modules. Recall from section 2 that an L-valued, hermi-
tian RG-module is a bilinear R-module (M,h) such that M is a left RG-module
and h : M → M∗ ⊗ L is RG-linear. In terms of the associated bilinear map βh,
the RG-linearity is equivalent to the G-equivariance condition

βh(gm, gm′) = βh(m,m′),∀g ∈ G, m,m′ ∈M.(4.1)

The above use of the adjective “hermitian”, which follows in part that of
Scharlau[Sch], p. 244, is justified by the fact that h is essentially a sesquilinear
RG-module homomorphism with respect to the canonical involution ∗ on RG
given by

(
∑
g∈G

agg)∗ =
∑
g∈G

agg
−1.

More generally, if ∗ is any involution on R which extends to one on L, then it
can be extended to one on RG and we can define hermitian RG-modules relative
to this involution. It is easily checked that all the results below readily extend to
this more general situation. However, since all the applications only use the case
∗ = idR (and since the general case is more awkward to state) we restrict attention
to this situation.

The following example will play a major role in the applications to character
relations (cf. section 7).

Example 4.1 Permutation modules.
Let S be a finite set on which G acts from the left, and let

R[S] =
⊕
s∈S

Rs

denote the associated permutation module. Then M = R[S] comes equipped with
a natural hermitian RG-module structure hS : M →M∗ defined by

hS(s) = s∗, for all s ∈ S,(4.2)

where {s∗} denotes the dual basis of M∗ with respect to {s}s∈S . It is clear that
(R[S], hS) is a unimodular hermitian RG-module in the sense that hS : R[S] →
R[S]∗ is an RG-isomorphism. Note that if we take S = {s}, a singleton, then we
obtain the trivial hermitian RG-module (R, id) = (R[S], hS) as a special case.
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It should also be remarked that the hermitianRG-module (R[S], hS) is uniquely
determined by the G-set S, for each G-set isomorphism S ' S′ extends uniquely
to an RG-isometry (R[S], hS) ' (R[S′], hS′).

It is immediate that the operations on bilinear R-modules which were intro-
duced in the previous section readily extend to RG-modules. For the twisting, di-
rect sum and tensor product operations no further assumptions are necessary but
for the pullback we need to assume that the homomorphisms f, g ∈ HomR(N,M)
are actually RG-linear so that (f, g)∗(M,h) is again a hermitian RG-module.

4.2. Restriction and Induction. We now turn to operations on hermitian
RG-modules which result from changing the group.

Definition 4.2 Let f : G1 → G2 be a group homomorphism.
a) If (M2, h2) is a hermitian RG2-module, then its restriction is defined as

Resf (M2, h2) = (M2, h2),

where we view M2 as an RG1-module via f . Then h2 is automatically RG1-linear,
so Resf (M2, h2) is a hermitian RG1-module.

b) If (M1, h1) is a hermitian RG1-module, then the induced hermitian RG2-
module

Indf (M1, h1) = (Indf (M1), indf (h1))

is defined as follows. The underlying RG2-module is

Indf (M1) = RG2 ⊗RG1 M1,

which is endowed with the hermitian structure indf (h1) defined by the formula

indf (h1)(g2 ⊗m, g′2 ⊗m′) = h1(ρf (g2, g
′
2)m,m′),(4.3)

where g2, g
′
2 ∈ G2,m,m

′ ∈M1 and where ρf : RG2×RG2 → RG1 is the R-bilinear
map defined by

ρf (g2, g
′
2) =

∑
g1∈f−1(g′−1

2 g2)

g1, for g2, g
′
2 ∈ G2.(4.4)

If the homomorphism f : G1 → G2 is clear from the context, then we shall also
write ResG2

G1
(M2, h2) = Resf (M2, h2) and IndG2

G1
(M1, h1) = Indf (M1, h1).

Remark 4.3 a) The fact that the above formula (4.3) actually defines a (unique)
hermitian structure h2 = indf (h1) on M2 = Indf (M1) requires some justification.
To this end, we first observe that the function ρf satisfies the following properties:

ρf (g2f(g1), g′2) = ρf (g2, g
′
2)g1,(4.5)

ρf (g2, g
′
2f(g1)) = g−1

1 ρf (g2, g
′
2),(4.6)

ρf (gg2, gg
′
2) = ρf (g2, g

′
2),(4.7)
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where g1 ∈ G1 and g, g2, g
′
2 ∈ G2.

From the first two properties and the fact that h1 is RG1-linear it follows that
the function

h̃2(g2,m, g
′
2,m

′) = h1(ρf (g2, g
′
2)m,m′)

on RG2 ×M ×RG2 ×M satisfies

h̃2(g2f(g1),m, g′2,m
′) = h̃2(g2, g1m, g

′
2,m

′),(4.8)
h̃2(g2,m, g

′
2f(g1),m′) = h̃2(g2,m, g

′
2, g1m

′),(4.9)

and hence induces a unique function h2 on (RG2⊗RG1 M)× (RG2⊗RG1 M) which
satisfies (4.3). Furthermore, the third property shows that h2 is G2-equivariant.

b) The above formula (4.3) defines the hermitian structure on Indf (M) in
terms of its associated bilinear form. However, it is not difficult to write down the
hermitian structure h2 = indf (h1) : M2 = RG2 ⊗RG1 M1 → M∗2 ⊗ L directly; in
fact, we clearly have

indf (h1) = ρf,M1 ⊗ L ◦ idRG2 ⊗ h1,(4.10)

where the map
ρf,M1 : RG2 ⊗M∗1 → (RG2 ⊗M)∗

is defined by the rule

ρf,M1(g2⊗m∗)(g′2⊗m′) = ρf (g2, g
′
2)m∗(m′) =

∑
g1∈f−1(g′−1

2 g2)

m∗(g−1
1 m′);(4.11)

here, g2, g
′
2 ∈ G2,m

′ ∈ M and m∗ ∈ M∗. Note that properties (4.5) and (4.6)
guarantee that ρf,M1 is well-defined and (4.7) shows that it is RG2-linear.

For later reference, let us also observe that the rule

φ(g′ ⊗m)(g) = ρf (g′, g−1)m,(4.12)

where g, g′ ∈ G2,m ∈M , defines by properties (4.5) – (4.7) an RG2-linear map

φ = φf,M : RG2 ⊗RG1 M → HomRG1(RG2,M).

Example 4.4 a) Let H ≤ G be a subgroup, and let f : H → G denote the
inclusion map. If (M,h) is a hermitian RH-module, then its induced hermitian
RG-module is IndGH(M,h) = (IndGH(M), indGH(h)), where IndGH(M) = RG⊗RHM
denotes the usual induced module and h′ = indGH(h) is given by the formula

h′(
∑
g ⊗mg,

∑
g ⊗m′g) =

∑
h(mg,m

′
g),(4.13)

where all sums are over a system T = {gt}t∈T ⊂ G of left coset representatives of
G/H. This follows immediately from (4.3) since we have

ρf (gt, gs) = δ(gt, gs)
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for gt, gs ∈ T . Note that in this case the map

ρf,M : Ind(M∗)→ (Ind(M))∗

is the same as that defined by [CR1], Proposition (10.28), and is therefor an
isomorphism if M is torsionfree.

b) Let S = G/H denote the left coset space of G with respect to H ≤ G. Then
with the notation of Example 4.1 we have by (4.13) that

(R[S], hS) = IndGH(R, id).(4.14)

More generally, for any G-set S we have

(R[S], hS) =
⊕
s∈G\S

IndGGs(R, id),(4.15)

where Gs = {g ∈ G : gs = s} denotes the stabilizer of s ∈ S.
c) Let f : G1 = G → G2 = {1} denote the trivial map, and let (M,h) be a

hermitian RG-module. Then

Indf (M) = R⊗RGM = H0(G,M) = MG = M/DGM(4.16)

is the 0-th homology module of M , where DGM is the submodule of M generated
by the elements gm−m, g ∈ G; cf. Serre[Se], ch. VII.4. The hermitian structure
on H0(G,M) = M/DGM is given by

hG(m,m′) = h(NGm,m′), for m,m′ ∈M,(4.17)

where NG =
∑
g∈G g = ρf (1).

In the sequel we shall denote this example by

H0(G, (M,h)) = (MG, hG) = Indf (M,h).(4.18)

Proposition 4.5 Let f : G1 → G2 be an injective group homomorphism, and let
(Mi, hi) be a hermitian RGi-module for i = 1, 2. Then there is a natural isometry

Indf ((M1, h1)⊗R Resf (M2, h2)) ' (Indf (M1, h1))⊗R (M2, h2).(4.19)

Proof. Fix a system T of left coset representatives of G/Im(f), and consider the
R-linear map

ϕ = ϕT : RG2 ⊗RG1 (M1 ⊗RM2)→ (RG2 ⊗RG1 M1)⊗RM2

defined by ϕ(t ⊗ (m1 ⊗m2)) = (t ⊗m1) ⊗ tm2, where t ∈ T , mi ∈ Mi, i = 1, 2;
such a map exists and is in fact an isomorphism of R-modules because

RG2 ⊗RG1 (M1 ⊗RM2) =
⊕
t∈T

t⊗ (M1 ⊗RM2),

(RG2 ⊗RG1 M1)⊗RM2 =
⊕
t∈T

(t⊗M1)⊗RM2.
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By a calculation as in [Hu], p. 60, one checks that ϕ is RG2-linear, and hence
is an isomorphism of RG2-modules. To check that it is also an isometry, let
t, t′ ∈ T , mi,m

′
i ∈ Mi. Then, using the fact that ρf (t, t′) = δ(t, t′) = 0 or 1, we

obtain:

(indf (h1)⊗ h2)(ϕ(t⊗ (m1 ⊗m2)), ϕ(t′ ⊗ (m′1 ⊗m′2)))
= (indf (h1)⊗ h2)((t⊗m1)⊗ tm2, (t′ ⊗m′1)⊗ t′m′2)
= indf (t⊗m1, t

′ ⊗m′1) · h2(tm2, t
′m′2)

= h1(ρf (g, g′)m1,m
′
1) · h2(m2,m

′
2)

= (h1 ⊗ h2)(ρf (t, t′)(m1 ⊗m2),m′1 ⊗m′2)
= indf (h1 ⊗ h2)(t⊗ (m1 ⊗m2), t′ ⊗ (m′1 ⊗m′2)),

which proves that ϕ is an isometry.

The process of induction is functorial in the following sense.

Proposition 4.6 Let f1 : G1 → G2 and f2 : G2 → G3 be two group homomor-
phisms, and let (M1, h1) be a hermitian RG1-module. Then there is a natural
isometry

Indf2◦f1(M1, h1) ' Indf2(Indf1(M1, h1)).

Proof. Consider the map

ψ : RG3 ⊗RG2 (RG2 ⊗RG1 M)→ RG3 ⊗RG1 M

defined by ψ(g3 ⊗ (g2 ⊗ m)) = g3f2(g2) ⊗ m, which is clearly an isomorphism
of RG3-modules. To see that it is an isometry, we first note that the following
identity holds:

ρf2◦f1(g3f2(g2), g′3f2(g′2)) = ρf1(ρf2(g3, g
′
3)g2, g

′
2).(4.20)

Using this, we obtain

indf2◦f1(h1)(ψ(g3 ⊗ (g2 ⊗m)), ψ(g′3 ⊗ (g′2 ⊗m′)))
= indf2◦f1(h1)(g3f2(g2)⊗m, g′3f2(g′2)⊗m′)
= h1(ρ(g3f2(g2), g′3f2(g′2))m,m′)
= h1(ρf1(ρf2(g3, g

′
3)g2, g

′
2)m,m′)

= indf1(h1)(ρf1(g3, g
′
3)(g2 ⊗m), g′2 ⊗m′)

= indf2(indf1(h1))(g3 ⊗ (g2 ⊗m), g′3 ⊗ (g′2 ⊗m′)),

which shows that ψ is an isometry.

Corollary 4.7 Let f : G1 → G2 be an injective group homomorphism and let
(Mi, hi) be a hermitian RGi-module. Then there is an isometry

H0(G2, Indf (M1, h1)⊗ (M2, h2)) ' H0(G1, (M1, h1)⊗Resf (M2, h2)).(4.21)
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Proof. Let f ′ : G2 → G3 = {1} denote the trivial map ofG2. Then f ′◦f : G1 → G3

is the trivial map of G1, so we have by Propositions 4.5 and 4.6 (and Example
4.4c))

H0(G1, (M1, h1)⊗Resf (M2, h2)) = Indf ′◦f ((M1, h1)⊗Resf (M2, h2))
' Indf ′(Indf ((M1, h1)⊗Resf (M2, h2))
' Indf ′(Indf (M1, h1)⊗ (M2, h2))
= H0(G2, (Indf (M1, h1)⊗ (M2, h2))).

The above Corollary 4.7 may be viewed as a (primitive) version of Frobenius
Reciprocity, for over a field R = K one can easily deduce the usual reciprocity
theorem by taking dimensions of the underlying vector spaces. For our purposes,
however, this version is not so useful because the applications require the module

H0(G,M) = MG = invG(M)(4.22)

of G-invariants of M in place of H0(G,M). Over a field R = K these two modules
are the same, but in general they are only connected by the exact sequence

0→ Ĥ−1(G,M)→ H0(G,M) N̄G→ H0(G,M)→ Ĥ0(G,M)→ 0,(4.23)

where N̄G is the map induced by the endomorphism m → NGm of M , and the
Ĥq denote the Tate cohomology groups.

Notation 4.8 If (M,h) is a hermitian RG-module, then, as in section 2, we shall
endow the module H0(G,M) = InvG(M) with the hermitian structure

invG(h)(m,m′) = 1
|G|h(m,m′).(4.24)

The resulting bilinear R-module is denoted by

H0(G, (M,h)) = InvG(M,h) = (InvG(M), invG(h)).

Remark 4.9 The normalization in (4.24) has been chosen so that the hermitian
structure on H0(G,M) pulls back to that on H0(G,M) via N̄G:

N̄#
G (H0(G, (M,h))) = H0(G, (M,h)).(4.25)

This follows immediately from formula (4.17) because by the G-equivariance of h
we have

invG(h)(NGm,NGm′) =
1
|G|

∑
g∈G

h(NGm, gm′) = h(NGm,m′).

4.3. Coinduction. We had seen above that the bilinear module H0(G, (M,h)) is
a special case of the general construction of induced modules. In a similar manner,
the “dual” module H0(G, (M,h)) is a special case of the dual construction of
coinduced modules which we introduce now.
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Definition 4.10 Let f : G1 → G2 be a homomorphism of groups, and let (M1, h1)
be a hermitian RG1-module. Then the coinduced hermitian RG2-module

Coindf (M1, h1) = (Coindf (M1), coindf (h1))

is defined as follows. The underlying RG2-module is

Coindf (M1) = HomRG1(RG2,M1),

which is endowed with the hermitian structure coindf (h1) defined by the formula

coindf (h1)(f1, f2) =
1
|G1|

∑
g2∈G2

h1(f1(g2), f2(g2)),(4.26)

where f1, f2 ∈ HomRG1(RG2,M1).

Remark 4.11 a) The above bilinear form coindf (h1) is G2-equivariant because

coindf (h1)(g2f1, g2f2) =
1
|G1|

∑
g∈G2

h1((g2f1)(g), (g2f2)(g))

=
1
|G1|

∑
g∈G2

h1(f1(gg2), f2(gg2))

=
1
|G1|

∑
g′∈G2

h1(f1(g′), f2(g′))

= coindf (h1)(f1, f2).

b) Let G2 =
⋃
i∈I Im(f)gi be a decomposition of G2 into (left) cosets of

Im(f)\G2. Then by the G1-equivariance of h1 we have

coindf (h1)(f1, f2) =
1

|Ker(f)|
∑
i∈I

h1(f1(gi), f2(gi)).(4.27)

The coinduced modules are related to the induced RG-modules Indf (M,h)
and to the invariant modules H0(G, (M,h)) in the following way.

Proposition 4.12 a) If f : G1 → G2 is injective, then there is an isometry of
RG2-modules:

Coindf (M1, h1) ' Indf (M1, h1).(4.28)
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b) If f : G1 → G2 is surjective, then there is an isometry of RG2-modules:

Coindf (M1, h1) ' H0(Ker(f), (M1, h1)).(4.29)

Proof. a) Fix a system of (right) coset representatives of G2/Im(f), say G2 =⋃
i∈I giIm(f), and define

φ′ : HomRG1(RG2,M1)→ RG2 ⊗RG1 M1

by φ′(t) =
∑
i∈I gi ⊗ t(g

−1
i ). It is easy to see that φ′ = φ−1

f,M1
is the inverse of the

map constructed in Remark 4.3b) and hence is an isomorphism of RG2-modules.
It thus remains to show that φ′ is an isometry. If t, s ∈ HomRG1(RG2,M1) then

indf (h1)(φ′(t), φ′(s)) = indf (h1)

(∑
i∈I

gi ⊗ t(g−1
i ),

∑
i∈I

gi ⊗ s(g−1
i )

)
=

∑
i∈I

h1(t(g−1
i ), s(g−1

i )) = coindf (h1)(t, s)

by (4.13) and by formula (4.27) above since {g−1
i }i∈I is system of left coset repre-

sentatives of Im(f)\G2. Thus φ′ is an isometry.

b) Put N = Ker(f), and define

ψ : HomRG1(RG2,M1)→ InvN (M1) = H0(N,M1)

by ψ(t) = t(1). If we view InvN (M1) as a G2-module via the rule f(g1)m = g1m
for g1 ∈ G1 and m ∈ InvN (M1), then ψ is an RG2-module homomorphism because
ψ(f(g1)t) = (f(g1)t)(1) = t(f(g1)) = g1t(1) = g1ψ(t) = f(g1) · ψ(t).

It is immediate that ψ is injective because if ψ(t) = 0, then t(1) = 0 and then
t(f(g1)) = g1t(1) = 0, so t = 0. Moreover, ψ is surjective: if m ∈ InvN (M1),
then define t ∈ HomR(RG2,M1) by t(f(g1)) = g1m. Note that since M is N -
invariant, t is well-defined. Now t(f(g1)f(g′1)) = g1g

′
1m = g1t(f(g′1)), so t ∈

HomRG1(RG2,M1), and hence ψ is surjective.
It remains to prove that ψ is an isometry. If s, t ∈ HomRG1(RG2,M1), then

invN (h1)(ψ(s), ψ(t)) = 1
|N |h1(ψ(s), ψ(t)) = 1

|N |h1(s(1), t(1)) = coindf (h1)(s, t)

by formula (4.27), and so ψ is an isometry.

