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Introduction

The main aim of this paper, which is the sequel to [Ka], is to prove the existence
of curves C of genus 2 admitting morphisms to two given elliptic curves E and E ′.
More precisely, we are interested in the following problem.

Question. Given two elliptic curves E and E ′ over an algebraically closed field
K and an integer N ≥ 2, does there exist a curve C of genus 2 which admits two
morphisms

f : C → E, f ′ : C → E ′,

of degree N such that the induced maps f ∗ and f ′∗ on the associated Jacobian
varieties fit into an exact sequence

0→ JE
f∗→ JC

f ′∗→ JE′ → 0 ?(1)

To put this question into its proper perspective, it may be useful to recall the
following facts (cf. [Ka] for more details and historical remarks). If a curve C of
genus 2 admits any non-constant morphism f1 : C → E1 to an elliptic curve E1 at
all — in which case we say (mainly for historical reasons) that C admits an elliptic
differential — then we have in fact the situation as described above, for f1 factors
over a morphism f : C → E, and there is a complementary morphism f ′ : C → E ′

(with deg(f ′) = deg(f) =: N) such that the induced morphisms on the Jacobians
fit into an exact sequence (1). Since f and f ′ are uniquely determined by f1 up to
isomorphism, we say that (E,E ′, N) is the type of the elliptic differential (or of the
covering).

If char(K) 6 | N , then it is easy to see that there are only finitely many curves
C of genus 2 admitting an elliptic differential of type (E,E ′, N); in fact, if we let
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n(E,E ′, N) denote the number of such curves C, each counted with multiplicity
according to its automorphisms, then we have the estimate

n(E,E ′, N) ≤ sl(N) := #Sl2(Z/NZ) = N3
∏
p|N

(
1− 1

p2

)
,

and equality holds if E and E ′ are not isogenous. If, however, E and E ′ are isoge-
nous, then the exact value of n(E,E ′, N) is much more complicated and was de-
termined in [Ka]. Nevertheless, the mere knowledge of a formula for the number of
curves still doesn’t prove their existence, for it is difficult to see from the fomula
that the number in question is positive, particularly if N is not prime (and/or E and
E ′ are supersingular). To this end, we therefore establish the following simple lower
bound, which generalizes the bound obtained in [Ka] (for N prime) to all composite
N ’s prime to the characteristic of K.

Theorem 1 (“Existence Theorem”). If char(K) 6 | N then we have

1

6
sl(N) < n(E,E ′, N) ≤ sl(N),(2)

except when j(E) = j(E ′) = 0 and E ' E ′ is supersingular. Thus, aside from this
exception, there always exist a curve C of genus 2 of type (E,E ′, N).

In particular, we see that the above question has a positive answer whenever
p := char(K) = 0 or p ≡ 1 (3). Nevertheless, it can happen in the above exceptional
case that no curve of type (E,E ′, N) exists, as the following “non-existence theorem”
shows.

Theorem 2. If char(K) = 2 or 3 and E/K is supersingular (hence j(E) = 0),
then n(E,E,N) = 0 for all N ≥ 2 with char(K) 6 | N . Thus, there is no curve of
genus 2 of type (E,E,N).

It seems likely that the case treated in Theorem 2 is the only type for which no
curve exist:

Conjecture. There is no curve of type (E,E ′, N) (with p = char(K) 6 | N) if and
only if p = 2 or 3 and j(E) = j(E ′) = 0.

As was already remarked, Theorem 1 shows that the conjecture is true if p = 0
or if p ≡ 1 (3). Moreover, if p ≡ 2 (3), then it can be shown that for each p there
are at most finitely many exceptions. This follows from the following result which
determines the precise order of magnitude of the function n(E,E,N) when E is
supersingular and which includes Theorem 2 as a special case.
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Theorem 3. If E is a supersingular curve over an algebraically closed field of
characteristic p, then for each N ≥ 2 with p 6 | N we have

n(E,E,N) =
(p− 2)(p− 3)

p2 + 1
sl(N) +R(N)(3)

where the error term satisfies the estimate

R(N) = O(N2+ε).(4)

Moreover, R(N) = 0 if p = 2 or 3. In particular, n(E,E,N) > 0 if p ≥ 5 and
N ≥ N0(p) is sufficiently large.

Aside from the results of [Ka], the proof of the above theorem requires the theory
of modular forms and uses the Petersson-Ramanujan Conjecture (which was proved
by Eichler and Deligne).

Remark: In the case that E = E ′ is an (ordinary) elliptic curve with complex mul-
tiplication, I. Kiming [Ki] has determined the asymptotic behaviour of the function
r(E,E,N) := sl(N)− n(E,E,N) when restricted to prime numbers N ; this partly
complements Theorem 3.

Even though the proof of Theorem 3 shows that the above constant N0(p) is
effectively computable (in principle) for each given p, this does not lead directly to
any practical bounds on N0(p). Nevertheless, if p is small, then the method of proof
of Theorem 3 can be refined so as to yield useful lower bounds, and hence the above
conjecture can be verified in these cases.

Theorem 4. If p < 23 then the above conjecture is true; i.e. if p 6= 2, 3 then we
have n(E,E ′, N) > 0 for all N ≥ 2 with p 6 | N .

We now discuss the contents of this paper in more detail.
As was already mentioned, although the results of [Ka] yield an explicit formula

for n(E,E ′, N), the task of extracting from this the general lower bound asserted in
Theorem 1 still requires considerable work, particularly if Hom(E,E ′) is large (e.g.
if E and E ′ are supersingular). Indeed, for N prime, this formula has the form

n(E,E ′, N) = sl(N)− r(E,E ′, N) = sl(N)− 1

2

N−1∑
k=1

h(E,E ′, k(N − k)),(5)

where h(E,E ′,m) denotes the number of homomorphisms h : E → E ′ of degree m.
If N is composite, then there is a similar but much more complicated formula for

3



r(E,E ′, N) := sl(N)−n(E,E ′, N) (cf. section 2); as a result, naive estimates of the
right hand side of (5) tend to be negative. To circumvent this problem, a certain
“mass formula” was proved in [Ka] which shows (in principle, at least) that the term
r(E,E ′, N) is “on average” much smaller than sl(N). While this is by no means
immediately evident from the version proved in [Ka], it will become clear once we
have verified the following remarkable identity in elementary number theory which,
by the way, was discovered for this purpose with the help of a computer.

