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1 Introduction

Let XΓ = Γ\H∗ be the modular curve associated to a congruence subgroup Γ of level
N with Γ1(N) ≤ Γ ≤ Γ0(N). Then XΓ has a canonical model X = XΓ,Q defined over
Q, and its Jacobian variety JX is also defined over Q. Let E = End0

Q(JX) denote the
Q-algebra of Q-endomorphisms of JX . It is well-known that E contains the Hecke
algebra T′

Q generated (as a Q-algebra) by the Hecke operators Tp with p - N .
If N is prime, then E = T′

Q (cf. Ribet[6]), but for composite N ’s this is no
longer true in general. One reason for this is that for each pair (M, d) with dM |N
there is a “degeneracy morphism” (cf. Mazur[4]) BM,d : X → XM , where XM is
the corresponding curve of level M , and that these morphisms give rise to extra
endomorphisms (called “degeneracy operators”) DM,d = B∗

M,1 ◦ (BM,d)∗ and tDM,d =
B∗

M,d ◦ (BM,1)∗ of JX .
The purpose of this paper is to prove the following basic result which does not

seem to have been recorded in the literature (but is well-known to the experts):

Theorem 1. End0
Q(JX) is generated as a Q-algebra by the Hecke algebra T′

Q and the
degeneracy operators DM,d,

tDM,d, for dM |N .

In particular, we see that the Q-algebra E := 〈T′
Q, DM,d,

tDM,d : dM |N〉Q contains
the full Hecke algebra TQ = 〈Tn : n ≥ 1〉Q as a subalgebra; we will thus refer to E as
the extended Hecke algebra. Note that for special curves (such as X0(p

2) and X(p))
we can use the methods below to obtain other generators of E; cf. Example 19 below.

It is immediate that the algebra E is contained in the Q-algebra M of all modular
endomorphisms, i.e. M is the Q-linear span of those endomorphisms of JX which are
defined by a double coset ΓgΓ with g ∈ GL+

2 (Q), as in [8]. We thus obtain:

Corollary 2. Every endomorphism f ∈ End0
Q(JX) is modular, i.e. f is a Q-linear

combination of endomorphisms defined by double cosets.

Note that the analogue of this statement is no longer true for endomorphisms
which are not Q-rational: the presence of (non-rational) CM-elliptic curves in JX

gives rise to endomorphisms which are not modular, as is easy to see.
Another interesting consequence of Theorem 1 is the following result which gen-

eralizes a statement proved in Mazur[4], p. 139.
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Corollary 3. The centre of End0
Q(JX) is T′

Q, i.e. Z(E) = T′
Q.

In fact, the proof of Theorem 1 shows that a certain refinement of this corollary
is also true. Let Ω1(JX) := H0(JX , Ω1

JX
) denote the space of holomorphic 1-forms on

JX , which is naturally isomorphic to the space S2(Γ, Q) of weight 2 cusp forms with
rational Fourier expansions. Then the above proof shows that centralizer of E = E
in EndQ(Ω1(JX)) is T′

Q, i.e. EndE(Ω1(JX)) = T′
Q. Thus, by the “dictionary” of [3],

we obtain the following generalization of the Shimura construction:

Corollary 4. We have EndE(Ω1(JX)) = T′
Q. Thus, the map (A, p) 7→ p∗Ω1(A) ⊂

Ω1(JX) ' S2(Γ, Q) induces a bijection between the set of (equivalence classes) of
abelian quotients p : JX → A of JX/Q and the set of T′

Q-submodules of S2(Γ, Q).

The first step in the proof of Theorem 1 is the following classification of the
irreducible EC-modules, where EC = E ⊗ C. To state the result, recall that EC acts
faithfully on the space S = S2(Γ) of weight 2 cusp forms on Γ, and that S has
(by Atkin-Lehner theory) a T′

C-module decomposition S =
⊕

f∈N (Γ) Sf , where N (Γ)

denotes the set of all normalized newforms of weight 2 (of all levels) on Γ and Sf

denotes the χf -eigenspace with respect to the character χf : T′
C = T′

Q ⊗ C → C
defined by f ∈ N (Γ). We then have:

Theorem 5. Each Sf is an irreducible EC-module, and every irreducible EC-module
is isomorphic to some Sf . Thus EC is (isomorphic to) the centralizer CS(T′

Q) of T′
Q

in EndC(S), and Z(EC) = T′
Q ⊗ C.

Since this theorem is of independent interest and has a natural analogue for cusp
forms of arbitrary weight, we shall prove a more general version below; cf. Theorem 11.