Just like induction, the process of coinduction enjoys the following functoriality
property.

Proposition 4.13 Let f1 : G1 → G2 and f2 : G2 → G3 be two group homomor-
phisms, and let (M1, h1) be an hermitian RG1-module. Then there is an isometry
of hermitian RG3-modules:

Coindf2(Coindf1(M1, h1)) ' Coindf2◦f1(M1, h1).
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Proof. Define

σ : HomRG2(RG3,HomRG1(RG2,M1))→ HomRG1(RG3,M1)

by σ(t)(g3) = t(g3)(1). It is easy to see that σ is an isomorphism of RG3-modules;
cf. Cartan-Eilenberg[CE], pp. 28-29, using the identification RG3 ⊗RG2 RG2 '
RG3.

To prove that σ is an isometry, let s, t ∈ HomRG2(RG3,HomRG1(RG2,M1)).
Then the RG2-linearity means that t(f2(g′2)g3) = g′2t(g3), if g′2 ∈ G2 and g3 ∈ RG3,
so

t(f2(g′2)g3)(g2) = g′2t(g3)(g2) = t(g3)(g2g
′
2),

and similarly for s in place of t. Thus we have

coindf2(coindf1(h1))(s, t) =
1
|G2|

∑
g3∈G3

coindf1(h1)(s(g3), t(g3))

=
1
|G2|

∑
g3∈G3

1
|G1|

∑
g2∈G2

h1(s(g3)(g2), t(g3)(g2))

=
1
|G2|

∑
g3∈G3

1
|G1|

∑
g2∈G2

h1(s(f2(g2)g3)(1), t(f2(g2)g3)(1))

=
1
|G2|

∑
g2∈G2

1
|G1|

∑
g3∈G3

h1(s(f2(g2)g3)(1), t(f2(g2)g3)(1))

=
1
|G2|

∑
g2∈G2

1
|G1|

∑
g′3∈G3

h1(s(g′3)(1), t(g′3)(1))

=
1
|G1|

∑
g3∈G3

h1(s(g3)(1), t(g3)(1))

= coindf2◦f1(h1)(σ(s), σ(t)),

which proves that σ is an isometry.

Corollary 4.14 If f : G1 → G2 is a group homomorphism and (M1, h1) is a
hermitian RG1-module, then there is an isometry

H0(G2, Coindf (M1, h1)) ' H0(G1, (M1, h1)).

Furthermore, if f is injective then we also have an isometry

H0(G2, Indf (M1, h1)) ' H0(G1, (M1, h1)).

Proof. The first assertion follows by taking f1 = f and G3 = {1} in Proposi-
tion 4.13 (cf. proof of Corollary 4.7), and the second follows from the first by
Proposition 4.12a).

As we shall see below, the following result will be useful when working with
permutation modules:
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Corollary 4.15 Let f : G1 → G2 be a group homomorphism and let X ≤ G1 be
a subgroup of G1. If k = |X ∩Ker(f)|−1 · 1R, then there is an isometry between
the coinduced hermitian permutation module attached to G1/X and the k-twist of
the hermitian permutation module attached to G2/f(X):

Coindf (R[G1/X], hG1/X) ' (R[G2/f(X)], hG2/f(X))(k)(4.30)

Proof. Let g = f|X : X → Y = f(X) denote the restriction of f to X. Since
f ◦ iX = iY ◦ g, where iX : X → G1 and iY : Y → G2 denote the inclusion maps,
we obtain by Proposition 4.13 an isometry

Coindf (CoindG1
X (R, id)) ' CoindG2

Y (Coindg(R, id)).(4.31)

By Proposition 4.12a) and Example 4.4b) we have on the one hand that

CoindG1
X (R, id) ' IndG1

X (R, id) = (R[G1/X], hG1/X);(4.32)

on the other hand we obtain from Proposition 4.12b) that

Coindg(R, id) = H0(Ker(g), (R, id)) = (R, id)(k),

because |Ker(g)| = 1
k . It thus follows that

CoindG2
Y (Coindg(R, id)) ' IndG2

Y (R, id)(k) = (R[G2/f(X)], hG2/f(X))(k).

Substituting this and (4.32) in (4.31) yields the isometry (4.30).

4.4. Frobenius Reciprocity. We are now ready to prove the following version
of Frobenius Reciprocity for hermitian RG-modules.

Theorem 4.16 (Frobenius Reciprocity) Let X ≤ G be a subgroup of G and
let (M ′, h′) be a hermitian RX-module. Then for any hermitian RG-module (M,h)
there is an isometry of bilinear R-modules

H0(G, IndGX(M ′, h′)⊗ (M,h)) ' H0(X, (M ′, h′)⊗ResGX(M,h)).

Proof. By Proposition 4.5 and Corollary 4.14 we have

H0(G, IndGX(M ′, h′)⊗ (M,h)) ' H0(G, IndGX((M ′, h′)⊗ResGX(M,h)))
' H0(X, (M ′, h′)⊗ResGX(M,h)).

Corollary 4.17 If S is a finite G-set and (M,h) is a hermitian RG-module, then
we have an R-isometry

H0(G, (R[S], hS)⊗ (M,h)) '
⊕
s∈G\S

H0(Gs, (M,h)),

where Gs = {g ∈ G : gs = s} denotes the stabilizer subgroup of s ∈ S.
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Proof. By additivity it is enough to consider the case S = G/X, where X ≤ G
is a subgroup. By Example 4.4b) we have in this case (R[S], hS) = IndGX(R, id),
and so the assertion follows by taking (M ′, h′) = (R, id) in Theorem 4.14.

For hermitian RG-lattices, there is a more general Frobenius reciprocity theo-
rem available. This is based on the following analogue of Proposition 4.5:

Proposition 4.18 Let f : G1 → G2 be a group homomorphism, and let (Mi, hi)
be a hermitian RGi-module for i = 1, 2. If M2 is R-torsionfree (i.e. an RG2-
lattice) or if |Ker(f)| is invertible in R, then there is a canonical isometry

Coindf (M1, h1)⊗ (M2, h2) ' Coindf ((M1, h1)⊗Resf (M2, h2)).(4.33)

In order to prove this proposition it will be convenient to isolate the con-
struction of the desired RG2-module homomorphism which is compatible with the
hermitian structures. Subsequently we shall investigate when it is an isometry.

Lemma 4.19 If f : G1 → G2 is a group homomorphism and (Mi, hi) is a hermi-
tian RGi-module for i = 1, 2, then there is a unique RG2-module homomorphism

ν : HomRG1(RG2,M1)⊗RM2 → HomRG1(RG2,M1 ⊗RM2)

such that for t ∈M := HomRG1(R2,M1), g2 ∈ G2, m2 ∈M2, we have

ν(t⊗m2)(g2) = t(g2)⊗ g2m2.(4.34)

Moreover, ν is compatible with the hermitian structures is the sense that

ν#(coindf (h1 ⊗ h2) = coindf (h1)⊗ h2.(4.35)

In addition, ν is an isomorphism if and only if the “cup-product” map

uM : MG1 ⊗RM triv
2 → (M ⊗M triv

2 )G1(4.36)

is an isomorphism where M triv
2 denotes the R-module M2 endowed with the trivial

G1-module structure and M = HomR(RG2,M1) is viewed as a G1-module in the
usual way.

Proof. First note that since ν is R-bilinear in t and m2, the above rule (4.34)
defines a unique R-homomorphism

ν : HomRG1(RG2,M1)⊗RM2 → HomR(RG2,M1 ⊗RM2).

Next we observe that ν(t⊗m2) ∈ HomR(RG2,M1 ⊗M2) is G1-linear because

g1 · ν(t⊗m2)(g2) = g1(t(g2)⊗ g2m2) = g1t(g2)⊗ f(g1)g2m2

= t(f(g1)g2)⊗ f(g1)g2m2 = ν(t⊗m2)(f(g1)g2),
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and so Im(ν) ⊂ HomRG1(RG2,M1 ⊗M2). Moreover, ν is G2-linear because

ν(g2(t⊗m2))(g′2) = ν((g2t)⊗ (g2m2))(g′2) = (g2t)(g′2)⊗ g′2g2m2

= t(g′2g2)⊗ g′2g2m2 = ν(t⊗m2)(g′2g2)
= g2 · ν(t⊗m2)(g′2).

We have thus verified the existence of the RG2-linear map ν. The next step
is to show that equation (4.35) is valid. For this, let m2,m

′
2 ∈ M2 and t, t′ ∈

HomRG1(RG2,M1). Then

coindf (h1 ⊗ h2)(ν(t⊗m2), ν(t′ ⊗m′2))

=
1
|G1|

∑
g∈G2

h1 ⊗ h2(ν(t⊗m2)(g), ν(t′ ⊗m′2)(g))

=
1
|G1|

∑
g∈G2

h1 ⊗ h2(t(g)⊗ gm2, t
′(g)⊗ gm′2)

=
1
|G1|

∑
g∈G2

h1(t(g), t′(g))h2(gm2, gm
′
2)

=
1
|G1|

∑
g∈G2

h1(t(g), t′(g))h2(m2,m
′
2)

= coindf (h1)(t, t′)h2(m2,m
′
2)

= (coindf (h1)⊗ h2)(t⊗m2, t
′ ⊗m′2).

It remains to analyze the bijectivity of ν. For this, consider the R-linear map

ν1 : M ⊗M2 → HomR(RG2,M1 ⊗M2)

defined by (4.34). We note that ν1 is clearly an isomorphism of R-modules since
RG2 is a free R-module and multiplication by g2 is an R-automorphism of M2.
Next we observe that

g1 · ν1(t⊗m2)(g2) = g1ν1(t⊗m2)(f(g1)−1g2)
= g1(t(f(g1)−1g2)⊗ f(g1)−1g2m2)
= g1t(f(g1)−1g2)⊗ f(g1)f(g1)−1g2m2

= (g1t)(g2)⊗ g2m2

= ν1(g1t⊗m2)(g2),

which means that ν′ is G1-linear, if we view M2 as a trivial G1-module when it
appears in M ⊗M2 (but continue to view the M2 appearing in M1 ⊗M2 as a
G1-module via f). Thus ν1 is an isomorphism of RG1-modules, and hence induces
an R-isomorphism on the invariant spaces:

ν′ = νG1 : (M⊗M triv
2 )G ∼→ (HomR(RG2,M1⊗M2)G = HomRG1(RG2,M1⊗M2).
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On the other hand, we clearly have the factorization

ν = ν′ ◦ uM ,

and so it follows that ν is an isomorphism if and only if this is true for uM , as
asserted.

Proof of Proposition 4.19. By the above lemma, we only need to verify that ν is
an isomorphism under the hypotheses of the proposition.

By the lemma we see that the fact whether or not ν is an isomorphism depends
only on the R-module structure of M2, so it is enough to investigate the situation
when M2 = M triv

2 has the trivial G2-module structure. In that case the A = RG1-
module structure on M1⊗M2 coincides with that of Bourbaki[BA], II.4.2, and also
the above map ν coincides with the map ν defined there (cf. loc. cit., equation
(7)), if we take B = R,E = RG2, G = M1, F = M2 in the notation there. We
thus obtain by [BA], II.4.2, Proposition 2, that ν is an isomorphism if G = M2

is R-projective (or, equivalently, M2 is R-torsionfree since R is a principal ideal
domain), or if if RG2 is RG1-projective. By the lemma below, this is the case
here, and so the assertion follows.

Lemma 4.20 If f : G1 → G2 is a group homomorphism and R a ring in which
|Ker(f)| is invertible, then RG2 is a projective RG1-module.

Proof. By factoring f = f2 ◦ f1 as a surjection followed by an injection, we see
that it is enough to consider the case that f is surjective since RG2 is a free
RG1-module if f is injective. Thus, assume that f is surjective.

To prove that M := RG2 is RG1-projective, it is enough to show that M
is G1-cohomological trivial, i.e. Hq(G,M) = 0 for all q ≥ 1 and all subgroups
G ≤ G1. Fix G ≤ G1 and put Q = f(G), N = Ker(f) ∩G. Since |N | is invertible
in R, we have Hq(N,M) = 0 for q > 0. Thus, by the Hochschild-Serre (spectral)
sequence (cf. Serre[Se], VII.6), we have Hq(G,M) ' Hq(Q,MN ) = Hq(Q,M).
But Hq(Q,M) = Hq(Q,RQn) = 0, where n = [G2 : Q], so the assertion follows.

In view of Proposition 4.12a), the following theorem generalizes the Frobenius
Reciprocity Theorem 4.16:

Theorem 4.21 (Generalized Frobenius Reciprocity) Let f : G1 → G2 be a
group homomorphism, and let (Mi, hi) be a hermitian RGi-module for i = 1, 2. If
M2 is an RG2-lattice or if |Ker(f)| is invertible in R, then there is an R-isometry

H0(G2, Coindf (M1, h1)⊗ (M2, h2)) ' H0(G1, (M1, h1)⊗Resf (M2, h2)).

Proof. By Proposition 4.18 and Corollary 4.14 we have

H0(G2, Coindf (M1, h1)⊗ (M2, h2))
' H0(G2, Coindf ((M1, h1)⊗Resf (M2, h2)))
' H0(G1, (M1, h1)⊗Resf (M2, h2)).
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Although we do not need this in the sequel, it would be interesting to know if the
restrictive hypotheses (i.e. M2 torsionfree or |Ker(f)| invertible in R) in the above
theorem can be removed. For our purposes, however, the following strengthening
of the theorem to the case that (M1, h1) = (R[S], hS) is a permutation module is
sufficient.

Theorem 4.22 (Frobenius Reciprocity for Permutation Modules) Let
f : G1 → G2 be a group homomorphism, and let (M1, h1) = (R[S], hS) be a her-
mitian RG1-permutation module. Then for any hermitian RG2-module (M2, h2)
there is an R-isometry

H0(G2, Coindf (M1, h1)⊗ (M2, h2)) ' H0(G1, (M1, h1)⊗Resf (M2, h2)).

Proof. By additivity it is enough to consider the case S = G1/X, where X ≤ G1

is a subgroup. Then by Corollary 4.17 we have

H0(G1, (R[G1/X], hG1/X)⊗Resf (M2, h2)) ' H0(X,Resf (M2, h2)).(4.37)

On the other hand, if we put k = |X∩Ker(f)|−1 and Y = f(X), then by Corollary
4.15 and Corollary 4.17 we obtain

H0(G2, Coindf (R[G1/X], hG1/X)⊗ (M2, h2))

' H0(G2, (R[G2/Y ], hG2/Y )(k)⊗ (M2, h2)) ' H0(Y, (M2, h2))(k).

By comparing this with (4.37) we thus see that the assertion follows from the
following lemma:

Lemma 4.23 Let f : G1 → G2 be a group homomorphism and (M2, h2) a hermi-
tian RG2-module. For a subgroup X ≤ G1 put Y = f(X) and

k = |Y |/|X| = |X ∩Ker(f)|−1.

Then we have
H0(X, resf (M2, h2)) = H0(Y, (M2, h2))(k).

Proof. Clearly M := InvX(resf (M2)) = InvY (M2) as submodules of M2. Thus,
if we let h denote the restriction of h2 to this submodule, then we have

H0(X, resf (M2, h2)) = (M, 1
|X|h) = (M, 1

|Y |h)(k) = H0(Y, (M2, h2))(k),

and so the lemma follows.
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5. The construction of the invariant δ

In this section we shall construct the fundamental invariant δ(M1,M2;M) in three
steps. First we introduce the invariant dRG,L(M,h) which is attached to any
hermitian RG-module (M,h). This will then be used to construct the prelimi-
nary invariant ∆((M1, h1), (M2, h2);M). By introducing the Grothendieck ring
H(RG,L) of hermitian RG-modules, this invariant may also be viewed as a pair-
ing of a certain ideal of this ring with the Grothendieck ring Mod(RG)non−deg of
non-degenerate RG-modules. Finally we show that ∆ induces the desired invari-
ant δ. In the next section we shall study the main properties of this invariant,
and then in a subsequent section relate this invariant to the one discussed in the
introduction.

5.1. The invariant dRG(M,h). In the previous section (cf. Notation 4.8) we
had defined the “0-th cohomology module” H0(G, (M,h)) = InvG(M,h); taking
its discriminant (cf. Definition 3.10) yields the invariant dRG,L(M,h):

Notation 5.1 If (M,h) is an L-valued hermitian RG-module then we let

dRG,L(M,h) = discR(InvG(M,h)) = discR(H0(G, (M,h)))

denote the discriminant of the bilinear module of invariants of (M,h). If the ring
R and the field L are clear from the context, then we shall write dG in place of
dRG,L.

Remark 5.2 Following the line of thought of section 4, we could also consider
the invariant

d′RG,L(M,h) = discR(MG, hG) = discR(H0(G, (M,h))).

However, this invariant is of secondary importance because all the applications use
only the invariant dRG,L. Moreover, by (4.25) and (4.23) (and Prop. 3.14), these
two invariants are related by the formula

d′RG,L(M,h) = χ(H0(G, (M,h))tor)χ(H0(G, (M,h))tor)−1h(G,M)2(5.1)
·dRG,L(M,h)

where
h(G,M) = χ(N̄G) = χ(Ĥ0(G,M)) · χ(Ĥ−1(G,M))−1(5.2)

denotes the “Herbrand quotient” of M . (The latter is a natural generalization of
the usual Herbrand quotient which is commonly only defined for cyclic groups G
and R = Z; cf. Serre[Se], ch. VIII.4.)

We first verify that dRG,L(M,h) 6= 0 whenever (M,h) is non-degenerate, i.e.
whenever discR(M,h) 6= 0 (cf. Remark 3.11c)).
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Lemma 5.3 Let N ′G = |G| −NG =
∑
g∈G(1 − g) ∈ RG, where, as before, NG =∑

g∈G g. Then for any hermitian RG-module (M,h) we have

a) MG ⊥ N ′GM ;
b) M ⊗K = (MG ⊗K)⊕ (N ′GM ⊗K) = (NGM ⊗K)⊕ (N ′GM ⊗K);
c) if discR(M,h) 6= 0 then also dRG(M,h) 6= 0.