Theorem 5. Let σ(m,N) denote the arithmetical function defined by

σ(m,N) =
∑
d|N
d2|m

µ(d)σ(m/d2),

where µ(d) denotes the Moebius µ-function and σ(n) =
∑
d|n d the sum of divisors

function. Then
N−1∑
k=1

σ(k(N − k), N) =
(

5

12
− 1

2N

)
sl(N).(6)

This identity, which depends on a classical identity of Glaisher[Gl], is derived in
section 1. There we also show how this leads to the following version of the “Mass
Formula” which was proved in another form in [Ka].

Theorem 6. Let E be an elliptic curve over K. Then∑
E′

r(E,E ′, N)

#Aut(E ′)
≤
(

5

24
− 1

4N

)
sl(N),(7)

where the sum on the left extends over a system of representatives of the isomor-
phism classes of elliptic curves E ′/K. Moreover, equality holds in (7) if and only if
char(K) = 0 or if N ≤ char(K).

Remark. As the proof below shows, the above inequality also holds if char(K) | N
provided that we define, as in [Ka], r(E,E ′, N) as the number of reducible anti-
isometries ψ : E[N ] → E ′[N ]. (This agrees with the above definition in the case
that char(K) 6 | N .) Thus r(E,E ′, N) is always finite, whereas n(E,E ′N) is infinite
if (and only if) E and E ′ are supersingular and char(K) | N (cf. [Ka], Theorem 3.4).

From Theorem 6 (and the results of [Ka]) it is easy to deduce the main existence
theorem (Theorem 1); this will be done in section 2.

Finally, in section 3 we use the theory of modular forms to derive the order of
magnitude of the function n(E,E,N) in the case that E is a supersingular elliptic
curve and thereby prove Theorems 3 and 4.
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1 An arithmetical identity

The purpose of this section is to prove the following remarkable identity (Theorem
1.2) concerning the arithmetical function σ(n) (= sum of divisors function) and to
use it to prove the “mass formula” (Theorem 6) of the introduction.

Notation 1.1 If f : N → C is any arithmetical function, then we define the two-
variable function f(m,n) by

f(m,n) =
∑
d|n
d2|m

µ(d)f(m/d2),(1.1)

where µ(n) denotes the Moebius µ-function. Note that if f is multiplicative, i.e.
f(nm) = f(n)f(m) if (n,m) = 1, then so is f( · , n), and hence we have

f(m,n) =
∏
p6 | n
pr||m

f(pr)
∏
p|n
pr||m

f(pr, p) = f(m/mn)f(mn, n), where mn =
∏
p|n
pr||m

pr(1.2)

denotes the n-primary part of m.

In the sequel we shall be particularly interested in the case that f(n) = σ(n) is
the sum of divisors function, i.e., σ(n) =

∑
d|n
d. In this case (1.2) shows that

σ(m,n) = ψ(mn)σ(m/mn), where ψ(n) = n
∏
p|n

(
1 +

1

p

)
(1.3)

denotes as usual the Dedekind ψ-function.
The function σ(n,m) satisfies the following curious identity.

Theorem 1.2 For every n ≥ 2 we have

n−1∑
k=1

σ(k(n− k), n) =
1

12
(5n− 6)φ(n)ψ(n) =

(
5

12
− 1

2n

)
sl(n),(1.4)

where φ denotes the Euler φ-function and sl(n) = #Sl2(Z/nZ).
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Remark 1.3 Although the identity (1.4) seems to be new, the essential ingredient
of its proof is, as we shall see presently, the following identity due to Glaisher (1884)
which was generalized by Ramanujan in 1915 (cf. [Gl], [Ra], and also [Di], p. 300):

s(n) :=
n−1∑
k=1

σ(k)σ(n− k) =
1

12
[5σ3(n)− 6nσ(n) + σ(n)].(1.5)

Note that this identity follows immediately from the identity

∂2P = −Q− P 2

of Lang [La], ch. X, Th. 5.3 (p. 161) by comparing coefficients of the q-expansions
of Q,P and ∂2P as given on pp. 156, 160 of [La].

Proof of Theorem 1.2. Since sl(n) = n3∏
p|n

(
1− 1

p2

)
= nφ(n)ψ(n), the second

equality in (1.4) is clear. To prove the first, let

s∗(n) =
n−1∑
k=1

σ(k(n− k), n) and s′(n) =
n−1∑
k=1

σ(k(n− k)).

These two functions are related to s(n) by the formulae

s∗(n) =
∑
d|n
µ(d)s′(n/d) and s′(n) =

∑
d|n
µ(d)ds(n/d).(1.6)

To see this, note first that we have µ(d) 6= 0, d|n, d2|k(n − k) ⇐⇒ µ(d) 6= 0, d|n,
d|k because if n = p1 · · · pr, d|n and d 6 | k, then pi 6 | k for at least one i, so pi 6 | n− k,
and then pi 6 | k(n− k) and d2 6 | k(n− k). Thus we have

s∗(n) =
n−1∑
k=1

σ(k(n− k), n) =
n−1∑
k=1

∑
d|n

d2|k(n−k)

µ(d)σ

(
k(n− k)

d2

)

=
n−1∑
k=1

∑
d|n
d|k

µ(d)σ

(
k(n− k)

d2

)
=
∑
d|n
µ(d)

n−1∑
k=1

d|k

σ

(
k

d

(
n

d
− k

d

))

=
∑
d|n
µ(d)

n/d−1∑
k=1

σ
(
k
(
n

d
− k

))
=
∑
d|n
µ(d)s′(n/d),

which establishes the first formula of (1.6). To prove the second formula, we shall
use the identity

σ(nm) =
∑
d|n
d|m

σ(n/d)σ(m/d)µ(d)d, ∀n,mεN,(1.7)
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which is well-known in the theory of modular forms and Hecke-Operators. An
elementary proof of this may be found in McCarthy [Mc], p. 24. By (1.7) we obtain

s′(n) =
n−1∑
k=1

σ(k(n− k)) =
n−1∑
k=1

∑
d|k

d|n−k

σ(k/d)σ

(
n− k
d

)
µ(d)d

=
∑
d|n
µ(d)d

n−1∑
k=1

d|k

σ(k/d)σ(n/d− k/d) =
∑
d|n
µ(d)d

n/d−1∑
k=1

σ(k)σ(n/d− k)

which proves the second formula of (1.6).
Substituting the second formula of (1.6) into the first yields the relation

s∗(n) =
∑
d|n
u(d)s(n/d),(1.8)

where u(n) is the arithmetical function defined by

u(n) =
∑
d|n
dµ(d)µ(n/d).