In view of Theorem 5, Theorem 1 follows readily once the structure of E is known.
For this, let nf = dim Sf and let Kf = Q({an}) be the field generated by the Fourier
coefficients of f =

∑
anq

n. Then we have the following theorem which is a conse-
quence of the fundamental results of Ribet[7].

Theorem 6 (Ribet). End0
Q(JX) '

∏
f∈N (Γ)/GQ

Mnf
(Kf ).

Actually, Ribet’s results give a priori only a slightly weaker result; cf. equation
(14) below. As a result, the order of the proofs of the above theorems has to be
partially reversed. Indeed, after proving Theorem 5 and (14), we first deduce Corol-
lary 3 and then Theorem 1. Finally, we use these results to prove the full version of
Theorem 6.

2 The Degeneracy Operators

Throughout, we shall fix a congruence subgroup Γ with Γ1(N) ≤ Γ ≤ Γ0(N), so

Γ = ΓH(N) := {g ∈ SL2(Z) : g ≡ ( a b
0 d ) (mod N), a ∈ H},
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for some subgroup H ≤ (Z/NZ)× ' Γ0(N)/Γ1(N). Then for any divisor M |N we
have a corresponding subgroup ΓH(M) := ΓH(M), where H ≤ (Z/MZ)× is the image
of H under the reduction map rN,M : (Z/NZ)× → (Z/MZ)×.

For any positive integer d, let αd = ( 1 0
0 d ) and βd = ( d 0

0 1 ) = dα−1
d . Since

βd ( x y
z w ) β−1

d =
(

x yd
z/d w

)
, we see that if d|N , then

(1) βdΓH(N)β−1
d = ΓH(N

d
, d) := {( x y

z w ) ∈ SL2(Z) : rN(x) ∈ H, d|y, N
d
|z},

where rN : Z → Z/NZ denotes the reduction (mod N) map.
In order to study the degeneracy operators mentioned in the introduction, we shall

first define them as “abstract operators” via double cosets, and then (as in Shimura[8])
consider their actions on the spaces of cusp forms Sk(Γ). Thus, fix divisors d,M of
N with dM |N and consider the double cosets

βM,d = ΓH(M)βdΓH(N) and tβM,d = ΓH(N)αdΓH(M).

Since α−1
d ΓH(N)αd = ΓH(N

d
, d) ≤ ΓH(M), we see that the degree of these double

cosets (as defined in [8], p. 51) is given by

(2) deg(βM,d) = 1 and deg(tβM,d) = [ΓH(M) : ΓH(N
d
, d)].

The (abstract) degeneracy operators are defined as the products

DM,d = tβM,1 · βM,d and tDM,d = tβM,d · βM,1.

From the definition of the product of double cosets (cf. [8], p. 52) together with the
fact that βdΓH(N)β−1

d = ΓH(N
d
, d) ≤ ΓH(M) one sees easily that

(3) DM,d =
∑
γ∈Rd

ΓH(N)γβdΓH(N) and tDM,d =
∑
γ∈Rd

ΓH(N)αdγ
−1ΓH(N),

where Rd is a system of representatives of the set of double cosets (double coset
space) ΓH(N)\ΓH(M)/ΓH(N

d
, d). Note that the above formula (together with [8], p.

70) shows that the Hecke operator Td = ΓH(N)αdΓH(N) is a component of tDM,d.

Remark 7. As the notation indicates, tDM,d is the Rosati adjoint of DM,d; cf. [8], p.
72 and p. 171. Similarly tβM,d is the adjoint of βM,d.

We next want to show that the degeneracy operators commute with the Hecke
operators Tn = TN

n for (n, N) = 1. (Note that the Tn’s generate the algebra
R(ΓH(N), ∆′

N)⊗Q in the notation of [8], p. 67.) To this end we show more generally

Proposition 8. If dM |N , then for any integer n ≥ 1 with (n, N) = 1 we have

(4) TM
n · βM,d = βM,d · TN

n and TN
n · tβM,d = tβM,d · TM

n .
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The proof of this proposition is based on the following simple fact.

Lemma 9. Let Γ1, Γ2 be commensurable subgroups of G = GL+
2 (Q), and suppose that

α ∈ G satisfies αΓ2α
−1 ≤ Γ1. Then for any β ∈ G we have

(5) (Γ1αΓ2)(Γ2βΓ2) = cβΓ1αβΓ2, with cβ = deg(Γ2βΓ2)/ deg(Γ1αβΓ2).