Proof. a) Since (1− g)m = 0 for all g ∈ G, and m ∈MG, we have

h(m,N ′Gm
′) =

∑
g∈G

h(m, (1− g)m′) =
∑
g∈G

h((1− g−1)m,m′) = 0,

if m ∈MG and m′ ∈M , and so a) holds.
b) Since NG(M ⊗K) ⊂ (MG ⊗K), it is enough to prove that NG(M ⊗K)⊕

N ′G(M ⊗ K) = M ⊗ K and this follows since NG + N ′G = n · 1 and n = |G| is
invertible in K.

c) Put M ′ = M
G ⊕N ′GM . Since the canonical map f : M ′ →M is an isogeny

by b), it follows from Proposition 3.14 that discR(M ′, f#h) 6= 0. Furthermore, by
a) we have that (M ′, f#h) = (M

G
, h
M
G)⊕ (N ′GM,hN ′

G
M ) and so by Proposition

3.16 we obtain

discR(M ′, f#h) = discR(M
G
, h|MG)discR(N ′GM,h|N ′

G
M ),

which shows that discR(MG, h|MG) = χ((MG)tor)−1discR(M
G
, h|MG) 6= 0.

Some elementary properties of the invariant dRG are summarized below.

Proposition 5.4 a) The invariant dRG is additive:

dRG((M1, h1)⊕ (M2, h2)) = dRG(M1, h1)dRG(M2, h2).

b) In the situation of Proposition 3.12 we have

dR′G,L′(M ⊗R′, h⊗R′) = dRG,L(M,h) ·R′.

c) The following localization formula is valid:

dRG,L(M,h) =
⋂
dRp,L(Mp, hp).

d) The invariant of a twist by r ∈ R is given by the formula

dRG,L(M, rh) = rrk(H0(G,M))dRG,L(M,h).

Proof. a) Since H0(G, (M1, h1)⊕ (M2, h2)) = H0(G, (M1, h1))⊕H0(G, (M2, h2)),
this follows directly from Proposition 3.16.

b) Since R′ is flat over R we have H0(G, (M ′⊗R′, h⊗R′)) = H0(G, (M,h))⊗R′,
and hence the assertion follows from Proposition 3.12.

c) As in the proof of Corollary 3.13, this follows immediately from b).
d) This follows immediately from formula (3.43).



40 Ernst Kani

5.2. The invariant ∆. The construction of the invariant ∆ is based on the
following fundamental but perhaps somewhat technical fact.

Proposition 5.5 Let (Mi, hi), i = 1, 2, 3, be three non-degenerate hermitian RG-
modules. If M1⊗K 'M2⊗K, then there is an RG-isogeny f : M1 →M2 and for
any such f there is an automorphism α ∈ AutLG(M∗1⊗L) such that f#h2 = α◦h1.
We then have

dRG((M1, h1)⊗ (M3, h3)) = ∆ · dRG((M2, h2)⊗ (M3, h3))(5.3)

where

∆ = χ(invG(f ⊗ idM3))2 det(invG(α⊗ idM∗3⊗L))−1(5.4)

·χ(invG(M1 ⊗M3)tor)χ(invG(M2 ⊗M3)tor)−1

and invG(f ⊗ idM3) : invG(M1⊗M3)→ invG(M2⊗M3) denotes the induced map
on the invariant spaces. In particular, the principal R-module

∆ = dG((M1, h1)⊗ (M3, h3))dG((M2, h2)⊗ (M3, h3))−1(5.5)

does not depend on h3.

Proof. We first observe that the last assertion follows immediately from (5.3) since
∆ does not depend on h3. (Note that by Lemma 5.3c) it follows that dG((M2, h2)⊗
(M,h)) 6= 0 because (M2, h2)⊗ (M3, h3) is non-degenerate by Corollary 3.17.)

We now prove the first assertion. By hypothesis there is an isomorphism f̃ ∈
HomKG(M1 ⊗ K,M2 ⊗ K) ' HomRG(M1,M2) ⊗ K (cf. [BCA], II.2.7). Thus
f̃ = f ⊗ (1/r) with f ∈ HomRG(M1,M2) and 0 6= r ∈ R. Since f : M1 → M2 is
automatically an RG-isogeny, this proves the existence of the desired f .

Next, suppose that an RG-isogeny f is given. Since h1, f
#h2 : M1 → M∗1 ⊗

L are non-degenerate, we see by Remark 3.9c) that there is a (unique) α ∈
AutL(M∗1 ⊗ L) such that f#h2 = α ◦ h1. Since f#h2 and h1 are RG-linear,
so is α, and so the second assertion follows.

It thus remains to prove equation (5.3). Here we first note that since α⊗ id is
an LG-isomorphism of (M1 ⊗M3)∗ ⊗ L = (M∗1 ⊗ L) ⊗ (M∗3 ⊗ L), it induces the
isomorphism invG(α⊗ id) on the invariant space invG((M1 ⊗M3)∗ ⊗ L), and we
have invG(α⊗ id)◦ invG(h1⊗h3) = invG((α ◦h1)⊗h3). Thus by equation (3.42)

dG((M1, h1)⊗ (M3, h3)) = disc(invG(M1 ⊗M3), invG(h1 ⊗ h3))
= det(invG(α⊗ id))−1disc(invG(M1 ⊗M3), invG(α ◦ h1 ⊗ h3))
= det(invG(α⊗ id))−1disc(invG(M1 ⊗M3), invG(f#(h2)⊗ h3)).

Furthermore, since invG(M1 ⊗M3 ⊗ K) ' invG(M2 ⊗M3 ⊗ K), it follows that
the hypothesis of Proposition 3.14 is satisfied, and so we obtain

disc(invG(M1 ⊗M3), invG((f#(h2))⊗ h3))
= disc(invG(f ⊗ id)#(invG(M2 ⊗M3), invG(h2 ⊗ h3)))
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= χ((invG(M1 ⊗M3))tor)χ((invG(M2 ⊗M3))tor)−1

· χ(invG(f ⊗ id))2disc(invG(M2 ⊗M3, h2 ⊗ h3)),
from which formula (5.3) follows.

The following corollary will later play an important role in the construction of
the invariant δ.

Corollary 5.6 If, in the situation of Proposition 5.5, we have in addition that
M1 ' M2 and that h1, h2 are unimodular (i.e. that hi : Mi

∼→ M∗i are isomor-
phisms), then we have that ∆ = R.

Proof. We may assume that M1 = M2 = M . Then f = idM and α = α0 ⊗ L,
where α0 ∈ Aut(M0), so χ(invG(idM ⊗ idM3)) = R and det(invG(α⊗ idM∗3⊗L)) =
det(invG(α0 ⊗ idM∗3 )) = R, and hence ∆ = R.

We now come to the definition of the invariant ∆, which is defined for RG-
modules M which are non-degenerate in the following sense.

Definition 5.7 An RG-module M is non-degenerate if M ⊗ K ' M∗ ⊗ K (as
KG-modules).

Remark 5.8 It is well-known (cf. [Hu], p. 29) that M is non-degenerate if and
only if M ⊗ L ' M∗ ⊗ L, and this is in turn equivalent to the existence of a
non-degenerate L-valued hermitian RG-module structure h : M →M∗ ⊗ L.

Notation 5.9 Let (M1, h1) and (M2, h2) be two non-degenerate hermitian RG-
modules and let M be a non-degenerate RG-module. Then by Remark 5.8 M
admits a non-degenerate hermitian RG-module structure h : M → M∗ ⊗ L. We
now put

∆RG,L((M1, h1), (M2, h2),M) = dG((M1, h1)⊗ (M,h))dG((M2, h2)⊗ (M,h))−1,

which, by Proposition 5.5, is independent of the choice of h.

5.3. The Grothendieck ring H(RG,L). In order to be able to work efficiently
with the above defined invariant ∆, it advantageous to be able view it as a pairing
of certain groups. To this end we introduce here the Grothendieck ring of hermitian
RG-modules, which enables us to write everything in a much more compact and
transparent form.

Notation 5.10 Let H(RG,L)+ denote the set of RG-isometry classes of L-valued
non-degenerate hermitianRG-modules (M,h). It is easily checked (using Corollary
3.17) that the operations ⊕ and ⊗ make H(RG,L)+ into a commutative semi-ring
with unit (R, idR). We let H(RG,L) denote the associated Grothendieck ring (in
the sense of Scharlau[Sch], p. 30), and

iG : H(RG,L)+ → H(RG,L)
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the canonical semi-ring homomorphism. Thus H(RG,L) is a (commutative) ring
which is universal with respect to semi-ring homomorphisms f : H(RG,L)+ → A
to rings A in the sense that f = f ′ ◦ iG factors uniquely over a ring homomor-
phism f ′ : H(RG,L) → A. For future reference, note that by the construction of
H(RG,L) given in Scharlau[Sch], p. 30, each x ∈ H(RG,L) has the form

x = [M1, h1]− [M2, h2],(5.6)

where [Mi, hi] = iG((M1, hi)) denotes the image of (the isometry class) of (Mi, hi)
in H(RG,L).

As a first application of the universal property, we note that there is a canonical
ring homomorphism

κ = κG : H(RG,L)→ K0(KG) = G0(KG)

to the Grothendieck ring of (projective) KG-modules (cf. [CR1], p. 406) such that

κ([M,h]) = [M ⊗R K],

for the map (M,h) 7→ [M ⊗K] defines a semi-ring homomorphism H(RG,L)+ →
K0(KG) which therefore factors over H(RG,L).

By Remark 5.8 we see that the image of κ is

Im(κ) = K0(KG)sym = {[V1]− [V2] : V ∗i ' Vi},

the subring of K0(KG) generated by the symmetric KG-modules. On the other
hand, if we let

H(RG,L)0 = Ker(κ)

denote the kernel, then by (5.6) we have

H(RG,L)0 = {[M1, h1]− [M2, h2] : M1 ⊗K 'M2 ⊗K}.(5.7)

In a similar manner, if Mod(RG) denotes the Grothendieck ring associated to
the semi-ring Mod(RG)+ consisting of RG-isomorphism classes of (finitely gener-
ated) RG-modules, then we have a natural ring homomorphism

ρ = ρG : H(RG,L)→Mod(RG)

such that ρ([M,h]) = [M ]. Note that by Remark (5.8) its image is

Im(ρ) = Mod(RG)non−deg,

the subring generated by the non-degenerate RG-modules. Furthermore, the map
κ factors over ρ:

κ = κ ◦ ρ.
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By identifying the group Id(R,L) of non-zero principal R-submodules of L
with the quotient group L×/R×, we see by Lemma 5.3c) that dRG,L defines a
homomorphism of semi-groups

d+
RG,L : H(RG,L)+ → Id(R,L) = L×/R×.

By the universal property of Grothendieck groups there is a unique induced group
homomorphism

dRG : H(RG,L)→ Id(R,L) = L×/R×.

With the above notations we can now express the fundamental invariant ∆ as
follows.

Theorem 5.11 There is a unique pairing

∆RG,L : H(RG,L)0 ×Mod(RG)non−deg → Id(R,L) = L×/R×

such that for any x ∈ H(RG,L)0, y ∈ H(RG,L) we have

∆RG,L(x, ρ(y)) = dRG(x · y).(5.8)

Proof. Since ρ : H(RG,L) → Mod(RG) is surjective, there exists at most one
map satisfying (5.8). To prove existence, we shall use the invariant ∆ which was
introduced in Notation 5.9. Using the notation of the following Lemma 5.10, we
note that ∆ defines a bi-additive map

∆ : (H(RG,L)+ ⊕H(RG,L)+)0 ×Mod(RG)+
non−deg → L×/R×.

Since it is immediate from the definition (cf. Notation 5.9) that

∆(M1, h1,M1, h1,M) = 0,

the following lemma shows that ∆ induces the desired bi-additive map.

Lemma 5.12 Let A+ and B+ be two commutative semigroups with associated
Grothendieck groups A and B and canonical maps iA : A+ → A and iB : B+ → B,
respectively. Suppose f : A → C is a homomorphism to an abelian group C and
put A0 = Ker(f) and

(A+ ⊕A+)0 = {(a1, a2) ∈ A+ ⊕A+ : iA(a1)− iA(a2) ∈ A0}.

Furthermore, let D be another abelian group and suppose that

g : (A+ ⊕A+)0 ×B+ → D

is a bi-additive map of semigroups such that

g((a, a), b) = 0(5.9)
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for all a ∈ A+, b ∈ B+. Then g induces a unique bi-additive map

g : A0 ×B → D

such that
g(iA(a1)− iA(a2), iB(b)) = g((a1, a2), b),(5.10)

for all (a1, a2) ∈ (A+ ×A+)0 and b ∈ B+.

Proof. Since A0 consists of expressions of the form iA(a1) − iA(a2) and B is
generated by the elements iB(b), it is clear that g is uniquely determined by (5.10).

To define g, fix (a1, a2) ∈ (A+ ⊕A+)0 and define ga1,a2 : B+ → D by

ga1,a2(b) = g((a1, a2), b).

Since g is additive in b, it follows that ga1,a2 induces a unique homomorphism
ga1,a2

: B → D such that

ga1,a2
(iB(b+)) = g((a1, a2), b+), for b+ ∈ B+.

We note that if (a′1, a
′
2) ∈ (A+ ⊕A+)0 is another element, then we have

ga1,a2
(b) + ga′1,a′2(b) = ga1+a′1,a2+a′2

(b),(5.11)

for every b ∈ B. Furthermore, it follows from (5.9) that

ga,a = 0, for all a ∈ A+.(5.12)

From this we obtain that

ga1,a2
+ ga2,a1

= ga1+a2,a1+a2
= 0,

or, equivalently, that
ga2,a1

= −ga1,a2
.(5.13)

We next show that if (a1, a2), (a′1, a
′
2) ∈ (A+ ⊕A+)0 are such that

iA(a1)− iA(a2) = iA(a′1)− iA(a′2),(5.14)

then
ga1,a2

= ga′1,a′2(5.15)

Indeed, by (5.13) we have iA(a1 + a′2) = iA(a2 + a′1), so there exits an a3 ∈ A+

such that a1 + a′2 + a3 = a1 + a′1 + a3. We thus obtain by (5.13), (5.12) and (5.11)
that

ga1,a2
− ga′1,a′2 = ga1,a2

+ ga′2,a′1 + ga3,a3
= ga1+a′2+a3,a2+a′1+a3

= 0,
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which proves (5.15). Thus, the rule

g(a, b) = ga1,a2(b), where a = iA(a1)− iA(a2),

defines a map g : A0 ×B → D which is bi-additive by (5.11) and (5.13).

We now investigate some of the properties of the pairing ∆. Its elementary
properties are summarized in the next proposition.

Proposition 5.13 a) For any non-degenerate hermitian RG-module (M,h) and
any x = [M1, h1]− [M2, h2] ∈ H(RG,L)0 we have

dG((M1, h1)⊗ (M,h)) = ∆(x,M)dG((M2, h2)⊗ (M,h)).(5.16)

b) If x, y ∈ H(RG,L)0 and M,M ′ are non-degenerate RG-modules, then

∆(x,M ⊕M ′) = ∆(x,M) ·∆(x,M ′)
∆(x+ y,M) = ∆(x,M) ·∆(y,M)

c) If x ∈ H(RG,L)0 and M,M ′ are non-degenerate RG-modules, then for any
non-degenerate hermitian RG-module structure h on M we have

∆(x,M ⊗M ′) = ∆(x · [M,h],M ′).(5.17)

In particular,
∆(x,M) = ∆(x · [M,h], R).(5.18)

d) Let R′ be a principal ideal domain which is an extension ring of R contained
in an extension field L′ of L. Then there is an induced “base change” map

µ : H(RG,L)→ H(R′G,L′)

and we have for each non-degenerate RG-module M and x ∈ H(RG,L)0 the com-
patibility relation

∆R′G,L′(µ(x),M ⊗R′) = ∆RG,L(x,M) ·R′.(5.19)

Proof. a), b) are clear from the construction.

c) Write y = [M,h], z = [M ′, h′], where h′ is some non-degenerate hermitian
RG-module structure on M ′. Then by definition

∆(x,M ⊗M ′) = dRG(x · (y · z)) = dRG((x · y) · z) = ∆(x · y,M ′),

which proves the first assertion. The second follows by taking (M ′, h′) = (R, id).

d) Since the map µ+(M,h) = (M ⊗ R′, h ⊗ R′) defines a homomorphism of
semi-rings µ+ : H(RG,L)+ → H(R′G,L′)+, we have by the universal property of
Grothendieck rings an induced ring homomorphism µ : H(RG,L) → H(R′G,L′).
From Proposition 5.4b) (and (5.16)) it follows that formula (5.19) is valid.
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5.4. The pairing δ. We now come to the definition of the invariant δ. For this,
it is useful to introduce the following additional Grothendieck rings.

Notation 5.14 Recall from Example 4.1 that a hermitian RG-module (M,h) is
called unimodular if h : M ∼→ M∗ is an RG-module isomorphism. Note that in
this case M is automatically R-torsionfree, or an RG-lattice in the terminology of
Curtis-Reiner[CR1].

LetH(RG)+
uni denote the semi-ring consisting of isometry classes of unimodular

hermitian RG-modules, and let H(RG)+
uni denote the associated Grothendieck

ring:

H(RG)uni = {[M1, h1]− [M2, h2] : (Mi, hi) is unimodular for i = 1, 2}.

Then by the universal property of Grothendieck rings, the inclusion H(RG)+
uni ⊂

H(RG,L)+ induces a ring homomorphism

ηRG,L : H(RG)uni → H(RG,L).

Furthermore, if we let Mod(RG)sym denote the Grothendieck ring associated
to the semi-ring Mod(RG)+

sym consisting of isomorphism classes of symmetric (or
self-dual) RG-modules M 'M∗, then we also have an induced map

ρsym : H(RG)uni →Mod(RG)sym

which is clearly surjective. We thus have the following commutative diagram:

H(RG)uni
η→ H(RG,L)

↓ ρsym ↓ ρ ↘ κ

Mod(RG)sym
η→ Mod(RG)non−deg

κ→ K0(KG)

(5.20)

Keeping in harmony with earlier notation, we let

Mod(RG)0
sym = {[M1]− [M2] ∈Mod(RG)sym : M1 ⊗K 'M2 ⊗K}

= Ker(κ ◦ η).