We shall now deduce (1.4) from (1.8) by substituting Glaisher’s identity (1.5) and
applying the identities∑

d|n
σk(d)u(n/d) = nJk−1(n), and

∑
d|n
dσk(d)u(n/d) = Jk+1(n),(1.9)

where, as in McCarthy [Mc], p. 13, Jk(n) =
∑
d|n d

kµ(n/d). Specifically we obtain

s∗(n) =
1

12

∑
d|n
u(n/d)[5σ3(d)− 6dσ(d) + σ(d)] =

1

12
[5nJ2(n)− 6J2(n) + nJ0(n)],

which is (1.4) because J2(n) = φ(n)ψ(n) and J0(n) = 0 for n > 1.
It thus remains to verify the identities (1.9). For this we shall use the formalism

of the Dirichlet product (cf. [Mc], p. 2). As in [Mc], let ζk(n) = nk. Then by
definition u = (ζ1µ) ∗ µ, σk = ζ0 ∗ ζk and so the left hand side of the first identity of
(1.9) is (ζ0 ∗ ζk) ∗ (ζ1µ ∗µ) = ζk ∗ (ζ1µ) = ζ1(ζk−1 ∗µ) = ζ1Jk−1. This proves the first
identity. Similarly, the left hand side of the second one is ζ1(ζ0 ∗ ζk) ∗ (ζ1µ) ∗ µ =
ζ1(ζ0∗ζk ∗µ)∗µ = (ζ1ζk)∗µ = ζk+1∗µ = Jk+1. This proves (1.9) and hence Theorem
1.2.

For later reference, let us note here that the identity (1.4) can also be written
in the following form (1.10) which accentuates its connection to the formula for
r(E,E ′, N) in [Ka], Theorem 3.1 (cf. also Theorem 2.1 below).
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Corollary 1.4 For every n ≥ 2 we have

∑
d|n
d6=n

n/d∑
k=1

(k,n/d)=1

ψ(dk(n− dk))

ψ(k(n
d
− k))

σ(k(n
d
− k), n) =

(
5

12
− 1

2n

)
sl(n).(1.10)

Proof. Clearly, the right hand sides of (1.4) and (1.10) are equal. Moreover, the left
hand sides of (1.4) and (1.10) are equal term-by-term because we have the identity

σ(m,n) =
ψ(m)

ψ(m/d)
σ
(
m

d
, n
)
, if d|(m,nr), for some r ≥ 1,(1.11)

which follows easily from (1.3). Indeed, if we put m = m/d, then its n-component
is mn = mn/d and so we have m/mn = m/mn. Thus, by (1.3) we obtain

σ(m,n) = ψ(mn)σ(m/mn) = ψ(mn)σ(m/mn) = ψ(mn)/ψ(mn)σ(m,n),

from which (1.11) is immediate.

We also note here the following corollary which will be used later in section 3.

Corollary 1.5 If n = pr is a prime power then

s′′(n) :=
n−1∑
k=1

(k,n)=1

σ(k)σ(n− k) = α(p)n3 + β(p)n(1.12)

where α(p) = 5
12

(p−1)(p2−1)
p(p2+1)

and β(p) = 1
12

(p2−1)(p−2)(p−3)
p(p2+1)

.

Proof. Since p 6 | k(pr − k)/d2 where d = (k, pr) = pi, we have that σ(k(pr−k), pr) =
σ(k(pr − k)/d2) = σ(k/d)σ(pr − k)/d). Thus, the identity (1.10) reduces in the
prime power case to the formula∑

d|pr
ψ(d2)s′′(pr/d) =

1

12
(5pr − 6)p2r

(
1− 1

p2

)
,

from which the identity (1.12) follows by (a somewhat tedious) induction on r.

By combining the results of [Ka] with the above theorem, we can now easily
prove Theorem 6 of the introduction.

Proof of Theorem 6. Combining equations (4.1) and (4.2) of the Mass Formula
(Theorem 4.1) of [Ka], we obtain

∑
E′

r(E,E ′, N)

#Aut(E ′)
≤ 1

2

N−1∑
k=1

σ(k(n− k), N),

with equality holding if and only if char(K) = 0 or if char(K) ≥ N . From this (7)
follows immediately in view of the fundamental identity (1.4).
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2 Bounding n(E,E ′, N) : E ordinary or j(E) 6= 0

The purpose of this section is to prove the existence of curves of genus 2 with elliptic
differentials by establishing the lower bound for the number n(E,E ′, N) asserted
in Theorem 1 of the introduction. For this we shall use both the mass formula
(Theorem 6) established in the previous section, as well as the following special case
of Theorem 3.4 of [Ka].

