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1 Introduction

Let Xt = T'\$* be the modular curve associated to a congruence subgroup I" of level
N with I'1(N) <T <T'¢(N). Then X has a canonical model X = Xt g defined over
Q, and its Jacobian variety Jy is also defined over Q. Let E = End%(J x) denote the
Q-algebra of Q-endomorphisms of Jx. It is well-known that E contains the Hecke
algebra Tg, generated (as a Q-algebra) by the Hecke operators T), with p { N.

If N is prime, then E = Ty (cf. Ribet[6]), but for composite N’s this is no
longer true in general. One reason for this is that for each pair (M,d) with dM|N
there is a “degeneracy morphism” (cf. Mazur[4]) Bya : X — Xy, where X/ is
the corresponding curve of level M, and that these morphisms give rise to extra
endomorphisms (called “degeneracy operators”) Dyrg = By, © (Basa)« and 'Dyrg =
B}k\/ﬂd e} (BMJ)* of JX.

The purpose of this paper is to prove the following basic result which does not
seem to have been recorded in the literature (but is well-known to the experts):

Theorem 1. End%(JX) is generated as a Q-algebra by the Hecke algebra Ty, and the
degeneracy operators Dysa, '‘Dyra, for dM|N.

In particular, we see that the Q-algebra E := (T, Dasa, Dara : dM|N)q contains
the full Hecke algebra Tq = (7T}, : n > 1)g as a subalgebra; we will thus refer to E as
the extended Hecke algebra. Note that for special curves (such as Xo(p?) and X (p))
we can use the methods below to obtain other generators of E; cf. Example 19 below.

It is immediate that the algebra E is contained in the Q-algebra M of all modular
endomorphisms, i.e. M is the Q-linear span of those endomorphisms of Jy which are
defined by a double coset T'gI" with g € GL3 (Q), as in [8]. We thus obtain:

Corollary 2. Every endomorphism f € End?Q(JX) 1s modular, i.e. f is a Q-linear
combination of endomorphisms defined by double cosets.

Note that the analogue of this statement is no longer true for endomorphisms
which are not Q-rational: the presence of (non-rational) CM-elliptic curves in Jy
gives rise to endomorphisms which are not modular, as is easy to see.

Another interesting consequence of Theorem 1 is the following result which gen-
eralizes a statement proved in Mazur[4], p. 139.
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Corollary 3. The centre of End(Jx) is Ty, i.e. Z(E) =T,

In fact, the proof of Theorem 1 shows that a certain refinement of this corollary
is also true. Let Q'(Jx) := H°(Jx,Qj ) denote the space of holomorphic 1-forms on
Jx, which is naturally isomorphic to the space S3(I', Q) of weight 2 cusp forms with
rational Fourier expansions. Then the above proof shows that centralizer of E = E
in Endg(Q'(Jx)) is Ty, i.e. Endg(Q'(Jx)) = Tq. Thus, by the “dictionary” of (3],
we obtain the following generalization of the Shimura construction:

Corollary 4. We have Endg(Q'(Jx)) = TG. Thus, the map (A,p) — p*Q'(A) C
QY (Jx) =~ So(T,Q) induces a bijection between the set of (equivalence classes) of
abelian quotients p : Jx — A of Jx/Q and the set of Tg-submodules of Sy(T', Q).

The first step in the proof of Theorem 1 is the following classification of the
irreducible Ec-modules, where Ec = E ® C. To state the result, recall that E¢ acts
faithfully on the space S = S3(I") of weight 2 cusp forms on IT', and that S has
(by Atkin-Lehner theory) a T¢-module decomposition S = € seprry S, where N(T')
denotes the set of all normalized newforms of weight 2 (of all levels) on I' and S
denotes the xj-eigenspace with respect to the character x; : Tz = T ® C — C
defined by f € N(T"). We then have:

Theorem 5. Fach Sy is an irreducible Ec-module, and every irreducible Ec-module
is isomorphic to some Sy. Thus Ec is (isomorphic to) the centralizer Cs(Tq) of Tg
in Endc(S), and Z(Ec) = Ty @ C.