Theorem 5.15 There is a unique (bi-additive) pairing

δRG : Mod(RG)0
sym ×Mod(RG)non−deg → Id(R,K)

such that
δ(ρsym(x), y) = ∆(η(x), y)(5.21)

for x ∈Mod(RG)0
sym and y ∈Mod(RG)non−deg.
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Proof. Since ρsym is surjective, the uniqueness assertion is clear. To prove ex-
istence, we shall apply Lemma 5.12 again. Here we take A+ = Mod(RG)+

sym,
B+ = Mod(RG)+

non−deg, f = κ ◦ η and D = Id(R,K). The map

g : (A+ ⊕A+)0 → D

is defined by
g((M1,M2),M) = ∆([M1, h1]− [M2, h2],M),

where hi : Mi
∼→ M∗i is any unimodular hermitian RG-module structure on Mi,

for i = 1, 2; note that by Corollary 5.6 the right hand side does not depend on the
choice of hi. Since g clearly satisfies (5.9), we obtain by the lemma the desired
map δ.

Notation 5.16 Let M1 ' M∗1 and M2 ' M∗2 be two symmetric (or self-dual)
RG-modules such that M1 ⊗K 'M2 ⊗K, and let M be a non- degenerate RG-
module (i.e. M ⊗ K ' M∗ ⊗ K). Then x = [M1] − [M2] ∈ Mod(RG)0

sym and
y = [M ] ∈Mod(RG)non−deg, and hence we can define the fundamental invariant

δ(M1,M2;M) = δ(x, y),(5.22)

whose main properties will be studied in the next section.

Remark 5.17 Although there is no easy method for actually computing the in-
variant δ(M1,M2;M), Proposition 5.5 does give us an explicit formula which turns
out to be useful in many cases. The drawback is that the formula depends a num-
ber of choices, as follows.

To be precise, there are three (independent) choices to be made: we need to
choose a unimodular structure hi : Mi

∼→ M∗i on Mi for i = 1, 2 and also an RG-
isogeny f : M1 → M2, whose existence is guaranteed by Proposition 5.5. Once
these choices have been made, there is a unique α ∈ AutKG(M∗1 ⊗K) such that
f#h2 = α◦h1, and for any (non-degenerate) M the associated δ-invariant is given
by the formula

δ(M1,M2;M) = χ(invG(f ⊗ idM ))2 det(invG(α⊗ idM∗⊗K))−1(5.23)
·χ(invG(M1 ⊗Mtor))χ(invG(M2 ⊗Mtor))−1;

this follows from Proposition 5.5 and equation (5.21), combined with the fact that

(invG(Mi ⊗M))tor = invG((Mi ⊗M)tor) = invG(Mi ⊗Mtor),

because Mi is torsionfree.
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6. The main properties of invariant δ

In this section we shall derive the main properties of the fundamental invariant
δ(M1,M2;M) which was constructed in the previous section. For the most part,
these properties are generalizations of the main theorems presented in section 2:
the theorem on discriminant relations (Theorem 2.5), the Uniform Boundedness
Theorem (Theorem 2.8), the theorems on induction and inflation (Theorems 2.12
and 2.14), behaviour with respect to exact sequences (Theorem 2.10), and the
Triviality Theorem (Theorem 2.9).

6.1. Elementary properties. Recall from the previous section that the invari-
ant δ(M1,M2;M) was constructed via the pairing

δ : Mod(RG)0
sym ×Mod(RG)non−deg → Id(R,K),

where the Grothendieck rings Mod(RG)sym and Mod(RG)non−deg are as defined
in Notations 5.14 and 5.10, respectively, and Mod(RG)0

sym denotes the kernel
of the map κ ◦ η : Mod(RG)sym → K0(KG) (cf. Notation 5.14). Furthermore,
Id(R,K) denotes as in Notation 5.10 the group of fractional R-ideals. Then we
have:

Theorem 6.1 (Discriminant Relations) Let M1 and M2 be two symmetric (or
self-dual) RG-modules with M1 ⊗ K ' M2 ⊗ K, and let M be a non-degenerate
RG-module (i.e. M ⊗K 'M∗ ⊗K). Then x = [M1]− [M2] ∈Mod(RG)0

sym and
y = [M ] ∈ Mod(RG)non−deg, and for the invariant δ(M1,M2;M) = δ(x, y) the
following properties are valid:

a) (Discriminant relation) For any unimodular hermitian RG-module structure
hi on Mi (i = 1, 2) and any L-valued hermitian RG-module structure h on M we
have

disc(InvG(M1 ⊗M,h1 ⊗ h)) = δ(x, y) · disc(InvG(M2 ⊗M,h2 ⊗ h)).(6.1)

b) (Additivity) δ is bi-additive: if M ′1,M
′
2 and M ′ satisfy the same hypotheses

as M1,M2 and M respectively, then we have:

δ(M1 ⊕M ′1,M2 ⊕M ′2;M) = δ(M1,M2;M) · δ(M ′1,M ′2;M);
δ(M1,M2;M ⊕M ′) = δ(M1,M2;M) · δ(M1,M2;M ′).

c) (Symmetry) If M3 ' (M3)∗ is symmetric then

δ(M1,M2;M3 ⊗M) = δ(M1 ⊗M3,M2 ⊗M3;M).(6.2)

d) (Base change) If R′ ⊃ R is a principal ideal domain which contains R then

we have
δR′(M1 ⊗R′,M2 ⊗R′;M ⊗R′) = δ(M1,M2;M) ·R′.(6.3)
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e) (Localization) We have

δR(M1,M2;M) =
⋂
p

δRp((M1)p, (M2)p;Mp).(6.4)

In particular, if M1 and M2 are in the same genus class (i.e. (M1)p ' (M2)p, for
all p ∈ Spec(R)), then

δ(M1,M2;M) = R.(6.5)

Similarly, if M ′ is in the same genus class as M then

δ(M1,M2;M) = δ(M1,M2;M ′).(6.6)

f) (Support) Let n = |G|. Then

δ(M1,M2;M) ·R[
1
n

] = R[
1
n

].(6.7)

Thus δ(M1,M2;M) is supported on the prime ideals dividing n.

Proof. a) This follows immediately from the construction of δ, in particular from
equations (5.21) and (5.16).

b) δ is bi-additive by construction.
c) Write z = [M3] ∈Mod(RG)sym. Then δ(x · z, y) = δ(x, η(z) · y) by associa-

tivity of the tensor product, which proves (6.2).
d) In view of (5.21), this follows directly from Proposition 5.13d).
e) As in the proof of Corollary 3.13, this follows immediately from d).
f) By d) we may assume that R = R[ 1

n ]. Since by hypothesis M1⊗K 'M2⊗K,
it follows from Curtis-Reiner[CR1], p. 642-643 (and p. 582) that M1 and M2 are
in the same genus class, and so the assertion follows from e).

Remark 6.2 a) In the sequel it will be convenient to have a name for RG-modules
M1,M2 satisfying the hypotheses of Theorem 6.1. Thus, we shall call a pair
(M1,M2) of RG-modules admissible if each Mi is symmetric (i.e. Mi ' M∗i ) and
if M1 ⊗K 'M2 ⊗K.

b) The fact that the invariant δ(M1,M2;M) is defined via the pairing δ on
the Grothendieck rings implies a number of other relations as well; for example, if
(M1,M2) and (M2,M3) are admissible pairs, then so is (M1,M3) and we have

δ(M1,M2;M)δ(M2,M3;M) = δ(M1,M3;M).(6.8)

As was mentioned in the introduction, most of the interesting examples of
RG-modules M for which we want to compute δ(M) are those involving torsion.
Since RG-lattices are technically easier to handle, it is therefore often useful to
know the relation between the invariant δ(M1,M2;M) attached to M and between
the invariant δ(M1,M2;M) attached to the torsionfree part M = M/Mtor of M .
While no simple relation seems to exist, we do have the following result:
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Proposition 6.3 Let M1,M2 and M be as above. Then we have

δ(M1,M2;M) = cRG(M1,M)cRG(M2,M)−1δ(M1,M2;M),(6.9)

where for i = 1, 2 the correction term cRG(Mi,M) is defined by

cRG(Mi,M) = χ(invG(Mi ⊗Mtor))χ(invG(idMi ⊗ πM ))2(6.10)
= χ(invG(Mi ⊗Mtor))−1χ(Coker(invG(idMi ⊗ πM )))2.

Proof. We shall apply formula (5.23) of Remark 5.17. With the notation there we
obtain

δ(M1,M2;M)δ(M1,M2;M)−1 = χ(invG(f ⊗ idM ))2χ(invG(f ⊗ idM ))−2

·χ(invG(M1 ⊗Mtor))χ(invG(M2 ⊗Mtor))−1

= χ(invG(idM1 ⊗ πM ))2χ(invG(idM2 ⊗ πM ))−2

·χ(invG(M1 ⊗Mtor))χ(invG(M2 ⊗Mtor))−1

= cRG(M1,M)cRG(M2,M)−1.

Here the first equation follows from (5.23) together with the fact that M
∗

= M∗,
so the two determinant factors cancel each other out, and the second follows from
the identity

χ(invG(idM2 ⊗ πM ))χ(invG(f ⊗ idM )) = χ(invG(f ⊗ idM ))χ(invG(idM1 ⊗ πM ))

which in turn follows by applying Proposition 3.2 to the commutativity formula

invG(idM2 ⊗ πM ) ◦ invG(f ⊗ idM ) = invG(f ⊗ idM ) ◦ invG(idM1 ⊗ πM ).

6.2. The Uniform Boundedness Theorem. We now turn to the Uniform
Boundedness Theorem which, as was explained in section 2, may be viewed as a
quantitative generalization of Brauer’s Finiteness Theorem (Corollary 1.3).

In order to be able to state as precise a statement as possible, we introduce the
following interesting invariant.

Notation 6.4 Let M and M ′ be two RG-lattices with M ⊗K 'M ′ ⊗K. Then
the genus defect of M relative to M ′ is defined as the R-ideal

γRG(M : M ′) =
∑
M ′′∈Γ

χ(M/M ′′),(6.11)

where the sum extends over the set Γ = Γ(M,M ′) = {M ′′ ⊂M : M ′′ ∨M ′} of all
RG-sublattices M ′′ofM which are in the same genus class as M ′ (i.e. M ′′ ∨M ′
in the notation of [CR1]).
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Remark 6.5 It is useful to observe that there always exists an RG-submodule
Mmax ∈ Γ(M,M ′) such that

χ(M/Mmax) = γ(M : M ′);(6.12)

any such Mmax is clearly maximal among the RG-submodules in Γ, but there may
be more than one such submodule.

To see that at least one such submodule Mmax exists, note first that this is clear
if R = Rp is a local ring (hence a discrete valuation ring) because in that case the
R-ideals are linearly ordered. In the general case we thus have for each p ∈ Spec(R)
an RpG-submodule M ′′(p) ⊂ Mp with M ′′(p) ' M ′p. Put M ′′ = ∩ M ′′(p); then
M ′′p = M ′′(p) (cf. [BCA], VII.4.3) and

χ(M/M ′′) =
⋂
χ(Mp/M

′′
p ) =

⋂
γRp(Mp : M ′p) ⊃ γR(M : M ′).

On the other hand, since by construction M ′′ ∨M ′, it follows that χ(M/M ′′) ⊂
γ(M : M ′) and hence we see that (6.12) holds for Mmax = M ′′.

The same argument also shows that we have the localization formula

γRG(M : M ′) =
⋂
p

γRpG(Mp : M ′p).(6.13)

Note that as a special case of (6.12) we see that M and M ′ are in the same
genus class (i.e. M ∨M ′) if and only if γ(M : M ′) = R; this justifies the name
“genus defect”.

Theorem 6.6 (Uniform Boundedness) If M1 and M2 are symmetric RG-
modules of rank d with M1 ⊗ K ' M2 ⊗ K, define r ∈ R and N ∈ N by the
formulae

rR = n2dγ(M2 : M1)4, N = (2n+ 1)d,

where, as before, n = |G|. Then for any non-degenerate RG-module M the ideals

χ(Mtor)Nrrk(M)δ(M1,M2;M) and χ(Mtor)Nrrk(M)δ(M1,M2;M)−1

are R-integral. In other words, for any prime ideal p of R, the p-exponent of
δ(M1,M2;M) is uniformly bounded:

|vp(δ(M1,M2;M))| ≤ rk(M)vp(r) +Nvp(χ(Mtor)).

Proof. In view of the localization formula (6.13) we may assume that R = Rp is
local. In this case

γ(M2 : M1) =
∑
f

χ(f),
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where the sum extends over all RG-isogenies f : M1 → M2. It is thus enough to
show that

|vp(δ(M1,M2;M))| ≤ (2n+ 1)dvp(χ(Mtor)) + 2drvp(n) + 4rvp(χ(f)),(6.14)

for every RG-isogeny f : M1 →M2, where r = dim(M ⊗K).
Fix such an isogeny f . To compute vp(δ(M1,M2;M)), we shall use formula

(5.23) of Remark 5.17. Thus, if hi : Mi
∼→ M∗i is a unimodular structure on Mi

for i = 1, 2, then α = f#h2 ◦ h−1
1 = f∗ ◦ h2 ◦ f ◦ h−1

1 ∈ EndRG(M1), and we have
by equations (3.7), (3.11) and (3.19) that

det(α) ·R = χ(f∗)χ(f) = χ(f)2.(6.15)

Now by Proposition 6.3 and formula (5.23) applied to M we have

δ(M1,M2;M) = cRG(M1,M)cRG(M2,M)−1δ(M1,M2;M)(6.16)
= cRG(M1,M)cRG(M2,M)−1

·χ(invG(f ⊗ idM ))2 det(invG(α⊗ idM∗⊗K))−1.

Applying the results from the Lemmata 6.7, 6.9 and 6.10 below we therefore
deduce from (6.16) that

|vp(δ(M1,M2;M))| ≤ |vp(cRG(M1,M))− vp(cRG(M2,M))|
+ 2|vp(χ(invG(f ⊗ idM )))|+ |vp(det(invG(α⊗ idM∗⊗K)))|

≤ (2n+ 1)dvp(χ(Mtor)) + 2drvp(n) + 2rvp(χ(f)) + rvp(det(α))
= (2n+ 1)dvp(χ(Mtor)) + 2drvp(n) + 4rvp(χ(f)),

where the last equality follows from (6.15).
We thus see that the inequality (6.14) and hence Theorem 6.6 are proved once

we have established the validity of the following lemmata.

Lemma 6.7 For any prime ideal p of R we have

−d · vp(χ(Mtor)) ≤ vp(cRG(Mi,M)) ≤ 2nd · vp(χ(Mtor)).

Proof. By definition

cRG(Mi,M)χ(invG(Mi ⊗Mtor)) = χ(Coker(invG(idMi
⊗ πM )))2(6.17)

is R-integral, so we obtain the inequality

vp(cRG(Mi,M)) ≥ −vp(χ(invG(Mi ⊗Mtor)))
≥ −vp(χ(Mi ⊗Mtor)) = −dvp(χ(Mtor)),

since Mi ⊗Mtor 'Md
tor as R-modules. This proves the lower bound.



Discriminants of hermitian R[G]-modules 53

To prove the upper bound we first note that

Coker(invG(idMi
⊗ πM )) ' Im(c) ⊂ H1(G,Mi ⊗Mtor),(6.18)

where c denotes the connecting homomorphism in the cohomology sequence

H0(G,Mi ⊗M)→ H0(G,Mi ⊗M) c→ H1(G,Mi ⊗Mtor)

which results by taking cohomology of the exact sequence

0→Mi ⊗Mtor →Mi ⊗M →Mi ⊗M → 0.

Furthermore, for any RG-module T which is R-torsion we have that

χ(H1(G,T )) ⊃ χ(T )n(6.19)

because H1(G,T ) is a subquotient of HomR(RG, T ) ' Tn (as R-modules). Ap-
plying this to T = Mi ⊗Mtor we obtain from equations (6.17), (6.18) and (6.19)
that

vp(cRG(Mi,M)) ≤ 2vp(Coker(invG(idMi ⊗ πM )))
≤ 2vp(χ(H1(G,Mi ⊗Mtor)))
≤ 2n · vp(χ(Mi ⊗Mtor))
= 2nd · vp(χ(Mtor)),

which proves the desired upper bound.

Lemma 6.8 Let u : L1 → L2 be an isogeny of RG-lattices of rank s, and let
invG(u) : InvG(L1)→ InvG(L2) denote the induced map on the invariant spaces.
Then we have

nsχ(u) ⊂ χ(invG(u)).(6.20)

Proof. Let L′i = N ′GLi and L′′i = LGi ⊕ L′i. Since u is RG-linear, it induces R-
homomorphisms uG : LG1 → LG2 , u

′ : L′1 → L′2 and u′′ : L′′1 → L′′2 . Now since
u′′ = uG ⊕ u′ and nLi ⊂ L′′i ⊂ Li (cf. the proof of Lemma 5.3b)), we see that all
these maps are R-isogenies. Thus, by Corollary 3.3 it follows that

χ(uG)χ(u′) = χ(u′′) = χ(u)χ(L1/L
′′
1)χ(L2/L

′′′
2 )−1.

Since all the χ-ideals are R-integral, we obtain the inclusions

χ(uG) ⊃ χ(u′′) ⊃ χ(u)χ(L1/L
′′
1).

But χ(L1/L
′′
1) ⊃ χ(L1/nL1) = nsR, and so the assertion follows.
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Corollary 6.9 In the situation of the theorem we have

|vp(χ(invG(f ⊗ idM )))| ≤ drvp(n) + rvp(χ(f)).

Proof. Apply Lemma 6.8 to Li = Mi⊗M and u = f⊗ idM ; note that here s = dr.
Thus the assertion follows from (6.20) because we have χ(u) = χ(f)r.

Lemma 6.10 Let
chα(t) = (t− t1) · · · (t− td)

denote the characteristic polynomial of α⊗K ∈ AutKG(V ), where V = M∗1 ⊗K.
Then the characteristic polynomial of α′ = invG(α⊗ idM∗⊗K) is of the form

chα′(t) = (t− t1)n1 · · · (t− td)nd ,

for suitable integers 0 ≤ nk ≤ r, where 1 ≤ k ≤ d. In particular, det(α′) ∈ R and

det(α′) | det(α)r.