Theorem 2.1 If char(K) 6 | N , then the weighted number of curves of genus 2 of
type (E,E ′, N) is given by the formula

n(E,E ′, N) = sl(N)− 1

2

N−1∑
k=1

w(k,N)h

(
E,E ′,

k(N − k)

(k,N)2
, N

)
,(2.1)

where the weighting factor w(k,N) is defined by

w(k,N) =
ψ(k(N − k))

ψ(k(N − k)/(k,N)2))
= (k,N)2

∏
p|(k,N)

p6 | k(N−k)

(k,N)2

(
1 +

1

p

)
,(2.2)

and h(E,E ′,m,N) denotes the number of N-primitive homomorphisms h : E → E ′

of degree m, which is related to the number h(E,E ′,m) of all homomorphisms of
degree m by the formula

h(E,E ′,m,N) =
∑
k|N
k2|m

µ(k)h(E,E ′, m
k2 ).(2.3)

Proof of Theorem 1. The upper bound in (2) follows directly from the fact that
r(E,E ′, N) := sl(N) − n(E,E ′, N) ≥ 0; cf. Theorem 2.1. For the lower bound we
shall establish the equivalent inequality

r(E,E ′, N) <
5

6
sl(N).(2.4)

For this, suppose first that Min(a(E), a(E ′)) ≤ 4 where, for brevity, a(E) :=
#Aut(E). Since r(E,E ′, N) is symmetric in E and E ′ (as follows easily from the
description given in [Ka]), we obtain from the mass formula (7) the estimate

r(E,E ′, N) ≤ 4
(

5

24
− 1

4N

)
sl(N) <

5

6
sl(N),

which yields (2.4) in the case that Min(a(E), a(E ′)) ≤ 4.
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Now suppose that Min(a(E), a(E ′)) > 4. Looking at the table of groups of
automorphisms of elliptic curves, we see that we then must have j(E) = j(E ′) = 0
(cf. Silverman [Si], p. 103). Thus, to finish the proof it remains to consider the case
that j(E) = j(E ′) = 0 and E ' E ′ is ordinary. Here we shall prove the following
slightly better result:

Proposition 2.2 Let E/K be the elliptic curve with j(E) = 0 (so E is defined by
y2 = x3 − 1) and suppose that E is ordinary (i.e. p := char(K) = 0 or p ≡ 1(3)).
Then for all N ≥ 2 prime to p we have

n(E,E,N) ≥ 1

2
sl(N).(2.5)

Proof. We shall first establish the inequality

h(E,E,m,N) ≤ 3

2
σ(m,N), if m ≥ 2, N ≥ 1,(2.6)

where h(E,E,m,N) is as in (2.3) and σ(m,N) as in (1.3).

To prove this, recall that End(E) = Z[ρ] where ρ = −1+
√
−3

2
. Since this has

class number 1 and #(Z[ρ]×) = 6, it follows that h(E,E,m) = 6ν(m), where ν(m)
denotes the number of ideals of O = Z[ρ] of norm m, and hence we obtain

h(E,E,m,N) = 6ν(m,N),(2.7)

where ν(m,N) denotes the number of N -primitive ideals of norm m. From the
decomposition of primes in O we obtain for a prime q and integer r ≥ 1:

ν(qr, N) = 0 if q ≡ 2(3) and q|N or r = 1

ν(qr, N) ≤ ν(qr) ≤ 1 if q ≡ 2(3) and q 6 | N,
ν(qr, N) = 2 if q ≡ 1(3) and q|N,
ν(qr, N) = r + 1 if q ≡ 1(3) and q 6 | N,
ν(3r, N) ≤ 1.

Thus, if we put ν(m,N) = ν(m,N)/σ(n,N) then we obtain

ν(qr, N) = 0 if q ≡ 2(3) and q|N or r = 1,
ν(qr, N) ≤ 1

7
if q ≡ 2(3) and q 6 | N, r ≥ 2,

because 1
σ(pr)

≤ 1
p2+p+1

≤ 1
7

(for r ≥ 2). On the other hand, if q ≡ 1(3) then q ≥ 7

so ν(qr, N) ≤ r+1
σ(qr)

≤ 2
p+1
≤ 1

4
; in addition we have ν(3r, N) ≤ 1

σ(3r)
≤ 1

4
, for r ≥ 1

Gathering these inequalities together, we thus obtain

ν(qr, N) ≤ 1

4
σ(qr, N)(2.8)
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for all primes q and r ≥ 1, and so (2.6) follows by combining (2.7) and (2.8).
We now show how to deduce (2.5) from (2.6). Indeed, if d = (k,N), then from

(2.2) and (2.6) we obtain the estimate

w(k,N)h(E,E, k(N − k)/d2, N) ≤ 3

2

ψ(k(N − k))

ψ(k(N − k)/d2)
σ

(
k(N − k)

d2
, N

)
,(2.9)

provided that k 6= N
2

(i.e. k(N−k)
d2 6= 1). Now by (1.11) the right hand side of (2.9)

equals 3
2
σ(k(N − k), N), and so, if N is odd, then we obtain from (2.1), (2.9) and

the fundamental identity (1.4) the inequality

r(E,E,N) ≤ 1

2

N−1∑
k=1

3

2
σ(k(N − k), N) =

3

4

(
5

12
− 1

2N

)
sl(N),

which yields the bounds

r(E,E,N) <
5

16
sl(N) and n(E,E,N) >

11

16
sl(N) >

1

2
sl(N), if N is odd.

Suppose next that N is even. Since by definition

w(N/2, N)h(E,E,
(N/2)2

d2
, N) = ψ((N/2)2)a(E) = 6ψ((N/2)2),

and

σ(N
2
, N) = ψ((N

2
)2) = N

2
ψ(N

2
) ≤ N

4
ψ(N) =

sl(N)

4φ(N)
,(2.10)

we obtain the estimate

w(N/2, N)h(E,E, (N/2)2/d2, N) ≤ 3

2
σ(N/2, N) +

9

2
· sl(N)

4φ(N)
.

This leads to the bounds

2 · r(E,E,N) ≤
N−1∑
k=1

3

2
σ(k(N − k), N) +

9sl(N)

8φ(N)
=

(
5

8
+

9

8φ(N)
− 3

4N

)
sl(N).