Since this theorem is of independent interest and has a natural analogue for cusp
forms of arbitrary weight, we shall prove a more general version below; cf. Theorem 11.

In view of Theorem 5, Theorem 1 follows readily once the structure of E is known.
For this, let ny = dim Sy and let Ky = Q({a,}) be the field generated by the Fourier
coefficients of f = > a,q¢". Then we have the following theorem which is a conse-
quence of the fundamental results of Ribet|[7].

Theorem 6 (Ribet). Endgy(Jx) = [Tsepr) ay Ma, (Ky)-

Actually, Ribet’s results give a priori only a slightly weaker result; cf. equation
(14) below. As a result, the order of the proofs of the above theorems has to be
partially reversed. Indeed, after proving Theorem 5 and (14), we first deduce Corol-
lary 3 and then Theorem 1. Finally, we use these results to prove the full version of
Theorem 6.

2 The Degeneracy Operators

Throughout, we shall fix a congruence subgroup I' with T';(N) < T < T'4(N), so
I'=Ty(N):={g€SLy(Z): g=(2%) (mod N),a € H},
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for some subgroup H < (Z/NZ)* ~ TI'((N)/I't(N). Then for any divisor M|N we
have a corresponding subgroup 'y (M) := I'g(M), where H < (Z/MZ)* is the image

of H under the reduction map vy : (Z/NZ)* — (Z/MZ)*.

For any positive integer d, let ag = (§9) and B; = (29) = da;'. Since

Ba(28)07" = (Zg/ﬁdzf), we see that if d|V, then

(1) Balu(N)B =Tu(5,d) :={(%Y) € SLa(Z) : rn(x) € H,d|y, |2},

where ry : Z — 7Z/N7Z denotes the reduction (mod N) map.
In order to study the degeneracy operators mentioned in the introduction, we shall
first define them as “abstract operators” via double cosets, and then (as in Shimural[8])

consider their actions on the spaces of cusp forms Si(I"). Thus, fix divisors d, M of
N with dM|N and consider the double cosets

BM,d = FH(M)BdFH(N) and tﬁMd = PH(N)OédFH(M)

Since oy 'Ty(N)ayg = Py(&,d) < Ty(M), we see that the degree of these double
cosets (as defined in [8], p. 51) is given by

(2) deg(Bya) =1 and  deg('Bara) = [Tu(M) : I’H(%,d)].

The (abstract) degeneracy operators are defined as the products

DM,d = tﬁM,l : ﬁM,d and tDM,d = tﬁM,d : 6M,1~

From the definition of the product of double cosets (cf. [8], p. 52) together with the
fact that Byl y(N)B; ' =Tu(5,d) < Ty (M) one sees easily that

(3) DM,d = Z FH(N)WﬂdFH(N) and tDM’d = Z FH(N)Oéd’yier<N),

yER, YER4

where R, is a system of representatives of the set of double cosets (double coset
space) Iy (N)\L'y(M) /Ty (%, d). Note that the above formula (together with [8], p.
70) shows that the Hecke operator Ty = 'y (N)a 'y (N) is a component of ‘D 4.

Remark 7. As the notation indicates, Dy 4 is the Rosati adjoint of Dyyg4; cf. [8], p.
72 and p. 171. Similarly 3y 4 is the adjoint of Sy 4.

We next want to show that the degeneracy operators commute with the Hecke
operators T,, = TY for (n,N) = 1. (Note that the T,’s generate the algebra
R(T'y(N),A’)®Q in the notation of [8], p. 67.) To this end we show more generally

Proposition 8. If dM|N, then for any integer n > 1 with (n, N) = 1 we have

(4) TM . Bya=Bua-TY and TV -Brra =BTV
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The proof of this proposition is based on the following simple fact.