Proof. Write W = M∗ ⊗K. Since dim(W) = r, the characteristic polynomial of
α⊗ idW on V ⊗W is chα(t)r. By Lemma 5.3b) we have V ⊗W = V ′⊕ V ′′ where
V ′ = InvG(V ⊗W ) and V ′′ = N ′G(V ⊗W ). Since α is RG-linear, the map α⊗ id
maps each of the spaces V ′ and V ′′ into itself. Thus, if α′′ = (α⊗ id)|V ′′ , then we
obtain

chα′(t)chα′′(t) = chα⊗id(t) = chα(t)r.

Thus chα′(t) | chα(t)r, which proves the first statement. Since α ∈ End(M1), the
coefficients of chα(t) are in R, and hence the same is true for chα′(t). By Gauss’s
lemma it follows that

chα′(t) | chα(t)r in R[t];

in particular, the constant coefficient of the former polynomial divides that of the
latter, which proves the second statement.

6.3. Frobenius Reciprocity Formulae. We now turn to developing the
induction/restriction formalism of the invariant δ. Here we shall first focus on the
behaviour of the invariants dRG and ∆, and then later apply this to δ itself. We
begin by introducing the following notation.

Notation 6.11 Let f : G1 → G2 be a group homomorphism. The restriction
map

resf : H(RG2, L)+ → H(RG1, L)+

as defined in section 4 induces a ring homomorphism

resf : H(RG2, L)→ H(RG1, L)
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of the associated Grothendieck rings. Furthermore, the induction map

indf : H(RG1, L)+ → H(RG2, L)+

defined in Definition 4.2 induces a homomorphism

indf : H(RG1, L)→ H(RG2, L)

of the associated Grothendieck groups. Similarly, the process of coinduction as
defined in Definition 4.10 defines an (additive) homomorphism

coindf : H(RG1, L)→ H(RG2, L).

In a similar manner we have a ring homomorphism

resf : Mod(RG2)non−deg →Mod(RG1)non−deg

and group homomorphisms

indf , coindf : Mod(RG1)non−deg →Mod(RG2)non−deg;

it is clear that these commute with the forget maps ρG1 and ρG2 :

ρG1 ◦ resf = resf ◦ ρG2 , (co)indf ◦ ρG1 = ρG2 ◦ (co)indf .

Similarly, we have induced maps

resf : K0(KG2)→ K0(KG1), (co)indf : K0(KG1)→ K0(KG2),

which are compatible with the maps κG1 and κG2 defined in Notation 5.10:

resf ◦ κG2 = κG1 ◦ resf , (co)indf ◦ κG1 = κG2 ◦ (co)indf ,

In particular, we see that

resf (H(RG2, L)0) ⊂ H(RG1, L)0, indf (H(RG1, L)0) ⊂ H(RG2, L)0,(6.21)

and similarly for coindf .

Remark 6.12 Most of the results of section 4 translate into structural properties
of the maps resf , indf and coindf . Specifically, we have:

a) If f : G1 → G2 is an injective group homomorphism, then by Proposition
4.5 we have the formula

indf (x · resf (y)) = indf (x) · y,(6.22)
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which means that indf is a homomorphism of H(RG2, L)-modules, if we view
H(RG1, L) as an H(RG2, L)-module via resf . A similar statement holds if we
replace H(RGi, L) by Mod(RGi)non−deg.

Similarly, by Proposition 4.18 we have that coindf is a module homomorphism
if |Ker(f)| is invertible in R. Moreover, the formula

coindf (x · resf (y)) = coindf (x) · y,(6.23)

is also valid if y ∈ H(RG2, L)lat lies in the subring H(RG2, L)lat generated by the
hermitian RG2-lattices.

b) If f1 : G1 → G2 and f2 : G2 → G3 are group homomorphisms, then by
Propositions 4.6 and 4.13 we have

indf2◦f1 = indf2 ◦ indf1 , coindf2◦f1 = coindf2 ◦ coindf1(6.24)

c) From Corollaries 4.14 and 4.7 we obtain the relations

dRG1 = dRG2 ◦ coindf ; d′RG1
= d′RG2

◦ indf .(6.25)

Furthermore, if f is injective, then

coindf = indf(6.26)

by Proposition 4.12a), so in this case we also have

dRG1 = dRG2 ◦ indf .(6.27)

We now formulate the “Frobenius Reciprocity Formulae” for the invariants dRG
and ∆.

Proposition 6.13 Let f : G1 → G2 be a group homomorphism with |Ker(f)|
invertible in R. Then we have

dRG2(coindf (x1) · x2) = dRG1(x1 · resf (x2)),(6.28)

if xi ∈ H(RGi, L), i = 1, 2. In particular, for xi ∈ H(RGi, L)0 and yi ∈
Mod(RGi)non−deg, i = 1, 2, we have

∆RG2(coindf (x1), y2) = ∆RG1(x1, resf (y2)),(6.29)
∆RG1(resf (x2), y1) = ∆RG2(x2, coindf (y1)).(6.30)

Moreover, if f is injective then these formulae hold with coindf replaced by indf .

Proof. By (6.23) and (6.24) we have

dRG2(coindf (x1) · x2) = dRG2(coindf (x1 · resf (x2)))
= dRG1(x1 · resf (x2)),

which proves equation (6.28) and hence by (5.21) also the other two equations
(6.29) and (6.30).
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Remark 6.14 If |Ker(f)| is not a unit in R, then formulae (6.28) – (6.30) remain
valid if we impose certain additional restrictions on the xi and yi. Indeed, the
above proof shows that formula (6.28) is still correct as long as x2 ∈ H(RG2, L)lat
(which was defined in Remark 6.12). Moreover, by appealing to the Reciprocity
Theorem 4.22 in place of (6.23) and (6.24), we see that (6.28) is true whenever
x1 = [R[S]] is the class of a permutation module. It thus follows that if either x1 =
[R[S]] is of this type or if y2 ∈ Lat(RG2)non−deg, the subring of Mod(RG)non−deg
which is generated by the classes of (non-degenerate) RG-lattices, then formula
(6.29) continues to hold, and similarly, formula (6.30) is true provided that x2 ∈
H(RGi, L)0

lat = H(RGi, L)0 ∩H(RGi, L)lat.

We now apply the above formulae to the invariant δ. Since the restriction map
defines a ring homomorphism

resf : H(RG2)uni → H(RG1)uni,

we see that the analogue of formula (6.30) is valid:

Theorem 6.15 (Coinduction) Let f : G1 → G2 be a group homomorphism,
and let x2 ∈Mod(RG2)sym and y1 ∈Mod(RG1)non−deg. Then:

δRG1(resf (x2), y1) = δRG2(x2, coindf (y1)).(6.31)

Proof. Choose x̃2 ∈ H(RGi)0
uni such that ρsym(x̃2) = xi. Then res(x̃2) ∈

H(RG1)0
uni, and ηG1(resf (x̃2)) = resf (ηG2(x̃2)), so we have by (5.21) that

δRG1(resf (x2), y1) = ∆RG1(resf (ηG2(x̃2)), y1) = ∆RG2(ηG2(x̃2), coindf (y1)),

the latter equality resulting from equation (6.30) (which is valid even if |Ker(f)|
is not a unit in R because ηG2(x̃2) ∈ H(RG2,K)lat; cf. Remark 6.14). Applying
(5.21) once more yields the result.

Corollary 6.16 Let H � G be a normal subgroup of G, and put Q = G/H. If
M1 and M2 are symmetric RQ-modules with M1 ⊗ K ' M2 ⊗ K, then for any
non-degenerate RG-module M we have

δRG(M1,M2;M) = δRQ(M1,M2;MH)(6.32)

if we view M1 and M2 as RG-modules and MH = InvH(M) as an RQ-module.

Proof. Let f : G1 = G → G2 = G/H denote the projection map. Then
Coindf (M) = MH (cf. Proposition 4.12), so the result follows from the theo-
rem.

On the other hand, in general it is not possible to find an analogue of equation
(6.30) for the invariant δ. The basic problem here is that the maps indf and
coindf do not necessarily lift to maps between the Grothendieck rings H(RGi)uni
of unimodular hermitian RGi-modules, as Corollary 4.15 shows. However, we do
have:
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Proposition 6.17 If f : G1 → G2 is an injective group homomorphism and
(M1, h1) is a unimodular hermitian RG1-module, then the hermitian RG2-module
Coindf (M1, h1) is also unimodular.

Proof. Since f is injective, we have that Coindf (M1, h1) ' Indf (M1, h1) by
Proposition 4.12a). Now the definition of induction, particularly (4.10), shows
that h2 = indf (h1) : M2 = RG2 ⊗RG1 M →M∗2 is given by

h2 = ρf,M1 ◦ idRG2 ⊗ h1.

Since ρf,M1 : Indf (M∗1 ) → Indf (M1)∗ is an isomorphism (cf. Example 4.4a))
and h1 : M1 → M∗1 is an isomorphism by hypothesis, it follows that h2 is also an
isomorphism, as asserted.

Thus, if f : G1 → G2 is injective, then we have by the proposition an induced
map

indf : H(RG1)uni → H(RG1)uni
such that indf ([M,h]) = [Indf (M,h)]. Similarly, as is well known, we have a map

indf : Mod(RG1)sym →Mod(RG2)sym.

It is clear from the definitions that these maps are compatible with the maps ρsym,
η and η (cf. Notation 5.14), and so we obtain as in (6.21) that

indf (H(RG1)0
uni) ⊂ H(RG2)0

uni, indf (Mod(RG1)0
sym) ⊂Mod(RG2)0

sym.(6.33)

We thus obtain the following induction formulae for the invariant δ:

Theorem 6.18 (Induction) Let f : G1 → G2 be an injective group homomor-
phism. Then for xi ∈Mod(RGi)0

sym and yi ∈Mod(RGi)non−deg we have

δRG2(indf (x1), y2) = δRG1(x1, resf (y2)),(6.34)
δRG1(resf (x2), y1) = δRG1(x2, indf (y1)).(6.35)

Proof. Since f is injective, we have that indf = coindf by (6.26), and so the second
equation (6.35) is just a restatement of (6.31). Furthermore, in view of Proposition
6.17, a proof analogous to that of Theorem 6.16 yields equation (6.34).

As was already mentioned, it is not possible to extend Theorem 6.18 to arbi-
trary maps. However, if one restricts attention to permutation modules, then such
an extension is indeed valid:

Theorem 6.19 (Coinduction for Permutation Modules) Let f : G1 → G2

be a group homomorphism. If S1 and S2 are G1-sets such that K[S1] ' K[S2],
then (Coindf (R[S1]), Coindf (R[S2])) is an admissible pair of RG2-modules, and
for any non-degenerate RG2-module M2 we have

δRG2(Coindf (R[S1]), Coindf (R[S2]);M2)(6.36)
= εf (S1,M2)εf (S2,M2)−1δRG1(R[S1], R[S2];Resf (M2)),
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where for i = 1, 2

εf (Si,M2) =
∏

s∈G1\Si

|Ker(f) ∩ (G1)s|rk(H0(f((G1)s),M2)).(6.37)

Proof. Since

R[Si] '
⊕

s∈G1\Si

R[G1/(G1)s] =
⊕
X≤G1

R[G1/X]ni(X),(6.38)

it follows from Corollary 4.15 that

Coindf (R[Si]) '
⊕

s∈G1\Si

R[G2/f((G1)s)] =
⊕
X≤G1

R[G2/f(X)]ni(X).(6.39)

Thus Coindf (R[Si]) is again a permutation module, and hence is symmetric.
Moreover, since tensoring with K commutes with the process of coinduction, we
see that Coindf (R[S1])⊗K ' Coindf (R[S2])⊗K, which proves the first assertion.

To prove formula (6.36), put n(X) = n1(X) − n2(X), where ni(X) is defined
by equation (6.38), and choose a non-degenerate hermitian RG2-module structure
h2 on M2. Then by the definition of δ we have

δRG1(R[S1], R[S2];Resf (M2))(6.40)

=
∏

X≤G1

dRG1((R[G1/X], hG1/X)⊗ (Resf (M), h2))n(X)

=
∏

X≤G1

dRG2(Coindf (R[G1/X], hG1/X)⊗ (M2, h2))n(X);

here we have used the reciprocity formula (6.28) which is applicable in this case
by Remark 6.14.

For a subgroup X ≤ G1 put k(X) = |X ∩Ker(f)|−1 and

r(f(X)) = rk(H0(G2, R[G2/f(X)]⊗M2])) = rk(H0(f(X),M2)),

where the latter equality follows from Corollary 4.17. Now by Corollary 4.15 we
have

Coindf (R[G1/X], hG1/X) ' (R[G2/f(X)], hG2/f(X))(k(X)),

and so substituting this in the above computation (6.40) we obtain by Proposition
5.4d) that

δRG1(R[S1], R[S2];Resf (M2))

=
∏

X≤G1

dRG2((R[G2/f(X)], hG2/f(X))(k(X))⊗ (M2, h2)))n(X)

=
∏

X≤G1

(k(X)r(f(X))dRG2((R[G2/f(X)], hG2/f(X))⊗ (M2, h2))))n(X)

= (
∏

X≤G1

k(X)n(X)r(f(X)))δRG2(Coindf (R[S1]), Coindf (R[S2]);M2),
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where the last equation follows from the definition of δ and (6.39). This proves
(6.36) because the factor in front of δ is by (6.39) equal to εf (S1,M2)εf (S2,M2)−1.

6.4. The exact sequence formula. We next investigate the behaviour of the
invariant δ(M1,M2;M) with respect to exact sequences. Although δ is in general
not additive on exact sequences, the difference can be understood in terms of group
cohomology. To this end we first introduce the following notation.

Notation 6.20 Let f : M ′ →M ′′ be a homomorphism of RG-modules. Then for
any RG-module M we have the induced R-module homomorphism

fGM = invG(idM ⊗ f) : InvG(M ⊗M ′)→ InvG(M ⊗M ′′)

on the invariant spaces. We put

ψG(M,f) = χ(Coker(fGM )).

Moreover, if N is an RG-module with ψG(M,f) 6= 0, then we put

ψG(M,N ; f) = ψG(M,f)ψG(N, f)−1.

With this notation we can now formulate the exact sequence formula, which
may be viewed as a generalization of Proposition 6.3 which relates the δ-invariants
of M , Mtor and M = M/Mtor.

Theorem 6.21 (Exact Sequence Formula) Let

0→M ′
f→M

g→M ′′ → 0

be an exact sequence of RG-modules. If any two of the modules M, M ′ and M ′′

are non-degenerate, then so is the third, and for any admissible pair (M1,M2) of
RG-modules we have the relation

δ(M1,M2;M) = δ(M1,M2;M ′)δ(M1,M2;M ′′)ψ(M1,M2; g)2,(6.41)

where ψ(M1,M2; g) = ψ(M1, g)ψ(M2, g)−1 is as defined above. Furthermore, for
i = 1, 2 we have

ψ(Mi, g) = χ(Ker((idMi
⊗ f)1)),(6.42)

where (idMi
⊗ f)1 : H1(G,Mi ⊗M ′)→ H1(G,Mi ⊗M) denotes the induced map

on cohomology.

Proof. Since KG is semi-simple we have M ⊗K ' (M ′ ⊗K)⊕ (M ′′ ⊗K), and so
we see that if M ′⊗K ' (M ′)∗⊗K and M ′′⊗K ' (M ′′)∗⊗K, then also M⊗K '
M∗⊗K. On the other hand, if M ⊗K 'M∗⊗K and M ′⊗K ' (M ′)∗⊗K, then
also M ′′⊗K ' (M ′′)∗⊗K because the cancellation law is valid for KG-modules.
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Since the same argument holds when M ′ and M ′′ are interchanged, this proves
the first assertion.

We next prove equation (6.42). Since Mi is R-torsionfree, hence R-flat, the
sequence

0→Mi ⊗M ′ →Mi ⊗M →Mi ⊗M ′′ → 0

is exact, so by the long exact sequence of cohomology, viz.

(Mi ⊗M)G
gGMi→ (Mi ⊗M ′′)G

c→ H1(G,Mi ⊗M ′)
(id⊗f)1

→ H1(G,Mi ⊗M),

we obtain Coker(gGMi
) ' Ker((idMi ⊗ f)1), and hence (6.42) follows.

Finally, to prove formula (6.41), let t0 : M1 → M2 be an RG-isogeny, let
hi : Mi → M∗i be unimodular hermitian structures on Mi for i = 1, 2, and put
α0 = (t#0 h2 ◦ h−1

1 )⊗K ∈ AutKG(V1), where V1 = M∗1 ⊗K. Furthermore, let

t = invG(t0 ⊗ idM ) : (M1 ⊗M)G → (M2 ⊗M)G,

and α = invG(α0 ⊗ idV ) ∈ AutKG(V1 ⊗ V ), where V = M∗ ⊗ K, and define
similarly t′, α′, V ′ (respectively, t′′, α′′, V ′′) by replacing M by M ′ (respectively by
M ′′). Then by formula (5.23) we have

d
def
= δ(M1,M2;M)δ(M1,M2;M ′)−1δ(M1,M2;M ′′)−1(6.43)
= χ(t)2 det(α)−1 · χ(t′)−2 det(α′) · χ(t′′)−2 det(α′′).

Now since the diagram

0 → (V1 ⊗ V ′′)G
(id⊗g∗)G→ (V1 ⊗ V )G

(id⊗f∗)G→ (V1 ⊗ V ′)G → 0

↓ α′′ ↓ α ↓ α′

0 → (V1 ⊗ V ′′)G
(id⊗g∗)G→ (V1 ⊗ V )G

(id⊗f∗)G→ (V1 ⊗ V ′)G → 0

(6.44)

is commutative with exact rows, we see that the determinant terms in (6.43) cancel
out, and so we are left with

d = χ(t)2χ(t′)−2χ(t′′)−2.(6.45)

On the other hand, since the diagram

0 → (M1 ⊗M ′)G
fGM1→ (M1 ⊗M)G

gGM1→ (M1 ⊗M ′′)G

↓ t′ ↓ t ↓ t′′

0 → (M2 ⊗M ′)G
fGM2→ (M2 ⊗M)G

gGM2→ (M2 ⊗M ′′)G

(6.46)
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is also commutative with exact rows, we obtain from Proposition 3.4 the relation

χ(t) = χ(t′)χ(s′′),

where s′′ : Im(gGM1
)→ Im(gGM2

) denotes the restriction of t′′ to Im(gGM1
). Now by

Corollary 3.3 we have

χ(s′′) = χ(t′′)χ(Coker(gGM1
))χ(Coker(gGM2

))−1 = χ(t′′)ψ(M1,M2, g),

which yields
χ(t) = χ(t′)χ(t′′)ψ(M1,M2, g).