Now for N 6= 2, 6 we have the estimate g(N) := 3
2φ(N)

− 1
N
≤ 1

2
because g(N) ≤

3
2·2 −

1
4

= 1
2

if 2 < N ≤ 4 and g(N) ≤ 3
2·4 < 1

2
if N ≥ 5, N 6= 6. We thus

obtain r(E,E,N) ≤
(

5
16

+ 3
8
− 1

2

)
sl(N) = 1

2
sl(N), and so (2.5) follows provided

that N 6= 2, 6. To include these two exceptional cases we note that if 2 6 | (N
2

), then

the estimate (2.10) can be improved to the equality σ
(
N
2
, N

)
= ψ

((
N
2

)2
)

= sl(N)
6φ(N)

which leads to the bound

r(E,E,N) ≤
(

5

16
+

3

8φ(N)
− 3

8N

)
sl(N) ≤ 1

2
sl(N),

and so (2.5) holds in all cases.
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3 Bounding n(E1, E2, N): supersingular case

We now turn to the case not covered by the Existence Theorem 1, which is the
case that E = E ′ is supersingular with j-invariant j = 0. The main result here
is Theorem 3 of the introduction which gives the precise order of magnitude of
n(E,E,N) for any supersingular curve E/K.

This theorem will be proved below in two steps. The first step consists of relating
r(E,E,N) to the sum

s∗p(N) =
N−1∑
k=1

dp(k(N − k), N);(3.1)

the second consists of deriving an asymptotic formula for s∗p(N). Here, dp(m,N) is
defined in terms of the function dp(m) by the rule (1.1), and dp(m) is defined as in
Hecke [He], p. 817:

dp(m) =
∑
t|m
p6 | t

t = σ(m)− pσ(m/p) = σ(m/mp).

Remark 3.1 Since E is assumed to be supersingular, it follows that

dp(m) = σ(E,m)

is the number of subgroup schemes of E of order m (cf. [Ka], Proposition 4.3a)),
and similarly, dp(m,N) is the number σ(E,m,N) of N -primitive subgroup schemes
of order m (cf. [Ka], Proposition 4.3b)). Thus, by the Mass Formula (in the version
of [Ka], Theorem 4.1) we therefore see that s∗p(N) is twice the left hand side of (7):

∑
E′

r(E,E ′, N)

#Aut(E ′)
=

1

2
s∗p(N).(3.2)

We now turn to the first step in the proof of Theorem 3 which consists of estab-
lishing the following result.

Proposition 3.2 For p 6 | N we have

r(E,E,N) =
12

p− 1
s∗p(N) +R0(N),(3.3)

where R0(N) = 0 for p ≤ 13, p 6= 11, and otherwise satisfies the estimate

|R0(N)| ≤ c(ε)N2+ε, ∀ε > 0.(3.4)

12



Proof. Since E is supersingular, End(E) is a maximal order of the quaternion algebra
ramified at p and ∞, and so it follows that h(n) := h(E,E,N) is a quaternary
quadratic form of discriminant p2 (cf. Deuring [De]). Thus, by Hecke’s theory (Hecke
[He]), the function

H(τ) =
∑
n≥0

h(n)qn , q = e2πiτ ,

is a modular form of weight 2 on Γ0(p), i.e. H(τ) ∈ M2(Γ0(p)). We shall compare
H(τ) to the modular form

E(p, τ) :=
p− 1

24
+
∑
n≥1

dp(n)qn ∈M2(Γ0(p));(3.5)

note that E(p, τ) = 1
8π2E(τ ; p) in the notation of Schoeneberg [Sch], p. 177. (Note

also the sign error in the q-expansion formula for E(τ ;N) on p. 177 of [Sch]; it is
stated correctly in [He], Satz 11).

Let F1, ..., Fg ∈ S2(Γ0(p)) denote a basis for the cusp forms of weight 2 on Γ0(p),
which we can take to be a basis of normalized eigenforms (newforms) under the
Hecke algebra. Since dimM2(Γ0(p))/S2(Γ0(p)) = 1 (cf. [Sch], pp. 171-2), it follows
by comparing constant coefficients that H(τ)− 24

p−1
E(p, τ) ∈ S2(Γ0(p)), so

H(τ) =
24

p− 1
E(p, τ) +

g∑
j=1

cjFj(τ),

for certain cj ∈ C. We thus have the relations

h(n) =
24

p− 1
dp(n) +

g∑
i=1

cjfj(n), ∀n ≥ 1,(3.6)

where Fj(τ) =
∑
n≥1 fj(n)qn; in particular, for n = 1 we obtain the relation

a(E) =
24

p− 1
+

g∑
j=1

cj.(3.7)

Thus, if h(m,n) and fj(m,n) are defined by rule (1.1), then (3.6) yields the
relations

h(m,n) =
24

p− 1
dp(m,n) +

g∑
j=1

cjfj(m,n).(3.8)

We shall now substitute these in the formula (2.1) for r(E,E,N) = sl(N) −
n(E,E,N), which we can write in the form

r(E,E,N) =
1

2

∑
t|N

∑
k=1

(k,N)=t

w(k,N)h
(
k(N − k)/t2, N

)
.(3.9)
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Now it follows from (1.11), together with the fact that dp(m,n) = σ(m/mp, n) if
p 6 | n, that

w(k,N)dp
(
k(N − k)/t2, N

)
= dp(k(N − k), N), if p 6 | N.(3.10)

Thus, substituting (3.8) in (3.9) and using (3.10) yields

r(E,E,N) =
12

p− 1

N−1∑
k=1

dp(k(N − k), N) +R0(N) =
12

p− 1
s∗p(N) +R0(N),(3.11)

where R0(N) = 1
2

∑g
j=1 cj f̃j(N) and

f̃j(N) =
∑
t|N

N−1∑
k=1

(k,N)=t

w(k,N)fj
(
k(N − k)/t2, N

)
.(3.12)

Of course, if g := dimS2(Γ0(p)) = 0, then trivially R0(N) = 0; this happens for
p ≤ 13, p 6= 11 (cf. [Sch], p. 103).