Lemma 9. Let 'y, Ty be commensurable subgroups of G = GL3 (Q), and suppose that
a € G satisfies al'ysa™! < T'y. Then for any 8 € G we have

(5) (Tyal'9)(T2fl) = cgl'1afly,  with cg = deg(I'y8Ty)/ deg(I1afTs).
If, in addition, there exists a subset S C I'53Ty such that T80 = I'aSa™t, then
(6) (T16T1)(T1al'y) = pIafly,  with ¢y = deg(T'1 A1)/ deg(T1a8T),
and so (I'1al'y)(9fTs) = cj(I'1 8T )(Ial'y), where ¢ = deg(I'y8T')/ deg(I'15T).

Proof. The hypothesis on « implies that ['jals8Ty = ['j(alsa™)afly = T'iafly,
and so (5) holds for some integer c¢z. By taking degrees of both sides and observing
that deg(I'yal's) = 1 by hypothesis, the given formula for ¢z follows.

The hypotheses on S show that 18T aly = (TaSa t)aly C TialLfly =
['yafTy, where the last equality follows from (5). Thus, I'1f'al’s C I'yafTs, and so
we must have equality since I'; fI'yal'y is a union of (I'y, I'y)-double cosets (and since
double cosets are either disjoint or equal). Thus, I'1fT'1al'y = I'iafTs, and so we see
that (6) holds for some cj. By the same argument as for (5) we see that cj; has the
asserted value.

The last assertion follows immediately from (5) and (6) since ¢z = cz/c}.

Proof of Proposition 8. Apply Lemma 9 to I'y = I'g(M), I's = 'y (), a = G4 and
B = o, where p{ N is a prime. Thus, [yal'y = Baq, 11671 = T, and T,6Ty = TY;
of. [8], p. T1.

Since al'ya™ = 'y (4,

d) <
holds. Moreover, take S = {(§ g)}0<b<p U {0,0,}, where o, = <p—1 0) (mod N).

0 p

Since By (55) 68,1 = (8%) = (§%) (%), where ' + kp = bd, 0 < V' < p, and

p
since 5dapﬁd’1 = < P 0) (mod &) (and since M|F), we see that I'13;56; " =T15 =

18T, = TM where the second last equality follows from [8], p. 72. Similarly, we
have S C Tgﬁl"Q = Té\]. Thus, S satisfies the hypotheses of the lemma, and so we
conclude from the lemma (together with the fact that ¢ = 1 because deg(T)) =
deg(TM) = p+1) that the first equation of (4) holds for all primes p { N.

Since we have T'(n, n)Bara = BuaT (n,n) (use [8], Prop. 3.7 on p. 54), the recursion
relations of the 7},’s (cf. [8], p. 71) show that the first formula of (4) holds for all n
with (n, N) = 1.

From this it follows that we also have the formula

I'1, we see that the first hypothesis of the lemma

(7) M. Brra = Barg - 'TY,  for all (n, N) = 1.

Indeed, since 'T,, = 0,T,, = T,,0,, (cf. [8], p. 72), and since 0,0y.a = Brr.aon, We see
that (7) follows from the first equation of (4).
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Finally, taking the Rosati adjoints of (7) yields the second equation of (4), which
concludes the proof of Proposition 8.

Notation. Let T = R(I'y(N),Aly) denote the Hecke ring generated by the (ab-
stract) Hecke operators T,, with (n, N) = 1, and let E = (To, Dara, Dara : (n,N) =
1,dM|N) € M := R(I'y(N), A) denote the Hecke ring generated by the T,’s and the
degeneracy operators Dy q and Dy 4.

Corollary 10. T' is a subring of the centre of E, i.e. T' C Z(IE)

Proof. By (4) we have T),Dyrqg = Bar1TM Bar.a = DTy, for any d, M with dM|N and
any n with (n, N) = 1, and similarly T, and 'Dy.a commute. Thus, since T" = (T,,)
is commutative, we see that T C Z(E).

3 The Structure of the Extended Hecke Algebra
Exc

We now fix an integer k and consider the space S = Si(I'y(N)) of cusp forms of
weight k on Ty (N). By [8], p. 73, each double coset in M = R(I'y(N), A) induces a
natural C-linear operator on S, and S is a right M ® C-module. In particular, since
E C M, S is also a E@C—module; we let Ej ¢ denote the image of E®C in Endc(S)P.