Substituting this in (6.45) gives equation (6.41).

The following corollary will be used and strengthened in the next subsection.

Corollary 6.22 If, in the situation of Theorem 6.21, M ′ is cohomologically triv-
ial, then we have

δ(M1,M2;M) = δ(M1,M2;M ′)δ(M1,M2;M ′′).(6.47)

Similarly, if M is cohomologically trivial then we have

δ(M1,M2;M) = δ(M1,M2;M ′)δ(M1,M2;M ′′)(6.48)
·χ(H1(G,M1 ⊗M ′))2χ(H1(G,M2 ⊗M ′))−2.

Proof. If M ′ is cohomologically trivial, then so is Mi ⊗M ′ (cf. Serre[Se], IX.3),
and so Ker((idMi ⊗ f)1) = H1(G,Mi ⊗M ′) = 0. This proves (6.47), and (6.48)
is proved similarly.

6.5. Triviality. The last result which we shall prove here is the following useful
formula which justifies in part the unusual definition of the discriminant introduced
in section 3:

Theorem 6.23 (Triviality) Let M be a non-degenerate RG-module which is co-
homologically trivial. Then the associated δ-invariant

δ(M1,M2;M) = R

is trivial for any pair (M1,M2) of symmetric RG-modules with M1⊗K 'M2⊗K.

We shall prove this theorem first for projective modules and then for arbitrary
cohomologically trivial modules by using the exact sequence formula.

The key to proving the theorem for projective modules is the following technical
lemma concerning the map

ρM = ρf,M : R⊗M∗ → (R⊗M)∗
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which was defined in Remark 4.4; here f : G→ {1} denotes the trivial map. More
explicitly, ρM is defined by the formula

ρM (r ⊗m∗)(r′ ⊗m′) = rr′m∗
(∑
g∈G

gm′
)

= rr′m∗(NGm′),

where r, r′ ∈ R,m∗ ∈M∗ and m′ ∈M .

Lemma 6.24 If M is a projective RG-module, then

ρM : R⊗RGM∗ → (R⊗M)∗

is an isomorphism.

Proof. Let us first suppose that M = RG. Then R⊗RGRG∗ = R, and if {g∗}g∈G
denotes a dual basis of the standard basis of RG, we have

ρM (1⊗ g∗)(1⊗ g′) = g∗
(∑
g1∈G

g1g
′
)

= 1,

for all g, g′ ∈ G. Thus ρM (1⊗ g∗) = 1 ∈ HomR(R⊗RGRG,R) = R, for all g ∈ G,
which shows that ρM is an isomorphism in this case. Since ρM is additive in M ,
it follows that ρM is an isomorphism for any direct factor of a free RG-module,
which proves the lemma.

Proposition 6.25 If P is a projective RG-module with a unimodular hermitian
RG-module structure h : P ∼→ P ∗, then

H0(G, (P, h)) ' H0(G, (P, h))(6.49)

is a unimodular bilinear R-module. In particular, we have that

dRG(P, h) = d′RG(P, h) = R.(6.50)

Proof. We first note that since P is projective we have Ĥ−1(G,P ) = Ĥ0(G,P ) = 0,
and so by the exact sequence (4.23) and Remark 4.9 we obtain the desired isometry
(6.49).

From (4.10) we see that the bilinear structure ind(h) on H0(P ) = Indf (P ) is
given by

indf (h) = ρf,P ◦ idR ⊗ h,

where f : G→ {1} denotes the trivial map. Now h is an isomorphism by hypoth-
esis, hence so is id ⊗ h, and thus it follows from Lemma 6.24 that ind(h) is also
an isomorphism, as asserted.
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Corollary 6.26 If (P, h) is as in the proposition, then for any unimodular her-
mitian RG-module (M,h′) we have

dRG((M,h′)⊗ (P, h)) = R.

In particular, for any admissible pair (M1,M2) the associated δ-invariant is trivial:

δ(M1,M2;P ) = R.

Proof. We first note that P ′ = M ⊗ P is again RG-projective. Indeed, it is
cohomologically trivial by Serre[Se], IX.3, and hence projective by Serre[Se], IX.5,
because P ′ is clearly R-torsionfree. Thus, since (P ′, h′′) = (P, h)⊗ (M,h′) is again
unimodular, the first equation follows directly from (6.50).

Moreover, the second equation follows from the first because

δ(M1,M2;P ) = dRG((M1, h1)⊗ (P, h)) · dRG((M2, h2)⊗ (P, h))−1,

for any choice of a unimodular structure hi on Mi, for i = 1, 2.

Remark 6.27 In the case that (P, h) = (RG, hG) is the regular hermitian RG-
module, a more direct proof of this corollary can be given via the Frobenius Reci-
procity Theorem. Indeed, since (RG, hG) ' IndGH(R, idR), where H = {1} (cf.
Example 4.4b)), we obtain by the Frobenius Reciprocity formula (6.28) (together
with (6.26)) that

dRG((M,h)⊗ (RG, hG)) ' dRH(Res(M,h)⊗ (R, idR)) = discR(M,h) = R.

We have thus proven the Triviality Theorem for symmetric projective RG-
modules. To go further, we shall use:

Lemma 6.28 If R is a discrete valuation ring, then every projective non-degene-
rate RG-module P is symmetric.

Proof. Since P is non-degenerate, we have an KG-isomorphism P ⊗K ' P ∗⊗K.
But P ∗ is also projective (cf. Curtis-Reiner[CR1], (10.29)), so it follows from
[CR1], (32.1), that P ' P ∗, as asserted.

Lemma 6.29 If M is a non-degenerate RG-module which is cohomologically triv-
ial, then M has a presentation

0→ P ′ → P →M → 0,(6.51)

where P and P ′ are non-degenerate projective RG-modules.
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Proof. Let 0 → M ′ → P → M → 0 be an RG-module presentation of M
with P = RGm a free module. Since M and P are non-degenerate, so is M ′ by
Theorem 6.21. Furthermore, since M and P are cohomologically trivial, the long
exact sequence of cohomology shows that this is also true for M ′. Since M ′ ⊂ P
is R-torsionfree, it follows that M ′ = P ′ is RG-projective (cf. Serre[Se], IX.5).

Proof of the Triviality Theorem. Suppose first that M = P is a (non-degenerate)
projective RG-module. If p ∈ Spec(R) is any prime ideal of R, then Mp is a
symmetric RpG-module by Lemma 6.28, and so δRpG((M1)p, (M2)p;Mp) = Rp by
Corollary 6.26. From the localization formula (6.4) we thus obtain that

δRG(M1,M2 :,M) =
⋂
p

δRpG((M1)p, (M2)p;Mp) =
⋂
p

Rp = R,

which proves the theorem if M is projective.
Now suppose that M is an arbitrary cohomologically trivial module, and let

P and P ′ be as in Lemma 6.29. Applying the exact sequence formula, notably
Corollary 6.22, to (6.51), we obtain

δ(M1,M2;M) = δ(M1,M2;P )δ(M1,M2;P ′)−1.

Since P and P ′ are RG-projective, we have δ(M1,M2;P ) = δ(M1,M2;P ′) = R by
the case treated above, and so the theorem is proved.

With the help of the Triviality Theorem, Corollary 6.22 can now be strength-
ened. It is convenient to separate the two cases of the corollary as follows.

Corollary 6.30 Let
0→M ′

f→M
g→M ′′ → 0

be an exact sequence of non-degenerate RG-modules, and suppose that M ′ is co-
homologically trivial. Then for any admissible pair (M1,M2) of RG-modules we
have:

δ(M1,M2;M) = δ(M1,M2;M ′′).(6.52)

Proof. Since δ(M1,M2;M ′) = R by the Triviality Theorem, this follows immedi-
ately from (6.47).

Corollary 6.31 Let

0→M ′ → Pr → · · · → P1 →M ′′ → 0

be an exact sequence of non-degenerate RG-modules, where the Pi are cohomolog-
ically trivial for 1 ≤ i ≤ r. Fix an admissible pair (M1,M2) of RG-modules and
write δ(M ′) = δ(M1,M2;M ′) and δ(M ′′) = δ(M1,M2;M ′′). Then we have:

δ(M ′) = δ(M ′′)(−1)r · χr(G,M1 ⊗M ′)2χr(G,M2 ⊗M ′)−2,(6.53)
= δ(M ′′)(−1)r · χr(G,M1 ⊗M ′′)2χr(G,M2 ⊗M ′′)−2,
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where, for an RG-module M , the truncated Euler characteristics χr(G,M) and
χr(G,M) are defined by

χr(G,M) =
r∏
i=1

χ(Hi(G,M))(−1)i+1
,

χr(G,M) =
r−1∏
i=0

χ(Ĥ−i(G,M))(−1)r−1−i
.

Proof. We first note that the second equation follows from the first since for i = 1, 2
we have by the usual dimension-shifting argument that

Ĥq(G,Mi ⊗M ′) ' Ĥq−r(G,Mi ⊗M ′′), for all q ∈ Z;

here we have used the fact that Mi ⊗ Pk is cohomologically trivial for 1 ≤ k ≤ r.
To prove the first equality in (6.53), we shall induct on r. If r = 1, then the

assertion is just equation (6.48) of Corollary 6.22, combined with the fact that
δ(P1) = R by the Triviality Theorem; thus, assume r > 1.

Applying the induction hypothesis to the exact sequence

0→M ′ → Pr → · · ·P2 →M → 0,

where M = Ker(P1 →M ′′), yields

δ(M ′) = δ(M)(−1)r−1
· χr−1(M1 ⊗M ′)2χr−1(M2 ⊗M ′)−2,

and similarly, consideration of the exact sequence

0→M → P1 →M ′′ → 0

shows that

δ(M) = δ(M ′′)−1χ(H1(G,M1 ⊗M))2χ(H1(G,M2 ⊗M))−2.

Thus, by combining the last two equations we obtain

δ(M ′) = δ(M ′′)(−1)r · c21c−2
2 ,(6.54)

where ci = χr−1(Mi ⊗M ′)χ(H1(G,Mi ⊗M))(−1)r−1
. But by dimension-shifting

as above we have

Ĥq(G,Mi ⊗M) ' Ĥq+r−1(G,Mi ⊗M ′),

and so it follows that

ci = χr−1(Mi ⊗M ′)χ(Hr(G,Mi ⊗M ′))(−1)r−1
= χr(Mi ⊗M ′).

Substituting this into (6.54) yields the first equation of (6.53), as desired.
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7. The invariant δ and character relations

We now interpret the results obtained in the previous section in terms of character
relations. Since character relations are naturally associated with the subgroup
module S(G), we first introduce this space. However, the functorial properties of
character relations are best understood in terms of the Burnside ring Ω(G), and
so we study this ring in some detail. Next we observe that the δ-invariant may
be viewed as a pairing of a certain ideal Ω(G)0 ⊂ Ω(G) with the Grothendieck
ring Mod(RG)non−deg of non-degenerate RG-modules, and this will then be used
to translate the results of the previous section into the form in which they were
presented in section 2.

7.1. The space of character relations. Recall from the introduction that a
character relation is a relation of the form∑

H≤G

nH1∗H = 0,(7.1)

where the nH are integers and 1∗H = IndGH(1H) denotes the permutation character
of the G-set G/H. To study such relations, consider the subgroup module

S(G) =
∑
H≤G

Z ·H

which is the free abelian group generated by the subgroups H ≤ G. Thus, each
element x ∈ S(G) may be written as a formal sum x =

∑
nHH, or as a tuple

x = {nH}; the latter was the notation used in the introduction.
We have a natural additive map

chG : S(G)→ ch(QG)

from the subgroup space S(G) to the character ring ch(QG) = K0(QG) which
associates to each subgroup H ≤ G its permutation character:

chG(H) = 1∗H .

The kernel of the character map chG is called the group of character relations of
G and is denoted by

S(G)0 = Ker(ch).

Clearly an element x =
∑
nHH ∈ S(G) lies in S(G)0 if and only if its coefficients

satisfy the character relation (7.1); this justifies the above terminology for S(G)0.

For our purposes it will be also useful to consider the map

chKG : S(G)→ ch(KG) = K0(KG)
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defined by chKG(X) = IndGX(K) for X ≤ G. However, this map is not really
something substantially new for we have

chKG = jKG ◦ chG,

where jKG : K0(QG)→ K0(KG) denotes the canonical injection. (In the case that
char(K) = 0, this is just the base-change map induced by the inclusion Q ⊂ K,
whereas when char(K) = p 6= 0, this is the map obtained by the composition
K0(QG)→ K0(QpG) = K0(FpG)→ K0(KG).) It thus follows that

S(G)0 = Ker(chKG).

We note that the map chKG factors over the map

κ ◦ η : Mod(RG)sym → K0(KG)

defined in Notation 5.14; in fact, if we define the map

chRG : S(G)→Mod(RG)sym

by chRG(X) = [IndGX(R)] for X ≤ G, then we clearly have

chKG = κ ◦ η ◦ chRG.(7.2)

In particular, we see that

chRG(S(G)0) ⊂Mod(RG)0
sym.(7.3)

We next want to consider functorial properties of character relations. To this
end, let f : G1 → G2 be group homomorphism. We then have an induced additive
map

f∗ : S(G1)→ S(G2)

which is defined by the rule f∗(X) = f(X) for X ≤ G1. We note that f∗ preserves
character relations, viz.

f∗(S(G1)0) ⊂ S(G2)0,(7.4)

because by Corollary 4.15 we have the formula

coindf ◦ chG1 = chG2 ◦ f∗.(7.5)

It is more difficult, however, to construct a map f∗ which relates the character
relations of G2 to those of G1. Here we cannot work integrally, but have to allow
denominators. This means that we can define f∗ only as a Q-linear map

f∗ : SQ(G2)→ SQ(G1),
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where SQ(Gi) = S(Gi)⊗Q. Explicitly, f∗ is given by

f∗(Y ) =
1
|G1|

∑
g∈G2

|f(gY g−1)|
|Y |

f−1(gY g−1) =
∑
X≤G1

mf (Y,X)X,(7.6)

where mf (Y,X) = #{g ∈ G2 : f−1(gY g−1) = X}/([G1 : X] · |Y |). However, the
fact that denominators appear here limits the usefulness of f∗, particularly since
there is a way to circumvent this difficulty.

7.2. Burnside rings. It is possible to avoid denominators in the above defini-
tion of f∗ if we replace the subgroup module S(G) by the Burnside ring Ω(G)
of G. By definition, Ω(G) is the Grothendieck ring associated to the semi-ring
Ω(G)+ consisting of isomorphism classes of G-sets, with addition and multiplica-
tion induced by the disjoint sum and direct product of G-sets, respectively; cf.
Curtis-Reiner[CR2], ch. 11.

The additive structure of Ω(G) is easily understood, for Ω(G) is by [CR2], (80.6)
a free abelian group with the canonical basis {[G/H]}H≤GG; in other words,

Ω(G) =
⊕
H≤GG

Z · [G/H],(7.7)

where the notation “H ≤G G” means that the index set runs over a system of
representatives of the set of conjugacy classes of all subgroups of G.

We have a natural surjection

sG : S(G)→ Ω(G)

which associates to each subgroup H ≤ G the isomorphism class of the G-set G/H;
thus sG(H) = [G/H]. It is clear that the map chG : S(G)→ ch(QG) factors over
sG, so we have an induced map

chΩ(G) : Ω(G)→ ch(QG),

whose kernel is denoted by

Ω(G)0 = Ker(chΩ(G));

thus, by definition we have

s−1
G (Ω(G)0) = S(G)0.

More generally, we also have the ring homomorphism

πRG : Ω(G)→Mod(RG)sym

which associates to each G-set S its associated permutation module:

πRG(S) = R[S].(7.8)

From the definitions it is clear that we have

πRG ◦ sG = chRG.(7.9)
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Remark 7.1 The ranks of the modules S(G)0 and Ω(G)0 are easily determined
by using Artin’s Induction Theorem (cf. [KR1]):

rank S(G)0 = #(subgroups of G)(7.10)
−#(conjugacy classes of cyclic subgroups of G),

rankΩ(G)0 = #(conjugacy classes of non-cyclic subgroups of G).(7.11)

In particular, it follows that if G is cyclic, then S(G)0 = Ω(G)0 = 0 (and con-
versely).

If f : G1 → G2 is a group homomorphism, then we have an induced ring
homomorphism

f∗ : Ω(G2)→ Ω(G1),

which is obtained by restriction of operators: each G2-set S is naturally a G1-set
via the rule g1 · s = f(g1)s.

To obtain a map in the other direction, let S be a G1-set, and define the G2-set
G2 ×f S as follows. Considering the cartesian product G2 × (Ker(f)\S) as a left
f(G1)-set via the rule f(g1) · (g2, s) = (g2f(g1)−1, g1s), we make the orbit space

G2 ×f S = f(G1)\(G2 × (Ker(f)\S))

into a left G2-set via g2 · (f(G1)(g, s)) = f(G1)(g2g, s). We thus obtain an additive
map

f∗ : Ω(G1)→ Ω(G2)

by setting f∗([S]) = [G2 ×f S].
In the sequel it will be useful to know the matrix representations of f∗ and f∗

in terms of the canonical bases of Ω(G1) and Ω(G2). To this end we prove:

Proposition 7.2 Let f : G1 → G2 be a group homomorphism.
a) For each subgroup X ≤ G1 we have

f∗([G1/X]) = [G2/f(X)].(7.12)

b) For each subgroup Y ≤ G2 we have

f∗([G2/Y ]) =
∑

g∈f(G1)\G2/Y

[G1/f
−1(gY g−1)] =

∑
X≤G1G1

nf (Y,X)[G1/X],(7.13)

where nf (Y,X) = #{g ∈ G2 : f−1(gY g−1) ∼ X}/([G1 : X] · |Y |).