Since (3.11) is identical to (3.3), the proof of Proposition 3.2 will be complete
once we have shown that R0(N) satisfies (3.4). For this, we shall first estimate f̃j(N)
by using the Ramanujan-Petersson conjecture (for weight 2) which was proved by
Eichler [Ei] (see also Shimura [Sh], Theorem 7.12) and was complemented by Igusa:

|fj(n)| ≤ d(n)n1/2 , if p 6 | n.(3.13)

Moreover, since for pr‖n we have fj(n) = fj(p)
rfj(n/p

r) (cf. Lang [La], p. 110) and
since fj(p) = ±1 (cf. [SB], Th. 3 or [Mi], Th. 4.6.17), we see that (3.13) can be
improved to

|fj(n)| ≤ d(n/pr)(n/pr)1/2, if pr‖n;(3.14)

in particular, (3.13) is valid for all n ≥ 1.
From (3.13) we obtain the following estimate for f(m,n):

|f(m,n)| ≤ d(m)
ψ((m,n))

(m,n)
m1/2.(3.15)

Indeed, since both sides of (3.15) are multiplicative in m (for n fixed), it is enough
to consider the case that m = qr is a prime power. Then both sides of (3.15)
depend (for m fixed) only on qs||n, and so we may assume n = qs. Now if s = 0
or r ≤ 1 then f(qr, qs) = f(qr), in which case (3.15) follows directly from (3.13).
Thus, assume s ≥ 1 and r ≥ 2. Then f(qr, qs) = f(qr) − f(qr−2), so |f(qr, qs)| ≤
|f(qr)|+|f(qr−2)| ≤ (r+1)qr/2+(r−1)qr/2−1 ≤ (r+1)(1+ 1

q
)qr/2 = d(m)ψ((m,n))

(m,n)
m1/2,

which proves (3.15).
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Next we note that with t = (k,N) and M = k(N−k)
t2

we have the identity

w(k,N)
ψ((M,N))

(M,N)
= tψ(t)(3.16)

because by (2.2) the left hand side is t2
∏
q|t
q 6 |M

(
1 +

1

q

) ∏
q|M
q|N

(
1 +

1

q

)
= t2

∏
q|t

(
1 +

1

q

)
.

Thus, combining (3.15) and (3.16) yields

|w(k,N)fj(k(N − k)/t2, N)| ≤ w(k,N)d(M)
ψ((M,N))

(M,N)
M1/2 = tψ(t)d(M)M1/2,

and so, substituting this in (3.12), we obtain

|f̃j(N)| ≤
∑
t|N

tψ(t)
N−1∑
k=1

(k,N)=t

d

(
k(N − k)

t2

)(
k(N − k)

t2

)1/2

.(3.17)

Fix ε > 0 and let cε be such that

d(n) ≤ cεn
ε.(3.18)

Then from (3.17) we obtain

|f̃j(N)| ≤ cε
∑
t|n
t6=N

tψ(t)φ(N/t)
(
N

2t

)1+2ε

=
cε

21+2ε

∑
t|n
t6=N

t−2εψ(t)φ(N/t)N1+2ε(3.19)

because k(N−k)
t2
≤ (N/2t)2, for all k. Finally, using the identity/inequality

∑
t|N

ψ(t)φ
(
N

t

)
=

∏
qr||N

(
2qr + (r − 1)qr(1− 1

q2
)

)
≤ d(N)N

we obtain, using (3.18) once more, that

|f̃j(N)| ≤
(

1

2

)1+2ε

c2
εN

2+3ε.

Thus, substituting this estimate in (3.11) yields the desired inequality (3.4) with

c(ε) =
(

1

4

)1+ε/3
 g∑
j=1

|cj|

 c2
ε/3.(3.20)
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Remark 3.3 a) In view of proving the existence of curves of type (E,E,N) (with
E supersingular), Proposition 3.2 represents the main step, at least if p > 5. Indeed,
since s∗p(N) ≤ s∗(N) < 5

12
sl(N) by Theorem 5, it follows from Proposition (3.2) that

r(E,E,N) <
5

p− 1
sl(N) +R0(N) <

6

p− 1
sl(N), ifN1−ε ≥ c(ε)

π2

6
(p− 1),(3.21)

where c(ε) is as in (3.4) and/or (3.20). Indeed, by using (3.4) and the fact (cf. (3.48)
below) that sl(N) > N3/ζ(N) = (6/π2)N3, we obtain

R0(N) ≤ c(ε)N2+ε < c(ε)(π2/6)N ε−1sl(N)

from which (3.21) follows readily. (See also Lemma 3.10 below.)

b) The above proof of Proposition 3.2 shows that the constant c(ε) appearing in
(3.4) and (3.21) has the form

c(ε) =
(

1

4

)1+ε/3

c(E)c2
ε/3(3.22)

where cε depends only on ε > 0 (and is defined by (3.18)) and c(E) =
∑g
j=1 |cj|

depends only on E. While for each ε > 0 the (best) constant cε can easily be
determined explicitly, viz.

cε =
∏
pε<2

Max

(
k(p)

p(k(p)−1)ε
,
k(p) + 1

pk(p)ε

)
,(3.23)

where k(p) = k(p, ε) =
[

1
log(pε)

]
, we have less information about c(E). A very crude

estimate shows that we can always bound c(E) by c′pc
′′p, but it seems likely that

much better bounds should be possible, for we have by (3.7)

c(E) ≥
g∑
j=1

cj = a(E)− 24

p− 1
,(3.24)

with equality holding if and only if cj ≥ 0, ∀j. In particular, we have that equality
holds in (3.24) if g := g(X0(N)) := dimS2(Γ0(p)) ≤ 1 which, by [Sch] p. 103 (or
[SB], Table 5) is true if p ≤ 19.

c) Note that H(τ) − 24
p−1

E(p, τ) ∈ S−2 (Γ0(p)), where S−2 denotes the (−1)-

eigenspace of the Fricke involution Wp. Indeed, since dp(pm) = dp(m) (by defi-
nition) and h(pm) = h(m) (because E is supersingular), for all m, we have that(
H(τ)− 24

p−1
E(p, τ)

)
|Up

= H(τ)− 24
p−1

E(p, τ), from which the assertion follows since

Up = −Wp on S2(Γ0(p)) (cf. Atkin-Lehner [AL], Lemma 17(iii)).
We thus see that cj = 0 if Fj /∈ S−2 (Γ0(p)). In particular, we see that equality

holds in (3.24) as long as dimS−2 (Γ0(p)) ≤ 1, which, by Table 5 of the Antwerp
Conference (see [SB]), is true if p ≤ 19 or if p = 37.