Thus, by definition, Ej ¢ is the subalgebra of End¢(5)% generated by the Hecke
operators [Tp]x, for pt N and the degeneracy operators [Dasalk, ['Dara)k, for dM|N.
Note that the action of [Djs4)r on S is given by the formula

(8) fIDarali(z) = d*Htrar(f)(d2), for f €8,

where try; = tre,wvyraon @ Sk(Ca(N)) — Sk(Tg(M)) is the usual trace map.
Indeed, since try; = [‘Bar1]x by definition, this follows immediately from the fact that
f[Darale = FI[Bara)k[Baralr together with the formula

9) FBrrdli(2) = 27 fuBa(2) = d* 1 f(dz), for f € STy (M)).

A similar formula holds for the operator [*Dys4]k, which by [8], p. 76, is just the
adjoint of [Dyy 4]k with respect to the Petersson product on S.

Let T}, - be the C-subalgebra of E; ¢ generated by the Hecke operators [T}], for
p t N. Since Tic is a commutative semi-simple algebra, S has a decomposition
into T}, c-eigenspaces Sy. By Atkin-Lehner theory, each such character is of the form
X = X/, for a unique normalized newform f of some level N¢|N, and so we have the
Atkin-Lehner decomposition

(10) S= & s
)

feN (T
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where Sy = S, and N(I') = N(I') denotes the set of all normalized newforms of
weight k of level N¢|N on I' = 'y (N); cf. [2], p. 28 and/or [5], §4.6). In particular,
we see that dim T}, . = #N(T).

We now prove:

Theorem 11. Fach Sy is an irreducible Ej c-module, and every irreducible Ej c-
module is isomorphic to some Sy. Thus Ey ¢ is isomorphic to the centralizer Cs(T), ¢)
of T}, ¢ in Endc(S), and its centre is Z(Epc) = T ¢

Proof. First note that since T}, ¢ is closed under the Petersson adjoints, the same is
true for Ej ¢ and hence both algebras are semi-simple (cf. [8], p. 83.) Moreover, from
Corollary 10 it follows that T} - C Z(Eyc). Thus, the operators in Ej, ¢ preserve the
T} c-eigenspaces in S, and so each Sy is a Ej, c-module.

Suppose Sy were reducible. Then Sy = Vi @ Vs, where each V; is a non-zero Ej, c-
module because E ¢ is semi-simple. Consider the map tr = try, : Sy — Sp(I'g(Ny))N
Sy = Cf, where the last equality follows from the multiplicity 1 theorem of Atkin-
Lehner theory. Now tr is non-zero because tr(f) = nf, for some n > 0. Thus,
tr(V1) # 0 or tr(V2) # 0, and so there exists (wlog) g € V; such that tr(g) = cf, for
some ¢ # 0. Then, by (8) we see that for each d|N/Ny, cd**7* f|,,84 = g|[Dn, alx € V1,
and so Sy C V since { f|Ba}an/n, is a basis of Sy (cf. [5], Cor. 4.6.20). Thus Sy = Vi,
which means that Sy is irreducible.

Since S is a faithful E; c-module (by construction), we see by Wedderburn that
every irreducible Ej ¢c-module is a submodule of S (and thus is isomorphic to some
St) and that hence Ey ¢ > [] ey Mn, (C), where ny = dim Sy (= 0o(N/Ny)). (Note
that the Sy’s are pairwise non-isomorphic as Ej; c-modules because they are already
non-isomorphic as T} c-modules.) Thus dim Z(Eyc) = #N(I') = dim T}, ¢, and so
Z(Exc) = T ¢

Finally, since S has multiplicity one as a E; c-module, it follows easily that Ej ¢ ~
Cs(T},c). To see this, note first that

Erc ~ S:={p € Endc(S)? : S¢lp C Sp,Vf e N(I')}

because by construction Ej ¢ is isomorphic to a subring of S and because dim E; ¢ =
D feN(T) n} = dim'S. Since clearly S = Cs(Z(S)), it follows that Eyc ~ Cs(T}, ).