If, in addition, there exists a subset S ⊂ Γ2βΓ2 such that Γ1βΓ1 = Γ1αSα−1, then

(6) (Γ1βΓ1)(Γ1αΓ2) = c′βΓ1αβΓ2, with c′β = deg(Γ1βΓ1)/ deg(Γ1αβΓ2),

and so (Γ1αΓ2)(Γ2βΓ2) = c′′β(Γ1βΓ1)(Γ1αΓ2), where c′′β = deg(Γ2βΓ2)/ deg(Γ1βΓ1).

Proof. The hypothesis on α implies that Γ1αΓ2βΓ2 = Γ1(αΓ2α
−1)αβΓ2 = Γ1αβΓ2,

and so (5) holds for some integer cβ. By taking degrees of both sides and observing
that deg(Γ1αΓ2) = 1 by hypothesis, the given formula for cβ follows.

The hypotheses on S show that Γ1βΓ1αΓ2 = (Γ1αSα−1)αΓ2 ⊂ Γ1αΓ2βΓ2 =
Γ1αβΓ2, where the last equality follows from (5). Thus, Γ1βΓ1αΓ2 ⊂ Γ1αβΓ2, and so
we must have equality since Γ1βΓ1αΓ2 is a union of (Γ1, Γ2)-double cosets (and since
double cosets are either disjoint or equal). Thus, Γ1βΓ1αΓ2 = Γ1αβΓ2, and so we see
that (6) holds for some c′β. By the same argument as for (5) we see that c′β has the
asserted value.

The last assertion follows immediately from (5) and (6) since c′′β = cβ/c′β.

Proof of Proposition 8. Apply Lemma 9 to Γ1 = ΓH(M), Γ2 = ΓH(N), α = βd and
β = αp, where p - N is a prime. Thus, Γ1αΓ2 = βM,d, Γ1βΓ1 = TM

p and Γ2βΓ2 = TN
p ;

cf. [8], p. 71.
Since αΓ2α

−1 = ΓH(N
d
, d) ≤ Γ1, we see that the first hypothesis of the lemma

holds. Moreover, take S =
{(

1 b
0 p

)}
0≤b<p

∪ {σpβp}, where σp ≡
(

p−1 0
0 p

)
(mod N).

Since βd

(
1 b
0 p

)
β−1

d =
(

1 bd
0 p

)
= ( 1 k

0 1 )
(

1 b′
0 p

)
, where b′ + kp = bd, 0 ≤ b′ < p, and

since βdσpβ
−1
d ≡

(
p−1 0
0 p

)
(mod N

d
) (and since M |N

d
), we see that Γ1βdSβ−1

d = Γ1S =

Γ1βΓ1 = TM
p , where the second last equality follows from [8], p. 72. Similarly, we

have S ⊂ Γ2βΓ2 = TN
p . Thus, S satisfies the hypotheses of the lemma, and so we

conclude from the lemma (together with the fact that c′′β = 1 because deg(TM
p ) =

deg(TM
p ) = p + 1) that the first equation of (4) holds for all primes p - N .

Since we have T (n, n)βM,d = βM,dT (n, n) (use [8], Prop. 3.7 on p. 54), the recursion
relations of the Tn’s (cf. [8], p. 71) show that the first formula of (4) holds for all n
with (n, N) = 1.

From this it follows that we also have the formula

(7) tTM
n · βM,d = βM,d · tTN

n , for all (n, N) = 1.

Indeed, since tTn = σnTn = Tnσn (cf. [8], p. 72), and since σnβM,d = βM,dσn, we see
that (7) follows from the first equation of (4).



Endomorphisms of Jacobians of Modular Curves 5

Finally, taking the Rosati adjoints of (7) yields the second equation of (4), which
concludes the proof of Proposition 8.

Notation. Let T̃′ = R(ΓH(N), ∆′
N) denote the Hecke ring generated by the (ab-

stract) Hecke operators Tn with (n, N) = 1, and let Ẽ = 〈Tn, DM,d,
tDM,d : (n, N) =

1, dM |N〉 ⊂ M̃ := R(ΓH(N), ∆) denote the Hecke ring generated by the Tn’s and the
degeneracy operators DM,d and tDM,d.

Corollary 10. T̃′ is a subring of the centre of Ẽ, i.e. T̃′ ⊂ Z(Ẽ).

Proof. By (4) we have TnDM,d = tβM,1T
M
n βM,d = DM,dTn, for any d, M with dM |N and

any n with (n, N) = 1, and similarly Tn and tDm,d commute. Thus, since T̃′ = 〈Tn〉
is commutative, we see that T̃′ ⊂ Z(Ẽ).