16



We now turn to determine the order of magnitude of the function s∗p(n). As a
preparatory step, we first prove the following result which is interesting in itself and
which generalizes another identity of Glaisher (cf. Remark 3.5 below).

Proposition 3.4 The order of magnitude of the function sp(n) =
n−1∑
k=1

dp(k)dp(n−k)
is given by the formula

sp(n) = aσ3(n) + bσ3(n/p)− cdp(n) +R1(n)(3.25)

in which a = 5
12

(p−1)2

p2+1
, b = p2a and c = p−1

12
, and the error term R1(n) = R1(p, n)

satisfies the estimate
|R1(n)| ≤ c′d(n)n3/2(3.26)

where c′ = c′(p) is a constant. Moreover, if p = 2 or 3 then there is no error term:
R1(2, n) = R1(3, n) = 0.

Proof. The q-expansion of the square of the modular form E(p, τ) defined by (3.5)
is given by

E(p, τ)2 =
(
p− 1

24

)2

+
∑
n≥1

anq
n ∈M4(Γ0(p)),

where an =
∑n−1
k=1 dp(k)dp(n− k) + 2

(
p−1
24

)
dp(n) = sp(n) + p−1

12
dp(n).

Let F ′1, . . . , F
′
s be a basis of normalized newforms of S4(Γ0(p)); note that s =

p+1
4

+ 1
4

(
1 +

(
−1
p

))
+
(
−3
p

)
(cf. Shimura[Sh], p. 25). Since dimM4(Γ0(p))/S4(Γ0(p)) =

2 (cf. [Sh], p. 46), it follows that E4(τ), E4(pτ), F ′1, · · · , F ′s is a basis of M4(Γ0(p))
and so there exist a, b, c′1, . . . , c

′
s ∈ C such that

E(p, τ)2 = aE4(τ) + bE4(pτ) +
s∑
i=1

c′iF
′
i (τ).(3.27)

Thus, if we write F ′i (τ) =
∑
n≥1 f

′
i(n)qn then we have the relations

sp(n) = aσ3(n) + bσ3(n/p)− p− 1

12
dp(n) +

s∑
i=1

c′if
′
i(n), ∀n ≥ 1,(3.28)

because E4(τ) = 1
240

+
∑
σ3(n)qn.

We now determine a and b. For this, we first note the relation

a+ b =
5

12
(p− 1)2(3.29)
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which follows from (3.27) by comparing constant coefficients. To obtain another
relation, let us evaluate sp(p

r). By definition and Corollary (1.5) we have

sp(p
r) =

r−1∑
j=0

pr−j−1∑
k=1

p6 | k

dp(k)dp(p
r−j − k) =

r−1∑
j=0

s′′(pr−j)

=
r−1∑
j=0

α(p)p3(r−j) + (−1)r−jβ(p)pr−j = α(p)σ3(pr) +O(pr).

On the other hand, since σ3(pr−1) = (σ3(pr) − 1)/p3 and since by Miyake [Mi],
Theorem 4.6.17,

f ′i(p
r) = f ′i(p)

r = (±p)r,(3.30)

we obtain from (3.28) that sp(p
r) =

(
a+ b

p3

)
σ3(pr) +O(pr), and so it follows that

a+
b

p3
= α(p) =

5

12

(p− 1)2(p+ 1)

p(p2 + 1)
.(3.31)

Solving the linear equations (3.29) and (3.31) yields

a =
5

12

(p− 1)2

p2 + 1
, b =

5

12
(p− 1)2 p2

p2 + 1
= p2a

and so (3.25) holds with

R1(n) =
s∑
i=1

c′if
′
i(n).

Moreover, by the Ramanujan-Petersson conjecture (which was proved by Deligne;
cf. [Mi], p. 150) we have

|f ′i(n)| ≤ d(n)n3/2 , if p 6 | n.

Combining this with (3.30) yields (by multiplicativity) the estimate

|f ′i(n)| ≤ d(m)prm3/2 ≤ d(n)3/2 , if n = prm , p 6 | m

from which (4.5.2) follows with c′ =
∑s
i=1 |c′i|.

Finally, we note that if p = 2 or 3 then s = 0, so R1(p, n) = 0 in this case.

Remark 3.5 a) For p = 2 or 3 the above Proposition 3.4 reduces to the identity

n−1∑
k=1

dp(k)dp(n− k) =
p− 1

12

[
σ3(n) + (5p− 6)σ3

(
n

p

)
− dp(n)

]
,(3.32)
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which generalizes another identity of Glaisher (1883) (cf. Dickson [Di], p. 294): to
be precise, Glaisher’s identity is the case p = 2, n ≡ 1(2) of (3.32).

Moreover, for p = 5 we have the identity

n−1∑
k=1

dp(k)dp(n− k) =
10

39
σ3(n) +

250

39
σ3

(
n

p

)
− 1

3
dp(n) +

1

13
a(n),(3.33)

where the numbers a(n) are given by the relation∑
n≥1

a(n)tn = t
∏
n≥1

(1− tn)4(1− t5n)4.

(The identity (3.33) follows from the above formula (3.28) (and (3.34) below) by
noting that (cf. Shimura [Sh], Ex. 2.28, p. 49)

f(τ) =
∑
m≥1

a(m)qm = η(τ)4η(5τ)4 ∈ S4(Γ0(5)),

and hence f(τ) is the unique normalized newform of S4(Γ0(5)).)

b) As in Remark 3.3 we can bound the constant c′ exponentially by a function
of p. Contrary to the constant c(E), however, the constant c′ must grow with p, for
we have the lower bound

c′ ≥
s∑
i=1

c′i = c− a =
(p− 1)(p− 2)(p− 3)

12(p2 + 1)
,(3.34)

where the indicated equality follows by taking n = 1 in (3.28). Note that c′ = c− a
if c′i ≥ 0 for all 1 ≤ i ≤ s, and that this is the case for s ≤ 1 (i.e. for p ≤ 7; cf. Table
A in Miyake [Mi]).