Corollary 12. Suppose B C Ky ¢ is a semi-simple C-algebra which contains Tj, ¢, the

operators [Dyra]y, for M|N, and for each d|N/M an operator Dirg with the property
that Sk(FH(M)Nﬂd C Im([Dle]kDMd). Then E' = Ek:,(C-

Proof. It is enough to show that each Sy is an irreducible E’-module, for then by the
above argument we have E' ~ E; ¢ and hence E' = Ej ¢.

Now if Sy were reducible, then as in the proof of Theorem 11 we would have
Sy = Vi &V, where (wlog) f € Vi. Let d|N/Ny. Then by hypothesis 3g € S
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such that g|[DNf,1]DNf’d = flrBa- By replacing g by gles, where ey € T} is the
idempotent such that Sy = S|ey, we may assume that g € Sy. Then g|[Dn, 1] = cf,
for some ¢ € C (cf. proof of Theorem 11), and so f|pBs = (cf)DNf,d € V1. Thus as
before V; = Sy, and so Sy is irreducible.

Remark 13. (a) If Ej, g denotes the Q-algebra generated by the operators [T,], (p { N),
[Dar.ale and ['Dyygx (for dM|N), then we have Ey ¢ = E; o ® C, provided that k& > 2.
Indeed, by (3) we see easily that E C B C R(I'y(N),A), where B is as defined on p.
83 of [8], and so the assertion follows from [8], Th. 3.48.

(b) By conjugation, the above results also hold for the groups I' := 'y (N’ t) =
Bl y(tN)B; !, where H < (Z/N'tZ)*; in particular, they hold for the groups I"
considered by Shimura[8], p. 67ff. More precisely, the map I'y(N't)al' y(N't)
['B;af;'T defines a ring isomorphism p; : R('z(Nt),A) = R(T,5,AB, ") which
identifies the Hecke algebra of I'y(N’t) with that of I'. Furthermore, the map f —
flxB: defines an isomorphism Si(I') ~ Si(I'y(N't)) which is compatible with the
isomorphism p;. Thus, the Atkin-Lehner theory for I'y (N't) can be transported back
to I', and thus the analogous results hold for T" (in place of 'y (N't)).

(c) In classical Atkin-Lehner theory (cf. Miyake[5], §4.6) one often considers sub-
modules of S = Si(T") with respect to the algebra A, := (T,'T) C Endc(Sk(T)),
where T is the full Hecke algebra (and ‘T is its (Rosati) adjoint); for example, one
shows that S is an Ag-submodule. Now it follows from the above Theorem 11 that
we have the inclusion Ay C Ej ¢ (which is not obvious from the definitions). Indeed,
since Cs(Eyc) = T" C Cs(Ag), the double centralizer theorem shows that Ay, C Eg c.

4 Application to Endg(Jx)

As in the introduction, let X = Xy (N)/Q denote the canonical model (in the sense
of [8], p. 152) of Xp =T\9H*, where I' = 'y (). Thus, X is the unique smooth, pro-
jective curve over QQ such that its function field x(X) is isomorphic to Ag(I'y(N), Q),
the field of modular functions (of weight 0) on I'y (V) whose g-expansions have coeffi-
cients in Q (cf. [8], Prop. 6.9(2), p.140). Note that since H and +H = (H, —1) define
the same curve Xy (V), we may assume without loss of generality that —1 € H, and
we shall do so in the sequel.

Now for any two divisors d, M of N with dM|N, the map f(z) — f(dz) = f|ofa
clearly defines an injection of fields 55 : Ao(I'y(M),Q) — Ag(I'y(N),Q) because
B Tu(M)By > B, Tu(N/d,d)Bs = T(N). We thus have a corresponding surjective
morphism of curves Byq 1 Xg(N) — Xgy(M) such that its induced pullback map
on the function fields is 3j. Note that the graph I'p,,, C Xp(N) x Xy(M) of
this morphism is precisely the correspondence X (f4) defined by the double coset
Bra =T (M)BL g (N); cf. [8], p. 170. In particular, since the degree of the morphism
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Byra is the degree of the Rosati adjoint “3y4, we see by [§], p. 171 and (2) that
deg(Bur,a) = deg(Bara) = [Lu(M) : Iy (N/d, d)].