3 The Structure of the Extended Hecke Algebra

Ek,C

We now fix an integer k and consider the space S = Sk(ΓH(N)) of cusp forms of
weight k on ΓH(N). By [8], p. 73, each double coset in M̃ = R(ΓH(N), ∆) induces a
natural C-linear operator on S, and S is a right M̃⊗ C-module. In particular, since
Ẽ ⊂ M̃, S is also a Ẽ⊗C-module; we let Ek,C denote the image of Ẽ⊗C in EndC(S)op.

Thus, by definition, Ek,C is the subalgebra of EndC(S)op generated by the Hecke
operators [Tp]k, for p - N and the degeneracy operators [DM,d]k, [tDM,d]k, for dM |N .
Note that the action of [DM,d]k on S is given by the formula

(8) f |[DM,d]k(z) = dk−1 trM(f)(dz), for f ∈ S,

where trM = trΓH(N)/ΓH(M) : Sk(ΓH(N)) → Sk(ΓH(M)) is the usual trace map.
Indeed, since trM = [tβM,1]k by definition, this follows immediately from the fact that
f |[DM,d]k = f |[tβM,1]k[βM,d]k together with the formula

(9) f |[βM,d]k(z) = dk/2−1f |kβd(z) = dk−1f(dz), for f ∈ Sk(ΓH(M)).

A similar formula holds for the operator [tDM,d]k, which by [8], p. 76, is just the
adjoint of [DM,d]k with respect to the Petersson product on S.

Let T′
k,C be the C-subalgebra of Ek,C generated by the Hecke operators [Tp]k, for

p - N . Since T′
k,C is a commutative semi-simple algebra, S has a decomposition

into T′
k,C-eigenspaces Sχ. By Atkin-Lehner theory, each such character is of the form

χ = χf , for a unique normalized newform f of some level Nf |N , and so we have the
Atkin-Lehner decomposition

(10) S =
⊕

f∈N (Γ)

Sf ,
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where Sf = Sχf
and N (Γ) = Nk(Γ) denotes the set of all normalized newforms of

weight k of level Nf |N on Γ = ΓH(N); cf. [2], p. 28 and/or [5], §4.6). In particular,
we see that dim T′

k,C = #N (Γ).
We now prove:

Theorem 11. Each Sf is an irreducible Ek,C-module, and every irreducible Ek,C-
module is isomorphic to some Sf . Thus Ek,C is isomorphic to the centralizer CS(T′

k,C)
of T′

k,C in EndC(S), and its centre is Z(Ek,C) = T′
k,C.

Proof. First note that since T′
k,C is closed under the Petersson adjoints, the same is

true for Ek,C and hence both algebras are semi-simple (cf. [8], p. 83.) Moreover, from
Corollary 10 it follows that T′

k,C ⊂ Z(Ek,C). Thus, the operators in Ek,C preserve the
T′

k,C-eigenspaces in S, and so each Sf is a Ek,C-module.
Suppose Sf were reducible. Then Sf = V1 ⊕ V2, where each Vi is a non-zero Ek,C-

module because Ek,C is semi-simple. Consider the map tr = trNf
: Sf → Sk(ΓH(Nf ))∩

Sf = Cf , where the last equality follows from the multiplicity 1 theorem of Atkin-
Lehner theory. Now tr is non-zero because tr(f) = nf , for some n > 0. Thus,
tr(V1) 6= 0 or tr(V2) 6= 0, and so there exists (wlog) g ∈ V1 such that tr(g) = cf , for
some c 6= 0. Then, by (8) we see that for each d|N/Nf , cdk/2−1f |kβd = g|[DNf ,d]k ∈ V1,
and so Sf ⊂ V1 since {f |βd}d|N/Nf

is a basis of Sf (cf. [5], Cor. 4.6.20). Thus Sf = V1,
which means that Sf is irreducible.

Since S is a faithful Ek,C-module (by construction), we see by Wedderburn that
every irreducible Ek,C-module is a submodule of S (and thus is isomorphic to some
Sf ) and that hence Ek,C '

∏
f∈N (Γ) Mnf

(C), where nf = dim Sf (= σ0(N/Nf )). (Note
that the Sf ’s are pairwise non-isomorphic as Ek,C-modules because they are already
non-isomorphic as T′

k,C-modules.) Thus dim Z(Ek,C) = #N (Γ) = dim T′
k,C, and so

Z(Ek,C) = T′
k,C.

Finally, since S has multiplicity one as a Ek,C-module, it follows easily that Ek,C '
CS(T′

k,C). To see this, note first that

Ek,C ' S := {ϕ ∈ EndC(S)op : Sf |ϕ ⊂ Sf ,∀f ∈ N (Γ)}

because by construction Ek,C is isomorphic to a subring of S and because dim Ek,C =∑
f∈N (Γ) n2

f = dim S. Since clearly S = CS(Z(S)), it follows that Ek,C ' CS(T′
k,C).