Proof. a) Consider the map

t : G2 × (Ker(f)\G1/X)→ G2/f(X)
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defined by t(g2,Ker(f)g1X) = g2f(g1)f(X). It is clear that t is constant on the
f(G1)-orbits of the cartesian product and hence induces a map

t̄ : G2 ×f (G1/X)→ G2/f(X).

Clearly, t̄ is aG2-equivariant surjection, and is easily checked that t̄ is also injective.
Thus G2 ×f G1/X ' G2/f(X) as G2-sets, and the assertion follows.

b) To prove the first equality, we shall use the decomposition

G2/Y =
⋃

g∈f(G1)\G2/Y

f(G1)gY/Y

as G1-sets. Now for each g ∈ G2, the assignment tg(g1) = f(g1)gY induces a map

tg : G1/f
−1(gY g−1)→ f(G1)gY/Y,

which is clearly a surjection of G1-sets. Moreover, tg is injective because if tg(g1) =
tg(g′1), then f(g′1)g = f(g1)gy with y ∈ Y , so g−1

1 g′1 ∈ f−1(gY g−1) and hence
g′1f
−1(gY g−1) = g1f

−1(gY g−1). Thus tg is an isomorphism of G1-sets, which
proves the first equality in (7.13).

By what has just been proved we have∑
g∈f(G1)\G2/Y

[G1/f
−1(gY g−1)] =

∑
g∈G2

1
|f(G1)gY |

[G1/f
−1(gY g−1)]

=
∑

X≤G1G1

∑
g∈G2

f−1(gY g−1)∼X

1
|f(G1)gY |

[G1/X].

Now if f−1(gY g−1) ∼ X, then |X| = |Ker(f)| · |f(G1) ∩ gY g−1| = |Ker(f)| ·
|Y | · |f(G1)|/|f(G1)gY | = |G1| · |Y |/|f(G1)gY |, and so the coefficient of [G1/X] is
precisely nf (Y,X), which proves the second equality of (7.13).

Corollary 7.3 If Si is a Gi-set, then

πRG1(f∗([S2])) = Resf (R[S2]),(7.14)
πRG2(f∗([S1])) = Coindf (R[S2]).(7.15)

In particular, the maps f∗ and f∗ preserve character relations:

f∗(Ω(G1)0) ⊂ Ω(G2)0; f∗(Ω(G2)0) ⊂ Ω(G1)0.(7.16)

Proof. The first equation is clear from the definitions. To prove the second, we
may assume S1 = G1/X, where X ≤ G1. Then by (7.12) and Corollary 4.15 we
have

πRG2(f∗([G1/X])) = R[G2/f(X)] = Coindf (R[G1/X]),

which proves (7.15). The last assertion follows from (7.14) and (7.15) by taking
R = K and noting that πKG = chKG.
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Remark 7.4 It also follows from the proposition that the maps f∗ and f∗ on the
Burnside rings Ω(Gi) agree with those defined on the subgroup modules S(Gi):

sG2 ◦ f∗ = f∗ ◦ sG1 ,(7.17)
sG1 ◦ f∗ = f∗ ◦ sG2 .(7.18)

Here the second equation is understood to hold only after tensoring all spaces and
maps with Q.

7.3. The pairing δ on S(G)0 ×Mod(RG)non−deg. Recall that in the previous
two sections we had constructed and studied the pairing

δ : Mod(RG)0
sym ×Mod(RG)non−deg → Id(R,K) = K×/R×.

Since the homomorphism

chRG : S(G)→Mod(RG)sym

maps S(G)0 into Mod(RG)0
sym (cf. (7.3)), we can pull δ back to a pairing

δ̃ = δ̃RG : S(G)0 ×RG→ IdR(K)

via the rule
δ̃(
∑
nHH,M) = δ(chRG(

∑
nHH),M).(7.19)

Whenever convenient, we shall denote this pairing just by δ = δ̃.
Since chRG = πRG ◦ sG, we see that the pairing factors over Ω(G)0 to yield a

pairing which we shall also denote by δ:

δ : Ω(G)0 ×RG→ IdR(K).

We first show that this pairing δ = δ̃ is precisely the pairing which was intro-
duced in section 2.

Proposition 7.5 If (M,h) is a non-degenerate, L-valued hermitian RG-module,
then for any character relation {nH} ∈ S(G)0 we have

δ({nH},M) =
∏
H≤G

disc(InvH(M,h))nH .(7.20)

Proof. By Example 4.4b) and the reciprocity formula (6.28) we have

δ({nH},M) =
∏
H≤G

dRG((R[G/H], hG/H)⊗ (M,h))nH

=
∏

dRG(IndGH(R, id)⊗ (M,h))nH

=
∏

dRH(ResGH(M,h))nH ,
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which proves (7.20).

Next we shall use the maps f∗ and f∗ which were defined in the previous
subsection to formulate the coinduction formulae. For this, recall the following
notation from section 2:

Notation 7.6 For an element x =
∑
nXX ∈ S(G)0 and a RG-module M , let

δ∗RG(x,M) = εRG(x,M)δRG(x,M),(7.21)

where the element εRG(x,M) ∈ K× is defined by

εRG(x,M) =
∏
X

|X|nXrk(MX).(7.22)

Since ε is additive in x and is constant on conjugacy classes of subgroups, it follows
that εRG and hence δ∗ factor over Ω(G). Explicitly we have for a G-set S:

εRG([S],M) =
∏

s∈G\S

|Gs|rk(MGs ).

Note that if x is fixed, then εRG(x,M) depends only on the KG-module structure
of M ⊗K, and hence is additive on exact sequences.

Remark 7.7 If (M,h) is a non-degenerate hermitian RG-module, then it follows
from Proposition 7.5 and Proposition 5.4d) that

δ∗RG({nH},M) =
∏
H≤G

disc(MH , h|MH ))nH .(7.23)

Thus, δ∗ is the same invariant as that of Remark 2.6.

Theorem 7.8 (Coinduction) Let f : G1 → G2 be a group homomorphism, and
let Mi be a non-degenerate RGi-module. Then we have for any xi ∈ Ω(Gi)0 the
formulae:

δRG1(f∗(x2),M1) = δRG2(x2, Coindf (M1)),(7.24)
δ∗RG2

(f∗(x1),M2) = δ∗RG1
(x1, Resf (M2)).(7.25)

In other words, we have

δRG2(f∗(x1),M2) = εf (x1,M2)δRG1(x1, Resf (M2))(7.26)

where for x1 =
∑
nXX ∈ S(G1) the correction term εf (x1,M2) is given by

εf (x1,M2) = ε(x1, Resf (M2))ε(f∗(x1),M2)−1 =
∏

X≤G1

|Ker(f) ∩X|nXrk(M
f(X)
2 ).

(7.27)
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Proof. In view of (7.14), the first equation follows directly from the Coinduction
Theorem 6.15. To prove the second one, write xi = [S1]− [S2]. Then by (7.15) we
obtain from the Coinduction Theorem for Permutation Modules (Theorem 6.19)
that

δ(f∗(x1),M2) = δRG2(Coindf (R[S1]), Coindf (R[S2]);M2)
= εf (S1,M)εf (S2,M)−1δRG1(R[S1], R[S2];Resf (M2)),

where, as in Theorem 6.19,

εf (Si,M) =
∏

s∈G1\Si

|Ker(f) ∩ (G1)s|rk(H0(f((G1)s),M2))

=
∏

s∈G1\Si

(
|(G1)s|
|f((G1)s)|

)rk(H0(f((G1)s),M2))

= ε([Si], Resf (M2))ε(f∗([Si]),M2)−1;

here we have used (7.12) and the fact that H0(f(X),M2) = H0(X,Resf (M2)) for
every X ≤ G1. This proves (7.26) and (7.27), from which (7.25) follows readily.

7.4. Proofs of the main results. We can now proceed to prove the main results
stated in section 2, with the exception of Theorem 2.7, which will be considered
separately in the next section.

For the most part, the proofs just consist of translating the results of section 6
into the language of character relations, which is done as follows. Let

∑
nH1∗H = 0

be a character relation, and put

M1 =
⊕
nH>0

IndGH(R)nH , M2 =
⊕
nH<0

IndGH(R)−nH .

Then M1 ⊗K 'M2 ⊗K and we have in the notation of sections 5 and 6:

δ({nH},M) = δ(M1,M2;M);

this follows immediately from the definitions (cf. (7.19) and (5.22)).

Proof of Theorem 2.5: Since by Proposition 7.5 we have

δ(M1,M2;M) =
∏
H

discR(InvH(M,h))nH ,

the assertions of Theorem 2.5 follow immediately from those of Theorem 6.1.

Proof of Theorem 2.8: This follows immediately from the more precise Uniform
Boundedness Theorem 6.6.

Proof of Theorem 2.9: This is a special case of the Triviality Theorem 6.23.
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Proof of Theorem 2.10 and of Corollary 2.11: These follow from the Exact Se-
quence Formula (Theorem 6.21) and Corollary 6.31, combined with the fact that
by Shapiro’s lemma (cf. [CE], ch. XII, Ex. 7) we have

Hq(G,Mi ⊗M) =
⊕
X≤G

Hq(X, IndGX(M))⊕nX '
⊕
X≤G

Hq(X,M)⊕nX , for q ≥ 0.

Proof of Theorem 2.12: Let f : X → G denote the inclusion map. Then by the
definition of f∗ in subsection 7.1 we have

indGX

(∑
mY Y

)
= f∗

(∑
mY Y

)
,

and so (2.14) follows directly from (7.26) (and (7.17)). (Note that (7.27) shows
that εf (x,M) = 1 if f is injective.) Moreover, by (7.6) we have

resGX

(∑
nHH

)
=
∑
Y≤X

∑
H≤G

nHm(Y,H)Y =
∑
H≤G

nHf
∗(H) = f∗

(∑
nHH

)
,

so (2.15) follows from (7.24) and (7.18). This proves Theorem 2.12.

Proof of Example 2.13: a) This follows immediately from Theorem 2.12 by noting
that if X is cyclic, then resGX({nH}) ∈ Ω(X)0 = 0 by (7.16) and Remark 7.1.

b) The hypothesis means that M = R[S] is a direct sum of modules induced
from cyclic subgroups (cf. Example 4.4b)), and so the assertion follows from a).

c) By decomposing S into its orbits, we may reduce to the case that G acts
transitively on S. Then R[S] = IndGX(R) by Example 4.4b), where X = Gs, and
so we obtain by applying Theorem 2.12 with N = R that

δR({nH}, R[S]) = δ({n∗Y }, R) =
∏
Y

|Y |−n
∗
Y

by (2.7). Now by (2.16) we have∏
Y

|Y |−n
∗
Y =

∏
H

∏
Y

|Y |−nHm(H,Y )

=
∏
H

∏
g∈G
|gHg−1 ∩X|−nH/(|H|[X:gHg−1∩X])

=
∏
H

∏
g∈H\G/X

|H ∩ gXg−1|−nH ,

which proves (2.19).

Proof of Theorem 2.14: a) We shall apply Theorem 7.8 to the quotient map f :
G→ Q = G/X. By definition of f∗ (cf. (7.6)) we have

f∗
(∑
Y≤Q

nY Y
)

=
∑
H≤G

∑
Y≤Q

nYmf (Y,H)H.
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Now mf (Y,H) = 0 unless H ∼ f−1(Y ), and in this case

mf (Y,H) = #{g ∈ Q : f−1(gY g−1) = H}/([G : H]|Y |)
= #{g ∈ Q : gY g−1 = f(H)}/([G : H]|Y |)
= |NQ(f(H))|/([G : H]|Y |)
= |NG(H)|/|G| = [G : NG(H)]−1

since H ≥ X. Thus

f∗
(∑
Y≤Q

nY Y
)

=
∑

X≤H≤G

∑
Y∼f(X)

nY /[G : NG(H)]H = infQG ({nY }).

Since Coindf (M) = MX by Proposition 4.12b), the assertion (2.20) follows im-
mediately from (7.24).

b) Here we have

f∗

(∑
H

nHH
)

=
∑
H

nHf(H) =
∑
Y

∑
H

f(H)=Y

nHY = indQG({nH}),

so equations (2.21) – (2.23) follow directly from equations (7.25) – (7.27).

Proof of Example 2.15: a) Apply Theorem 2.14b) with X = G.
b) By hypothesis, M may be viewed as an RQ-module, so the assertion follows

from (2.22) because indQG({nH}) ∈ S(Q)0 = 0 by (7.16) and Remark 7.1.

Proof of Corollary 2.16: Here we have rank(MH) = 0 for all subgroups H ≤ G,
so εX({nH},M) = 1. This proves the first assertion, and the second follows from
Example 2.15b).

Proof of Proposition 2.18: Let H0, . . . ,Hp denote the p+1 subgroups of G of order
p. We then have the relation

p∑
i=0

NHi = NG + p · 1,

where NH =
∑
g∈H g ∈ RG. This yields

∑
nHεH = 0, where εH = 1

|H|NH ∈ KG,
and so we obtain

∑
nH1∗H = 0 because for any irreducible character χ we have

(
∑
nH1∗H , χ)G = χ(

∑
nHεH) = 0.

Thus x =
∑
nHH ∈ S(G)0 is a character relation. Moreover, since rk(S(G)0) = 1

by Remark 7.1, it follows that every character relation of G is a rational and hence
an integral multiple of x because some nH = 1.
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a) We first note that since Mp = (M (p))p for p = (p), it follows from the
localization formula (2.2) that δ(M) = δ(M (p)), and so we may assume henceforth
that M = M (p) = Z/prZ. Let X = Ker(α : G → Aut(M)), where α denotes the
map defining the action of G on M . If X 6= 1, then G/X is cyclic and MX = M ,
so δ(M) = Z by Corollary 2.16.

Thus, assume that X = 1. Here G is a subgroup of Aut(M) = (Z/prZ)×, so
Aut(M) cannot be cyclic, which forces the conditions p = 2 and r ≥ 3. More-
over, in that case we have that α induces an isomorphism α : G ∼→ Aut(M)2 =
{±idM ,±(1 + 2r−1)idM}, so if we choose σ, τ ∈ G such that α(σ) = −id, α(τ) =
(1 + 2r−1)id, then we have that

M 〈σ〉 = M 〈στ〉 = MG = M2 and M 〈τ〉 = 2M.(7.28)

We thus obtain δ(M) = (|M 〈σ〉| · |M 〈τ〉| · |M 〈στ〉| · |M |−1 · |MG|−2)−1
Z = (2 ·2r−1 ·

2 · 2−r · 2−2)−1
Z = 2Z, which proves a).

b) By the exact sequence formula (Theorem 2.10) we have

δ(M) = δ(Mtor)δ(M)ψ(πM )2,(7.29)

where ψ(πM ) =
∏
H χ(Coker(πHM : MH → M

H
))nH . Since M

H
= M , we have

the exact sequence

0→Mtor/M
H
tor →M/MH → Coker(πHM )→ 0,

from which we obtain the relation

χ(Coker(πHM )) = χ(M/MH)χ(Mtor/M
H
tor)
−1 = χ(M/MH)χ(Mtor)−1χ(MH

tor)

and hence

ψ(πM ) = χ(Mtor)−ΣnH
∏

χ(MH
tor)

nH
∏

χ(M/MH)nH

= δ(Mtor)−1
∏

χ(M/MH)nH ,

where we have used the fact that
∑
nH = 0. Substituting this in (7.29) yields

δ(M) = δ(Mtor)−1δ(R)r
∏
H

χ(M/MH)2nH ,

because M = Rr, where r = rk(M). Moreover, by (2.7) we have

δ(R) =
∏
H

|H|−nHR =

(
p∏
i=0

|Hi|−1

)
|1|−(−1)|G|−(−p)R = p−(p+1)+2pR

and so b) follows.
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c) The non-degeneracy hypothesis means that V ' V ∗, where V = M ⊗ K.
Since V ∗ ' V ⊗(p−1), we see that this is only possible for p = 2. This proves the
first assertion.

To prove the next one, put X = Ker(G → Gl(M)) = Ker(G → Gl(V ));
by hypothesis we have that X 6= G. Moreover, since dim(V ) = 1, it follows by
elementary representation theory that G/X is cyclic, so |X| = p = 2. This proves
the second statement.

To prove the first equality in equation (2.29), we shall use the exact sequence
formula (7.29) again. Here we have

ψ(πM ) = χ(Coker(MX →M)) = χ(M/MX) = χ(M/(Mtor +MX)),

because V H = M
H

= 0 if H 6= X, {1} and Coker(M →M) = 0, and so by (7.29)
we obtain

δ(M) = δ(Mtor)δ(M)χ(M/(Mtor +MX))2.(7.30)

Next we compute δ(M) via the formula (7.20). In order to apply this, we shall
view M = R as a hermitian RG-module via the standard pairing h(x, y) = xy.
Since M

H
= 0 for H 6= X, 1 and M

X
= M we see that formula (7.20) reduces to

δ(M) = disc(M
X
, 1

2h) · disc(M,h)−1 = 1
2R

Substituting this in (7.30) proves the first equality of (2.29).
To prove the last equation, consider the exact sequence

MX →M → H1(X,Mtor)→ H1(X,M)→ H1(X,M).

Since X acts trivially on M we have H1(X,M) = Hom(X,M) = 0 because M is
R-torsionfree. We thus obtain the exact sequence

0→M/MX → H1(X,Mtor)→ H1(X,M)→ 0(7.31)

which yields the relation

χ(M/MX) = χ(H1(X,Mtor)) · χ(H1(X,M))−1.(7.32)

Now since X is a cyclic group, the theory of Herbrand quotients (cf. Serre[Se],
VIII.4) is applicable, and so by Serre[Se], VIII.4, Proposition 8 and its corollary
we have:

χ(H1(X,Mtor)) = χ(Ĥ0(X,Mtor)),
χ(Ĥ0(X,M))χ(H1(X,M))−1 = χ(Ĥ0(X,M))χ(H1(X,M))−1 = 2R.