Let Jx = Ju(N)/Q be the Jacobian variety of Xy (N)/Q. Then by functoriality
and autoduality of the Jacobian we have induced homomorphisms

BX/[,d : JH(M) — JH(N) and (BM7d)* : JH(N) — JH(M)

As is explained in [8], p. 169-171, these maps are the same as the homomorphisms
§(Bra) € Hom(Jy (M), Jg(N)) and &(Bara) € Hom(Jy(N), Ju(M)) defined by the
double cosets B4 and [y 4, respectively. Thus, by [8], Prop. 7.1, we have

§(Dura) = £(Bara) © E(Bara) = By © (Bara)s € Endg(Ju(N)),

and similarly, £("Dara) = By (Bui)s € Endg(Ju(N)). Moreover, we also have
the Q-endomorphisms £(7),) € Endg(Ju(NV)) defined by the Hecke operators T),; cf.
8], p. 175. As in the introduction, we let Tg, C End?Q(JH(N)) = Endg(Ju(N)) @ Q
denote the Q-algebra generated by the £(7},)’s, for p{ N.

Proposition 14. Let E C End&(JH(N)) denote the Q-algebra generated by Tg and
the degeneracy operators (D), §('Darg) with dM|N. Then T = Z(E) is the
centre of E and

(11) dimg(E) = Y nj.
FEN(T)

Proof. As before, write X = Xy(N). It is well-known that E := Endg(Jx) acts
faithfully on the space(s) Q'(Jx/Q) ~ QYX/Q) = H°(X,wy/g) of holomorphic
differentials of Jx/Q and X/Q (cf. e.g. [3]). Thus, the same is true for the subalgebra
E and hence E ® C acts faithfully on Q'(X1/C) = Q'(X/Q) ® C. Now via the
identification Sy(I') = Q'(Xt/C), the action of E® C on Sy(I") is the same as that
given by the double cosets (cf. [8], p. 171), so that we have a ring isomorphism
E® C ~ Eyc. Thus, by Theorem 5 (or by Theorem 11) we see that dimgE =
dimc E ® C = dimc Eo ¢ = 37 ;¢ s, r) 7, Which proves (11).

Furthermore, since by Theorem 11 we have Z(E) ® C = Z(E® C) = Ty ® C
(equality as subalgebras of E @ C), it follows that Z(E) = Tg,.

We can refine the above proposition by determining the isotypic E-module de-
composition of the E-module Q(Jx/Q) ~ S3(I", Q), where the latter denotes space of
cusp form f € Sy(I") with rational Fourier coefficients. For this, let [f] = fGg denote
the Galois orbit of f € NM(I") and put Sy = (Pge(Sy) N S2(T, Q); cf. [2], p. 36. We
then have:

Corollary 15. Each Sjy is an irreducible E-module, and every irreducible E-module
is of this form. Thus, the isotypic E-module decomposition of Q(Jx/Q) is given by

(12) O'(Jx/Q) ~ STQ ~ @ S

FEN(D)/Gq
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Proof. It is immediate that each Sy is a E-module. Since Sjy @ C = Dyes Sy, we
see from Theorem 11 (together with the fact that S, %2 Sy, if g # ¢') that S;y ® C
cannot have any nontrivial E ® C-submodules which are Gg-stable. Thus, Sjy) is an
irreducible E-module.

Since Q! (Jx /Q) ~ QY(X/Q) ~ S»(T", Q) (cf. [2], p. 35), we thus see that (12) is the
decomposition of Q'(Jx/Q) into pairwise non-isomorphic irreducible E-modules. In
particular, every irreducible E-module is isomorphic to some Sjy because Q'(Jx/Q)
is a faithful E-module (and E is semisimple).