Corollary 12. Suppose E′ ⊂ Ek,C is a semi-simple C-algebra which contains T′
k,C, the

operators [DM,1]k for M |N , and for each d|N/M an operator D̃M,d with the property
that Sk(ΓH(M))|βd ⊂ Im([DM,1]kD̃M,d). Then E′ = Ek,C.

Proof. It is enough to show that each Sf is an irreducible E′-module, for then by the
above argument we have E′ ' Ek,C and hence E′ = Ek,C.

Now if Sf were reducible, then as in the proof of Theorem 11 we would have
Sf = V1 ⊕ V2 where (wlog) f ∈ V1. Let d|N/Nf . Then by hypothesis ∃g ∈ S
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such that g|[DNf ,1]D̃Nf ,d = f |kβd. By replacing g by g|εf , where εf ∈ T′
k,C is the

idempotent such that Sf = S|εf , we may assume that g ∈ Sf . Then g|[DNf ,1]k = cf ,

for some c ∈ C (cf. proof of Theorem 11), and so f |kβd = (cf)D̃Nf ,d ∈ V1. Thus as
before V1 = Sf , and so Sf is irreducible.

Remark 13. (a) If Ek,Q denotes the Q-algebra generated by the operators [Tp]k (p - N),
[DM,d]k and [tDM,d]k (for dM |N), then we have Ek,C = Ek,Q⊗C, provided that k ≥ 2.
Indeed, by (3) we see easily that E ⊂ B ⊂ R(ΓH(N), ∆), where B is as defined on p.
83 of [8], and so the assertion follows from [8], Th. 3.48.

(b) By conjugation, the above results also hold for the groups Γ := ΓH(N ′, t) =
βtΓH(tN ′)β−1

t , where H ≤ (Z/N ′tZ)×; in particular, they hold for the groups Γ′

considered by Shimura[8], p. 67ff. More precisely, the map ΓH(N ′t)αΓH(N ′t) 7→
Γβtαβ−1

t Γ defines a ring isomorphism ρt : R(ΓH(N ′t), ∆)
∼→ R(Γ, βt∆β−1

t ) which
identifies the Hecke algebra of ΓH(N ′t) with that of Γ. Furthermore, the map f 7→
f |kβt defines an isomorphism Sk(Γ) ' Sk(ΓH(N ′t)) which is compatible with the
isomorphism ρt. Thus, the Atkin-Lehner theory for ΓH(N ′t) can be transported back
to Γ, and thus the analogous results hold for Γ (in place of ΓH(N ′t)).

(c) In classical Atkin-Lehner theory (cf. Miyake[5], §4.6) one often considers sub-
modules of S = Sk(Γ) with respect to the algebra Ak := 〈T, tT〉 ⊂ EndC(Sk(Γ)),
where T is the full Hecke algebra (and tT is its (Rosati) adjoint); for example, one
shows that Sf is an Ak-submodule. Now it follows from the above Theorem 11 that
we have the inclusion Ak ⊂ Ek,C (which is not obvious from the definitions). Indeed,
since CS(Ek,C) = T′ ⊂ CS(Ak), the double centralizer theorem shows that Ak ⊂ Ek,C.

4 Application to End0
Q(JX)

As in the introduction, let X = XH(N)/Q denote the canonical model (in the sense
of [8], p. 152) of XΓ = Γ\H∗, where Γ = ΓH(N). Thus, X is the unique smooth, pro-
jective curve over Q such that its function field κ(X) is isomorphic to A0(ΓH(N), Q),
the field of modular functions (of weight 0) on ΓH(N) whose q-expansions have coeffi-
cients in Q (cf. [8], Prop. 6.9(2), p.140). Note that since H and ±H = 〈H,−1〉 define
the same curve XH(N), we may assume without loss of generality that −1 ∈ H, and
we shall do so in the sequel.

Now for any two divisors d,M of N with dM |N , the map f(z) 7→ f(dz) = f |0βd

clearly defines an injection of fields β∗d : A0(ΓH(M), Q) ↪→ A0(ΓH(N), Q) because
β−1

d ΓH(M)βd ≥ β−1
d ΓH(N/d, d)βd = ΓH(N). We thus have a corresponding surjective

morphism of curves BM,d : XH(N) → XH(M) such that its induced pullback map
on the function fields is β∗d . Note that the graph ΓBM,d

⊂ XH(N) × XH(M) of
this morphism is precisely the correspondence X(βM,d) defined by the double coset
βM,d = ΓH(M)βdΓH(N); cf. [8], p. 170. In particular, since the degree of the morphism
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BM,d is the degree of the Rosati adjoint tβM,d, we see by [8], p. 171 and (2) that
deg(BM,d) = deg(tβM,d) = [ΓH(M) : ΓH(N/d, d)].