Here the last equality is valid because M = R is a trivial RX-module and so

Ĥ0(X,M) = R/2R and H1(X,M) = 0.
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Substituting these relations in (7.32) yields

χ(M/MX) = χ(Ĥ0(X,Mtor)) · 2χ(Ĥ0(X,M))−1,

and so the second equality of (2.29) follows.

d) Put Y = Ker(G → Aut(M4)). Then Y 6= G because X acts non-trivially
on M4, and Y 6= 1 because Aut(M4) = Z/2Z is cyclic. Thus Y = 〈τ〉 is cyclic of
order 2, which proves the first assertion.

To prove formula (2.30), put d = [M : (Mtor + MX)]. We shall show that the
formulae

d · |Ĥ0(Y,M)| = |Ĥ0(Y,Mtor)|(7.33)
δ(Mtor) · |Ĥ0(Y,Mtor)| = 2Z(7.34)

are valid, from which (2.30) follows immediately because by (2.29) we have

δ(Mtor)δ(M) = 1
2 [δ(Mtor)d]2 = 1

2 [2|Ĥ0(Y,M)|−1]2.

Moreover, it follows from (7.33) and (7.34) that |Ĥ0(Y,M)| divides 2 because
δ(Mtor) is integral by a), and so the last assertion of d) is also evident.

It thus suffices to prove formulae (7.33) and (7.34). For the first, it is clearly
enough to construct the exact sequence

0→M/(Mtor +MX) N̄Y→ Ĥ0(Y,Mtor)→ Ĥ0(Y,M)→ 0.(7.35)

To construct this sequence we shall start with the obvious sequence

0→ NY (M)/NY (Mtor)→ Ĥ0(Y,Mtor)→ Ĥ0(Y,M)→ 0(7.36)

which is exact because MY = MY
tor. Next we observe that

NY (MX) ⊂MY ∩ 2Mtor ⊂ NY (Mtor),(7.37)

and hence NY induces a surjective homomorphism

N̄Y : M/(Mtor +MX)→ NY (M)/NY (Mtor),

which will be seen to be an isomorphism.
To prove (7.37), let us first verify the following fact:

(σ − 1)x+ (1 + τ)x ∈ 2Mtor,∀x ∈M.(7.38)

To see this, let a be a generator of Mtor = Z/mZ. Then σ(a) = −a and
τ(a) = ka with (k,m) = 1; we note that k ≡ 1 mod 4 because by definition of τ
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we have τ(m4 a) = m
4 a, so km4 ≡

m
4 mod m. Now since (σ − 1)x, (1 + τ)x ∈ Mtor,

we can write (σ − 1)x = k1a, (1 + τ)x = k2a for some integers k1, k2. Then

στ(x) = σ(−x+ k2a) = −(x+ k1a)− k2a,

τσ(x) = τ(x+ k1a) = −x+ k2a− kk2a,

which yields the relation (kk1 +k2)a = −(k1 +k2)a or k1(1 +k) + 2k2 ≡ 0 mod m.
Since k ≡ 1 mod 4 and 4|m this gives k1 + k2 ≡ 0 mod 2, which proves (7.38).

From (7.38) it follows immediately that NY (MX) ⊂ MY ∩ 2Mtor, which is
the first inclusion of (7.37). Next, suppose x ∈ MY ∩ 2Mtor. Then x = 2y with
y ∈Mtor and we have τ(y)− y = z ∈M2. Thus x = 2y = NY (y)− x ∈ NY (Mtor)
because NY (M4) = M2, and so (7.37) follows.

We thus obtain the desired map N̄Y . To prove that N̄Y is injective, it is enough
to show that

Ker(NY : M →M) ⊂Mtor +MX .(7.39)

This again follows from (7.38). Indeed, if x ∈ Ker(NY ), then by (7.38) we have
(σ − 1)x = 2y with y ∈ Mtor, so σ(x+ y) = x+ 2y + σ(y) = x+ y, which means
that x+y ∈MX . Thus x = −y+(x+y) ∈Mtor +MX , which proves (7.39). This
shows that N̄Y is an isomorphism, and so we obtain the desired exact sequence
(7.35).

It remains to prove equation (7.34), for which we shall distinguish two cases:

Case 1: G does not act faithfully on M (2).
Since Ỹ := Ker(G → Aut(M (2))) ⊂ Ker(G → Aut(M4)) = Y , and Ỹ 6= 1 by
hypothesis, it follows that Ỹ = Y . Thus Y acts trivially on M (2) and hence

Ĥ0(Y,Mtor) = Ĥ0(Y,M (2)) = M (2)/2M (2) ' Z/2Z.

Since we have δ(Mtor) = Z by a), this proves (7.34).

Case 2: G acts faithfully on M (2).
Here we shall show that

Ĥ0(Y,Mtor) = 0,(7.40)

from which (7.34) follows immediately because by a) we have in this case that
δ(Mtor) = 2Z.

To prove (7.40), first note that since τ acts trivially on M4, it follows from
(7.28) that (M (2))Y = 2M (2). Moreover, since a′ = m

2r a is a generator of M (2), we
see that NY (a′) = a′+ka′ = 2(1+k

2 )a′ is a generator of 2M (2) because k ≡ 1 mod 4,
and so NY (M (2)) = 2M (2). Thus Ĥ0(Y,Mtor) = Ĥ0(Y,M (2)) = 0, as desired.

This concludes the proof of equation (7.34) and hence, as was explained above,
also of Proposition 2.18.
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8. Applications to class number relations

In this final section we apply the theory of discriminants of hermitian ZG-modules
to study relations among S-regulators of number fields. For this, we shall first
introduce a hermitian structure on the group of S-units and relate its discriminant
to the S-regulator. This will then be used to compute the δ-invariant of US(K),
from which Theorem 2.7 (and hence Brauer’s Theorem 1.2) follows readily. Finally,
we shall prove Dirichlet’s Theorem 1.1.

8.1. The S-unit group. Let K be a number field and let S ⊃ S∞ be a finite
set of places of K containing the archimedean places. As usual, the S-unit group
of K is defined by

US(K) = {x ∈ K : |x|v = 1,∀v 6∈ S}.

Here we shall view it as a bilinear Z-module via the pairing ρS defined by

ρS(u, u′) =
∑
v∈S

dv log |u|v log |u′|v, for u, u′ ∈ US(K),(8.1)

where dv = [K̂v : Qv] denotes the absolute degree of the completion K̂v and | · |v
is the absolute value associated to v which is normalized in such a way that its
restriction to Q coincides with the usual p-adic or archimedean absolute values of
Q. Thus, with this normalization the product formula for u ∈ US(K) becomes:∏

v∈S
|u|dvv = 1.(8.2)

We now want to compute the discriminant of the bilinear module (US(K), ρS).
As one might expect, its essential ingredient is the S-regulator of K, which, as in
Tate[Ta], p. 22, is defined by

regS(K) = |det((dv log |ui|v) 1≤i≤r
v∈S\v0

)|,(8.3)

where v0 ∈ S is an arbitrarily chosen place and u1, . . . , ur denotes a basis of
US(K) = US(K)/US(K)tor; recall that by the S-unit theorem its rank is r =
rk(US(K)) = |S| − 1.

Proposition 8.1 The discriminant of the bilinear Z-module (US(K), ρS) is given
by the formula

disc(US(K), ρS) = regS(K)2d(S)/(w(K)p(S))Z,(8.4)

where w(K) = |US(K)tor| = |US∞(K)tor| denotes the number of roots of unity in
the field K,

d(S) =
∑
v∈S

dv and p(S) =
∏
v∈S

dv.
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Proof. Let u1, . . . , ur be a basis of US(K) = US(K)/US(K)tor, and let G = (gij)
denote the associated Gram matrix; thus

gij =
∑
v∈S

dv log |ui|v log |uj |v, for 1 ≤ i, j ≤ r.

Then by (3.38) and (3.37) we have

disc(US(K), ρS) = |US(K)tor|−1 det(G)Z = w(K)−1 det(G)Z.(8.5)

In order to relate det(G) to the regulator, write S = {v1, . . . , vr+1} and consider
the matrix

A =

 dv1 log |u1|v1 · · · dv1 log |ur|v1 dv1

...
...

...
dvr+1 log |u1|vr+1 · · · dvr+1 log |ur|vr+1 dvr+1

 ,

which is related to G by the formula

Atdiag(
1
dv1

, . . . ,
1

dvr+1

)A =
(
G 0
0 d(S)

)
;

this follows by multiplying out the left hand side and applying (8.2). We thus
obtain:

det(G) = det(A)2/(d(S)p(S)).(8.6)

Finally we want to compute det(A). By adding the first r rows to the last one
and applying (8.2) again, we obtain

det(A) = det


dv1 log |u1|v1 · · · dv1 log |ur|v1 dv1

...
...

...
dvr log |u1|vr · · · dvr log |ur|vr dvr

0 · · · 0 d(S)

 = ±regS(K) · d(S).

Substituting this in (8.6) and (8.5), the assertion follows.

From now on we shall consider the case that S is invariant under a group
G ≤ Aut(K) of automorphisms of K, so US(K) is a naturally a ZG-module. It is
immediate that ρS is G-equivariant, and thus (US(K), ρS) is in fact a hermitian
ZG-module.

To compute its δ-invariant, we shall determine the invariant modules of ŨS(K)
with respect to subgroups H ≤ G.

Proposition 8.2 For each subgroup H ≤ G there is a natural isometry

iH : (UH\S(KH), ρH\S) ∼→ InvH(US(K), ρS),(8.7)

where we view H\S as the set of places of the fixed field KH which lie below S.
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Proof. Clearly US(K)H = US(K) ∩ KH = UH\S(KH), and hence the inclusion
map iH : UH\S(KH)→ US(K) induces an isomorphism

iH : UH\S(KH) ∼→ US(K)H .

To compare the hermitian structures, let u, u′ ∈ US̄(KH), where S̄ = H\S. Then

ρS(iH(u), iH(u′)) =
∑
v̄∈S̄

∑
v|v̄

dv log |u|v̄ log |u′|v̄ = |H|ρS̄(u, u′),

because ∑
v|v̄

dv = dv̄|H|.(8.8)

Thus invH(ρS) = ρS̄ , which proves the assertion.

Corollary 8.3 Let x =
∑
nHH ∈ S(G)0 be a character relation. Then

δ(x,US(K)) =
∏
H

(
d(H\S)regH\S(KH)2

p(H\S)w(KH)

)nH
.(8.9)

Proof. By Proposition 7.5 and Proposition 8.2 we have

δ(x,US(K)) =
∏
H

disc(InvH(US(K), ρS))nH =
∏
H

disc(UH\S(KH), ρH\S)nH ,

and so (8.9) follows from Proposition 8.1.

The above formula (8.9) can be simplified by means of the following lemma.

Lemma 8.4 Let S be a G-invariant set of places of K, and let x =
∑
nHH ∈

S(G)0 be a character relation. Then:∏
H

d(H\S)nH = δ(x,Z),(8.10) ∏
H

p(H\S)nH = δ(x,Z[S]).(8.11)

Proof. a) If H ≤ G is a subgroup, then by (8.8) we have

d(S) = |H|d(H\S),

and so we obtain∏
H

d(H\S)nH =
∏
H

(|H|−1d(S))nH =

(∏
H

|H|−nH
)
·

(∏
H

d(S)nH
)

= δ(x,Z);
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here we have used (2.7) and the fact that∑
H

nH =
∑
H

nH(1G, 1∗H)G = 0.(8.12)

b) By decomposing S into its G-orbits and treating each orbit separately, we
may assume without loss of generality that G acts transitively on S. Thus, if
we fix v0 ∈ S and let Z = Gv0 denote the stabilizer (or decomposition group)
of v0, then the map g → gv0 induces a bijection G/Z

∼→ S. Moreover, since the
decomposition group of v = gv0 is gZg−1, we obtain the relation

dv = |gZg−1|dw = |Z|dw,(8.13)

where w is the place of KG lying below any v ∈ S.
If H ≤ G is any subgroup, then the H-orbit space S̄ = H\S may be identified

with the double coset space H\G/Z, and for each v̄ ∈ S̄ we have the analogous
formula

dv = |H ∩ gZg−1|dv̄, if v = gv0|v̄,(8.14)

because ZH(v) = H ∩ gZg−1 is the decomposition group of v = gv0 with respect
to H. Comparing (8.14) with (8.13) gives

dv̄ =
|Z|dw

|H ∩ gZg−1|
,(8.15)

and so we obtain

p(H\S) =
∏

v̄∈H\S

dv̄ =
∏

g∈H\G/Z

|Z|dw
|H ∩ gZg−1|

.(8.16)

This yields∏
H

p(H\S)nH =
∏
H

∏
g∈H\G/Z

(
|Z|dw

|H ∩ gZg−1|

)nH
=
∏
H

∏
g∈H\G/Z

|H ∩ gZg−1|−nH ,

where the latter equality follows from the fact that∑
H

nH |H\G/Z| =
∑
H

nH(1∗H , 1
∗
Z)G = 0.(8.17)

(In the last formula we have used the fact that |H\G/Z| = (1∗H , 1
∗
Z) by Mackey’s

Theorem and Frobenius Reciprocity.) In view of Example 2.13c), this proves
(8.11).
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8.2. Proofs of the main results. We can now proceed to prove the main
theorem on class number relations:

Proof of Theorem 2.7: Write x =
∑
nHH. Then by Corollary 8.3 and Lemma 8.4

we obtain

δ(x,US(K)) =
∏
H

(
d(H\S)regH\S(KH)2

p(H\S)w(KH)

)nH
(8.18)

=
∏
H

(
regH\S(KH)2

w(KH)

)nH
δ(x,Z)δ(x,Z[S])−1,

which proves the first assertion of the theorem. To deduce equation (2.8) from
this, we first note that Brauer’s formula (1.6) may be generalized to S-regulators
and S-class numbers in the following manner:∏

H

(
regH\S(KH)hH\S(KH)w(KH)−1

)nH = 1.(8.19)

This follows from the usual Artin formalism applied to the Artin L-functions
LS(s, χ) (as defined in Tate[Ta], p. 23), using the fact that

LS(s, 1∗H) = ζKH ,H\S(s) ∼ −
hH\S(KH)regH\S

w(KH)
s|H\S|−1

in a neighbourhood of s = 0 (cf. [Ta], p. 23).
Thus, by (8.19) and (8.18) we obtain

∏
H

hH\S(KH)2nH =
∏
H

w(KH)nH
∏
H

(
regH\S(KH)2

w(KH)

)−nH
= δ(x,U(K)tor)−1

(
δ(x,US(K))δ(x,Z)−1δ(x,Z[S])

)−1
,

which proves equation (2.8). The last assertion follows immediately from Example
2.13b).

As an illustration of the above class number formula, let us now prove Dirich-
let’s Theorem:

Proof of Theorem 1.1: Since G = Gal(K/Q) ' Z/2Z× Z/2Z, we obtain from the
first assertion of Proposition 2.18 and Theorem 2.7 the class number relation

[h(Q(
√
d))h(Q(

√
−d))h(Q(i))h(K)−1h(Q)−2]2 = 2[δ(U(K))δ(U(K)tor)]−1,

(8.20)
where we have also used the fact that δ(Z) = 2Z; cf. Proposition 2.18b).

In order to compute the right hand side of 8.20, we shall apply Proposition
2.18d) to M = U(K), and thus need to check that M satisfies the hypotheses
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there. For this, note first that M is as in Proposition 2.18c) because by Dirichlet’s
Unit Theorem we have rk(U(K)) = r = r1 + r2 − 1 = 1 since r1 = 2 and r2 = 1,
and hence G acts non-trivially on M since rk(MG) = rk(U(Q)) = 0. Moreover, if
K+ = Q(

√
d) denotes the real subfield of the CM-field K, then rk(U(K+)) = 1, so

the σ of 2.18c) is just the complex conjugation automorphism. Next we note that
Mtor is cyclic, being generated by a suitable root of unity ζ of K, and so σ acts
by multiplication by −1 since σ(ζ) = ζ̄ = ζ−1. In addition we see that 4 divides
|Mtor| because i =

√
−1 ∈ K. Thus M satifies all the hypotheses of Proposition

2.18d), and so substituting (2.30) in the right hand side of (8.20) and using the
well-known fact that h(Q(i)) = h(Q) = 1 yields the relation

[h(d)h(−d)h(K)−1]2 = |Ĥ0(Y,M)|2.

We thus see that (1.1) holds with

Q = 2|Ĥ0(Y,M)|−1.(8.21)

It remains to verify that this definition of Q coincides with the one given in (1.2).
For this, we first note that Y = Gal(K/Q(i)) because Y fixes M4 = 〈i〉. Thus, if
K 6= Q(ζ8), then U(K)Y = U(Q(i)) = 〈i〉 and NY (U(K)) = 〈±1, NY (ε)〉, and so
the desired coincidence is immediate in view of the last assertion of Proposition
2.18d). On the other hand, if K = Q(ζ8), then Mtor = M8 = 〈ζ8〉, and so
by the proof of Proposition 2.18d) (or otherwise) it follows that Ĥ0(Y,M) =
Ĥ0(Y,Mtor) = 0. We thus obtain from (8.21) that Q = 2 in this case, which
proves the assertion.

Remark 8.5 The above proof also shows that the invariant Q can be interpreted
as an index of unit groups. Indeed, if K 6= Q(ζ8), then it follows from (2.30) and
(2.29) that

Q = [U(K) : (U(K)tor + U(K+))],

which is the usual index considered in the theory of abelian fields and CM-fields
(cf. Washington[Wash], p. 39).

In order to include also the case K = Q(ζ8), we note with Herglotz[He] (cf.
also Kubota[Kb]) that the above index is equal to the index

Q = [U(K) : Ũ(K)],

where Ũ(K) denotes the subgroup generated by the unit groups of the proper
subfields of K, and that this formula is also true for K = Q(ζ8).

We have thus also proven Herglotz’s version of Dirichlet’s Theorem. Note
that this version is actually considerably easier to obtain by our methods than
Dirichlet’s version because it uses essentially only Proposition 2.18c) and not part
d) which required a much more detailed analysis.
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bizyklischen biquadratischen Zahlkörpers. Nagoya Math. J. 6 (1953), 119-
127.

[Ku] S. Kuroda, Über die Klassenzahlen algebraischer Zahlkörper. Nagoya
Math. J. 1 (1950), 1 - 10.



88 Ernst Kani
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