We next study the structure of the algebra E = End?Q(J x). To this end, recall that
by the Shimura construction, each (weight 2) normalized newform f € N(T') = N(T)
of some level Ny|N defines an abelian variety A;/Q of dimension [Ky : Q], where
K¢ = Q({an}n>1) denotes the field generated by the coefficients of f = )" a,q"; cf.
8], p. 183, [9] or [3]. (Note that Ay = Ay, for any Galois conjugate f7, where
0 € Gg = Gal(Q/Q).) Then the abelian varieties A; determine Jx up to Q-isogeny,
for we have the relation

(13) Ix ~ H A

FEN(T)/Gq

for some positive integers my; cf. Ribet[7], Proposition (2.3). (We shall see below
that my = ny := dim Sy; cf. Remark 18(a).)

In order to deduce Theorem 6 from (13), we require the following facts which were
(essentially) proven by Ribet[7]:

Theorem 16. (a) End((Ay) ~ Ky, for all f € N(I).
(b) If f,g € N(T), then Ay ~ A, if and only if g = f°, for some o € Gg.

Proof. (a) Ribet[7], Corollary 4.2.
(b) This follows from Ribet’s results; cf. [1], Proposition 3.2.

Corollary 17. dim Z(Endg(Jx)) = #N(T') = dim T,

Proof. By Theorem 16(a) we see that each Ay is Q-simple, and hence by part (b) we
have Hom%(Af, A;) =0if f# ¢°, for all 0 € Gg. We thus obtain from (13) that

(14) Endy(Jx) ~ ] EndQA}) ~ [] Ma,(Kp),
FEN(D)/Gq FEN(T)/Gg

and that hence

(15)  dimZ(Endy(Jx)) =dim [[ K= > [K;:Q] = #N(D),

FEN(I)/Gq FEN(T)/Gq
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where the last equation follows from the fact that #(fGq) = [K; : Q. Since dim Tp, =
dime T o = #N(I) (cf. comment after equation (10)), the assertion follows.

Proof of Corollary 3. Since E¢c := E® C C E¢ := E® C C Endc(S), we have
Z(Ec) C Cs(Ec) C Cs(Ec) = T, the latter by Theorem 11. Now by Corollary
17 we have dimc(E¢) = dim T ¢, and so we have equality throughout, i.e. Z(Ec) =
Cs(Ec) = Cs(Ec) = Ty .

Proof of Theorem 1. Since E¢ = E® C and E¢ = E ® C are semi-simple subalgebras
of End¢(S) with Cs(Ec) = Cs(Ec) (cf. proof of Corollary 3), it follows from the
double centralizer theorem that Ec = E¢. Thus E = E, as asserted.

Proof of Corollary 2. By construction (cf. §2) we have E ¢ M, and so the image M of
M® Q in End%(J ) contains the image E of E® Q. Thus, since E = E by Theorem
1, we have E C M, as claimed.

Proof of Corollary 4. Since S = S3(I';Q) ® C and Cs(Ec) = T¢ by the proof of
Corollary 3, the first assertion follows (via the isomorphism Q!'(Jx) ~ S5(T, Q)). The
second assertion follows from this by Theorem 4.4 (or Corollary 4.6) of [3].

Proof of Theorem 6. By (14) it is enough to show that m; = ny, for all f € N(T).
For this, fix f € N(I') and let E; = EndO(A;?f), which by (13) (and Theorem 16)
is naturally a simple two-sided ideal of E. Since E = E by Theorem 1, we know by
Corollary 15 that S}y is an irreducible (right) E-module. By the Shimura construction
we know that S E; # 0, and so S}y is a faithful irreducible E-module. Thus, since
E; ~ M,,,(Ky), we see that dimg Siyy = ms[K; : Q. On the other hand, since
S[f] & C = EBgE[f]Sga we have dlm(@ S[f] = (dlm(c Sf)[Kf : @] = nf[Kf . @], and so

mf = nf.

Remark 18. (a) It follows from the above proof that (13) holds with m; = ny =
dim Sy = 0¢(IN/Ny). This was asserted without proof in [1], equation (3.4).