Let JX = JH(N)/Q be the Jacobian variety of XH(N)/Q. Then by functoriality
and autoduality of the Jacobian we have induced homomorphisms

B∗
M,d : JH(M) → JH(N) and (BM,d)∗ : JH(N) → JH(M).

As is explained in [8], p. 169-171, these maps are the same as the homomorphisms
ξ(tβM,d) ∈ Hom(JH(M), JH(N)) and ξ(βM,d) ∈ Hom(JH(N), JH(M)) defined by the
double cosets tβM,d and βM,d, respectively. Thus, by [8], Prop. 7.1, we have

ξ(DM,d) = ξ(tβM,1) ◦ ξ(βM,d) = B∗
M,1 ◦ (BM,d)∗ ∈ EndQ(JH(N)),

and similarly, ξ(tDM,d) = B∗
M,d ◦ (BM,1)∗ ∈ EndQ(JH(N)). Moreover, we also have

the Q-endomorphisms ξ(Tn) ∈ EndQ(JH(N)) defined by the Hecke operators Tn; cf.
[8], p. 175. As in the introduction, we let T′

Q ⊂ End0
Q(JH(N)) = EndQ(JH(N)) ⊗ Q

denote the Q-algebra generated by the ξ(Tp)’s, for p - N .

Proposition 14. Let E ⊂ End0
Q(JH(N)) denote the Q-algebra generated by T′

Q and
the degeneracy operators ξ(DM,d), ξ(tDM,d) with dM |N . Then T′

Q = Z(E) is the
centre of E and

(11) dimQ(E) =
∑

f∈N2(Γ)

n2
f .

Proof. As before, write X = XH(N). It is well-known that E := End0
Q(JX) acts

faithfully on the space(s) Ω1(JX/Q) ' Ω1(X/Q) = H0(X, ωX/Q) of holomorphic
differentials of JX/Q and X/Q (cf. e.g. [3]). Thus, the same is true for the subalgebra
E and hence E ⊗ C acts faithfully on Ω1(XΓ/C) = Ω1(X/Q) ⊗ C. Now via the
identification S2(Γ)

∼→ Ω1(XΓ/C), the action of E ⊗ C on S2(Γ) is the same as that
given by the double cosets (cf. [8], p. 171), so that we have a ring isomorphism
E ⊗ C ' E2,C. Thus, by Theorem 5 (or by Theorem 11) we see that dimQ E =
dimC E⊗ C = dimC E2,C =

∑
f∈N2(Γ) n2

f , which proves (11).

Furthermore, since by Theorem 11 we have Z(E) ⊗ C = Z(E ⊗ C) = T′
Q ⊗ C

(equality as subalgebras of E⊗ C), it follows that Z(E) = T′
Q.

We can refine the above proposition by determining the isotypic E-module de-
composition of the E-module Ω(JX/Q) ' S2(Γ, Q), where the latter denotes space of
cusp form f ∈ S2(Γ) with rational Fourier coefficients. For this, let [f ] = fGQ denote
the Galois orbit of f ∈ N (Γ) and put S[f ] = (⊕g∈[f ]Sg) ∩ S2(Γ, Q); cf. [2], p. 36. We
then have:

Corollary 15. Each S[f ] is an irreducible E-module, and every irreducible E-module
is of this form. Thus, the isotypic E-module decomposition of Ω1(JX/Q) is given by

(12) Ω1(JX/Q) ' S2(Γ, Q) '
⊕

f∈N (Γ)/GQ

S[f ].
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Proof. It is immediate that each S[f ] is a E-module. Since S[f ] ⊗ C = ⊕g∈[f ]Sg, we
see from Theorem 11 (together with the fact that Sg 6' Sg′ , if g 6= g′) that S[f ] ⊗ C
cannot have any nontrivial E ⊗ C-submodules which are GQ-stable. Thus, S[f ] is an
irreducible E-module.

Since Ω1(JX/Q) ' Ω1(X/Q) ' S2(Γ, Q) (cf. [2], p. 35), we thus see that (12) is the
decomposition of Ω1(JX/Q) into pairwise non-isomorphic irreducible E-modules. In
particular, every irreducible E-module is isomorphic to some S[f ] because Ω1(JX/Q)
is a faithful E-module (and E is semisimple).