(b) All the above results also hold for the curves Xy (N’ t) associated to the
groups (N’ t) = BT (tN")3; " of Remark 13(b); in fact, the matrix 3; induces a
Q-isomorphism (), : Xg(N't) = Xu(N',t).

(c) In a letter to the author, Ken Ribet (July 2005) pointed out that it is possible

to deduce Corollary 3 and the first assertion of Corollary 4 directly from Theorem 6
together with the fact that T' C Z(E).

Example 19. (a) If Jy(p?) is the Jacobian of the modular curve X,(p?)/Q, where p
is a prime, then

(16) Endg(Jo(p*)) = (T, 7. &(T3), £('Ty))e = (Tg, 7, 7')a,
")*n, are the endomorphisms associated to the degeneracy

where 7 = n*n, and 7" = (9')*1.,
— Xo(p) and ' := B, : Xo(p?) — Xo(p).

maps 1 := B,1 : Xo(p?)
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(b) If J(p) is the Jacobian of the modular curve X (p)/Q defined by the principal
congruence subgroup I'(p), then

(17) Endg(J(p) = (T, 7, &(T3), £('Tp))e = (T, 7. 7)o

where 7 = "1, and 7 = (77')*7), are the endomorphisms associated to the covers
n: X(p) — X'(p) and 7' : X(p) — Xi(p) which are induced by the inclusions
I''(p) C T'(p) and T'y(p) C T'(p), respectively.

Proof. (a) Applying Theorem 1 with N = p? and H = (Z/p*Z)* yields Endg)(Jo(p?)) =
(T4, E(Dp1), E(Dpyp), §('Dpp))g-  (Note that {(D,2;) = id and that {(Dig4) = 0
because Xy (1) = X(1) has genus 0). Now &(D,;) = 7 by definition because
I'y(p) = To(p). Moreover, since ‘T, C D,, (cf. (3)) and since by (2) degD,, =
[TCo(p) : To(p*)] = p = deg T, we see that D, , = T, and hence that also ‘D, , = T,,.
This proves the first equality of (16).

To prove the second equality, we shall apply Corollary 12 to E' = (T} ¢, [7]2, [7']2)c-
Since 7 = 7 and 7' = 7/, it is clear that E is semi-simple. Consider D, := [77']; €
E’, and let T" = ({1). Since {T"}o<a<p—1 is a system of coset representatives of
To(p)/To(p,p), we see that f|[7']y = P4 flac, 7B, = f|T,3,. Now since Im([r]) =
So(To(p)) and since T}, acts bijectively on Sy(I'g(p)) (use [5], Th. 4.6.17), we thus see
that Im([77']) = S2(Lo(p))B,. By Corollary 12 we therefore have that E' = E, ¢, and
so IE is generated by Tg, 7, and 7. This proves the second equality of (16).

(b) We observe that the proof of (a) shows more generally that if H is any subgroup
with Ker(r,2,,) < H < (Z/p*Z)*, then the analogous formula of (16) holds for the
Jacobian Jg(p?) of the curve Xy (p?), i.e.

(18) End?Q(JH(pQ)) = <T</@7TH7€(TP)’€(tTP)>Q = <T/>TH7T;{>Q?

where 7 = 05 (ng)« and 7 = (n)y)* (0 )« are defined by the degeneracy maps
i = Byt Xu(p?) — Xp(p) and nyy := By« Xu(p?) — Xnu(p).
Applying this to H = Ker(r,2,,) and noting that I'(p) = T'u(p, p) = BT u(p*)5, ",

we see that Endg(J(p)) = (T, pp(mi),6(T5),£('Tp))a = (T, pp(7a), pu(Tir))as cf.
Remarks 18(b) and 13(b). Now since 3,y (p)3," = I'u(1,p) = I''(p), we sce that
pp(TH) = 7. Moreover, p,(15;) = 7' because flp,(7y) = f]ﬁp[T’]gﬁp_l = > fIT* =
f117'], and so (17) holds.
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