We next study the structure of the algebra E = End0
Q(JX). To this end, recall that

by the Shimura construction, each (weight 2) normalized newform f ∈ N (Γ) = N2(Γ)
of some level Nf |N defines an abelian variety Af/Q of dimension [Kf : Q], where
Kf = Q({an}n≥1) denotes the field generated by the coefficients of f =

∑
anq

n; cf.
[8], p. 183, [9] or [3]. (Note that Af = Afσ , for any Galois conjugate fσ, where
σ ∈ GQ = Gal(Q/Q).) Then the abelian varieties Af determine JX up to Q-isogeny,
for we have the relation

(13) JX ∼
∏

f∈N (Γ)/GQ

A
mf

f ,

for some positive integers mf ; cf. Ribet[7], Proposition (2.3). (We shall see below
that mf = nf := dim Sf ; cf. Remark 18(a).)

In order to deduce Theorem 6 from (13), we require the following facts which were
(essentially) proven by Ribet[7]:

Theorem 16. (a) End0
Q(Af ) ' Kf , for all f ∈ N (Γ).

(b) If f, g ∈ N (Γ), then Af ∼ Ag if and only if g = fσ, for some σ ∈ GQ.

Proof. (a) Ribet[7], Corollary 4.2.
(b) This follows from Ribet’s results; cf. [1], Proposition 3.2.

Corollary 17. dim Z(End0
Q(JX)) = #N (Γ) = dim T′

Q.

Proof. By Theorem 16(a) we see that each Af is Q-simple, and hence by part (b) we
have Hom0

Q(Af , Ag) = 0 if f 6= gσ, for all σ ∈ GQ. We thus obtain from (13) that

(14) End0
Q(JX) '

∏
f∈N (Γ)/GQ

End0
Q(A

mf

f ) '
∏

f∈N (Γ)/GQ

Mmf
(Kf ),

and that hence

(15) dim Z(End0
Q(JX)) = dim

∏
f∈N (Γ)/GQ

Kf =
∑

f∈N (Γ)/GQ

[Kf : Q] = #N (Γ),
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where the last equation follows from the fact that #(fGQ) = [Kf : Q]. Since dim T′
Q =

dimC T′
2,C = #N (Γ) (cf. comment after equation (10)), the assertion follows.

Proof of Corollary 3. Since EC := E ⊗ C ⊂ EC := E ⊗ C ⊂ EndC(S), we have
Z(EC) ⊂ CS(EC) ⊂ CS(EC) = T′

2,C, the latter by Theorem 11. Now by Corollary
17 we have dimC(EC) = dim T′

2,C, and so we have equality throughout, i.e. Z(EC) =
CS(EC) = CS(EC) = T′

2,C.

Proof of Theorem 1. Since EC = E⊗C and EC = E⊗C are semi-simple subalgebras
of EndC(S) with CS(EC) = CS(EC) (cf. proof of Corollary 3), it follows from the
double centralizer theorem that EC = EC. Thus E = E, as asserted.

Proof of Corollary 2. By construction (cf. §2) we have Ẽ ⊂ M̃, and so the image M of
M̃⊗Q in End0

Q(JX) contains the image E of Ẽ⊗Q. Thus, since E = E by Theorem
1, we have E ⊂ M, as claimed.

Proof of Corollary 4. Since S = S2(Γ, Q) ⊗ C and CS(EC) = T′
C by the proof of

Corollary 3, the first assertion follows (via the isomorphism Ω1(JX) ' S2(Γ, Q)). The
second assertion follows from this by Theorem 4.4 (or Corollary 4.6) of [3].

Proof of Theorem 6. By (14) it is enough to show that mf = nf , for all f ∈ N (Γ).
For this, fix f ∈ N (Γ) and let Ef = End0(A

mf

f ), which by (13) (and Theorem 16)
is naturally a simple two-sided ideal of E. Since E = E by Theorem 1, we know by
Corollary 15 that S[f ] is an irreducible (right) E-module. By the Shimura construction
we know that S[f ]Ef 6= 0, and so S[f ] is a faithful irreducible Ef -module. Thus, since
Ef ' Mmf

(Kf ), we see that dimQ S[f ] = mf [Kf : Q]. On the other hand, since
S[f ] ⊗ C = ⊕g∈[f ]Sg, we have dimQ S[f ] = (dimC Sf )[Kf : Q] = nf [Kf : Q], and so
mf = nf .

Remark 18. (a) It follows from the above proof that (13) holds with mf = nf =
dim Sf = σ0(N/Nf ). This was asserted without proof in [1], equation (3.4).

(b) All the above results also hold for the curves XH(N ′, t) associated to the
groups ΓH(N ′, t) = βtΓH(tN ′)β−1

t of Remark 13(b); in fact, the matrix βt induces a
Q-isomorphism (βt)∗ : XH(N ′t)

∼→ XH(N ′, t).

(c) In a letter to the author, Ken Ribet (July 2005) pointed out that it is possible
to deduce Corollary 3 and the first assertion of Corollary 4 directly from Theorem 6
together with the fact that T′ ⊂ Z(E).

Example 19. (a) If J0(p
2) is the Jacobian of the modular curve X0(p

2)/Q, where p
is a prime, then

(16) End0
Q(J0(p

2)) = 〈T′
Q, τ, ξ(Tp), ξ(

tTp)〉Q = 〈T′
Q, τ, τ ′〉Q,

where τ = η∗η∗ and τ ′ = (η′)∗η′∗ are the endomorphisms associated to the degeneracy
maps η := Bp,1 : X0(p

2) → X0(p) and η′ := Bp,p : X0(p
2) → X0(p).
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(b) If J(p) is the Jacobian of the modular curve X(p)/Q defined by the principal
congruence subgroup Γ(p), then

(17) End0
Q(J(p)) = 〈T′

Q, τ̃ , ξ(Tp), ξ(
tTp)〉Q = 〈T′

Q, τ̃ , τ̃ ′〉Q,

where τ̃ = η̃∗η̃∗ and τ̃ ′ = (η̃′)∗η̃′∗ are the endomorphisms associated to the covers
η̃ : X(p) → X1(p) and η̃′ : X(p) → X1(p) which are induced by the inclusions
Γ1(p) ⊂ Γ(p) and Γ1(p) ⊂ Γ(p), respectively.

Proof. (a) Applying Theorem 1 with N = p2 and H = (Z/p2Z)× yields End0
Q(J0(p

2)) =
〈T′

Q, ξ(Dp,1), ξ(Dp,p), ξ(
tDp,p)〉Q. (Note that ξ(Dp2,1) = id and that ξ(D1,d) = 0

because XH(1) = X(1) has genus 0). Now ξ(Dp,1) = τ by definition because
ΓH(p) = Γ0(p). Moreover, since tTp ⊂ Dp,p (cf. (3)) and since by (2) deg Dp,p =
[Γ0(p) : Γ0(p

2)] = p = deg tTp, we see that Dp,p = tTp and hence that also tDp,p = Tp.
This proves the first equality of (16).

To prove the second equality, we shall apply Corollary 12 to E′ = 〈T′
2,C, [τ ]2, [τ

′]2〉C.

Since tτ = τ and tτ ′ = τ ′, it is clear that E′ is semi-simple. Consider D̃p,p := [ττ ′]2 ∈
E′, and let T = ( 1 1

0 1 ). Since {T a}0≤a≤p−1 is a system of coset representatives of
Γ0(p)/Γ0(p, p), we see that f |[τ ′]2 =

∑p−1
a=0 f |2αpT

aβp = f |Tpβp. Now since Im([τ ]) =
S2(Γ0(p)) and since Tp acts bijectively on S2(Γ0(p)) (use [5], Th. 4.6.17), we thus see
that Im([ττ ′]) = S2(Γ0(p))βp. By Corollary 12 we therefore have that E′ = E2,C, and
so E is generated by T′

Q, τ , and τ ′. This proves the second equality of (16).

(b) We observe that the proof of (a) shows more generally that if H is any subgroup
with Ker(rp2,p) ≤ H ≤ (Z/p2Z)×, then the analogous formula of (16) holds for the
Jacobian JH(p2) of the curve XH(p2), i.e.

(18) End0
Q(JH(p2)) = 〈T′

Q, τH , ξ(Tp), ξ(
tTp)〉Q = 〈T′, τH , τ ′H〉Q,

where τH = η∗H(ηH)∗ and τ ′H = (η′H)∗(η′H)∗ are defined by the degeneracy maps
ηH := Bp,1 : XH(p2) → XH(p) and η′H := Bp,p : XH(p2) → XH(p).

Applying this to H = Ker(rp2,p) and noting that Γ(p) = ΓH(p, p) = βpΓH(p2)β−1
p ,

we see that End0
Q(J(p)) = 〈T′

Q, ρp(τH), ξ(Tp), ξ(
tTp)〉Q = 〈T′

Q, ρp(τH), ρp(τ
′
H)〉Q; cf.

Remarks 18(b) and 13(b). Now since βpΓH(p)β−1
p = ΓH(1, p) = Γ1(p), we see that

ρp(τH) = τ̃ . Moreover, ρp(τ
′
H) = τ̃ ′ because f |ρp(τ

′
H) = f |βp[τ

′]2β
−1
p =

∑
f |T a =

f |[τ̃ ′], and so (17) holds.
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