Note also that by an argument similar to that of Remark 3.3c) we have that

c′i = 0 if F ′i (τ) /∈ S−4 (Γ0(p)),

so the equality c′ = c− a holds as long as dimS−4 (Γ0(p)) ≤ 1.

We are now ready to prove the desired order of magnitude of the function s∗p(n).

Proposition 3.6 If n = prm, where p 6 | m, then we have

s∗p(n) =
5

12

(p− 1)2

p2 + 1

[
σ3(pr) + p2σ3(pr−1)

]
sl(m)− p− 1

12
σ(pr)δ(m) +R2(n)(3.35)

where δ(1) = 1 and δ(m) = 0 for m > 1, and the error term R2(n) satisfies the
estimate

R2(n) = O(n3/2+ε).(3.36)

Moreover, if p = 2 or 3 then R2(n) = 0.
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Proof. Let s′p(n) =
∑n−1
k=1 dp(k(n− k)). Then as in the proof of Theorem 1 we have

s∗p(n) =
∑
d|n
µ(d)s′p(n/d) and s′p(n) =

∑
d|n
µ(d)dsp(n/d),(3.37)

from which we obtain the formula

s∗p(n) =
∑
d|n
up(d)sp(n/d), where up(n) =

∑
d|n
p6 | d

µ(d)dµ(n/d).(3.38)

Thus, substituting (3.25) in (3.38) yields

s∗p(n) = a
∑
d|n
up(d)

[
σ3(n/d) + p2σ3

(
n

pd

)
− cdp(n/d)

]
+R2(n),(3.39)

where a and c are as in (3.25) and

R2(n) =
∑
d|n
up(d)R1(n/d).(3.40)

Write n = prm with p 6 | m. Then from (1.9) we deduce the identity∑
d|n
up(d)σk(n/d) = σk(p

r)mJk−1(m),

and so (3.39) reduces to (3.35) since mJ2(m) = sl(m) and J0(m) = δ(m).
It remains to establish the estimate (3.36). From (3.40) and (3.26) we obtain

|R2(n)| ≤
∑
t|n
|up(t)||R1(n/t)| ≤ c′

∑
t|n
|up(t)|d(n/t)(n/t)3/2 =: c′R′2(n),

and so (3.36) follows once we have shown that for each ε > 0 there is a constant
c′′(ε) such that

R′2(n) ≤ c′′(ε)n3/2+ε.(3.41)

For this we first note that

R′2(n) ≤ d(n)n3/2
∏
q|n
q 6=p

(
1 +

1

q3/2

)(
1 +

1

q1/2

)
(3.42)

which follows easily from the fact that R′2(n) is multiplicative; note that |up(q)| =
q+1, |up(q2)| = q and up(q

r) = 0 for r ≥ 3. Now by a variant of the usual argument
for estimating d(n) we obtain

d(n)
∏
q|n

(
1 +

1

q1/2

)
≤ c′(ε)nε(3.43)
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with c′(ε) =
∏
qε<3

2
ε log q

(
1 + 1√

q

)
. On the other hand,

∏
q|n

(
1 +

1

q3/2

)
<
∏
q

(
1 +

1

q3/2

)
=
∞∑
n=1

|µ(n)|
n3/2

=
ζ(3/2)

ζ(3)

(cf. [Mc], p. 227) is bounded, and so (3.42) holds with

c′′(ε) = c′(ε)ζ(3/2)ζ(3)−1

(
1 +

1
√
p

)−1

.(3.44)

We thus obtain
|R2(n)| ≤ c′c′′(ε)n3/2+ε,

which proves (3.36). Finally we note that if p = 2 or 3 then R1(n) = 0 for all n and
hence by (3.40) we also have that R2(n) = 0 in this case.

Proof of Theorem 3. If p 6 | N then by Propositions (3.2) and (3.6) we obtain

r(E1E,N) =
12

p− 1
s∗p(N) +R0(N)

= 5
p− 1

p2 + 1
sl(N) +

12

p− 1
R2(N) +R0(N),

and so

n(E,E,N) =

(
1− 5

p− 1

p2 + 1

)
sl(N)−R(N).(3.45)

where R(N) = R0(N) + 12
p−1

R2(N). This proves (3), and the estimate (4) follows

from the estimates (3.4) and (3.36). Finally, if p = 2 or 3 then R0(N) = R2(N) = 0
and so also R(N) = 0.

Remark 3.7 The fact that for a supersingular curve E we have

n(E,E,N) = 0 if p = 2 or 3 and p 6 | N

also follows from the results of [IKO], as F. Oort has kindly pointed out to the
author. (This observation may be viewed as an impotant check on the validity of
the somewhat complicated formula (2.1) for n(E,E ′, N).)

Even though the constant N0(p) of Theorem 3 may be explicitly calculated for
each given p (cf. Remarks 3.3 and 3.5b), combined with the fact that it possible to
compute a basis of newforms for Sk(Γ0(p)), k = 2, 4), this does not lead directly
to any practical bounds which are of use for verifying Theorem 4. Nevertheless,
by refining the method for p = 5, 11 and 17, we can determine a sufficiently samll
upper bound for N0(p) such that the remaining cases N ≤ N0(p) can be checked by
hand (or by a small computer).
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Proposition 3.8 If E is a supersingular curve in characteristic p = 5, then for
every ε > 0 we have

n(E,E,N) >
75

52π2

(
N3 − 4

5
c′(ε)N3/2+ε

)
, if p 6 | N,(3.46)

where c′(ε) is as in (3.43). Moreover, n(E,E,N) > 0 for all N ≥ 2 with p 6 | N .

Proof. Since R0(N) = 0 by Proposition 3.2, we see that (3.45) reduces to

n(E,E,N) =
3

13
sl(N)− 3R2(N).(3.47)

Now on the one hand we have for 5 6 | N the lower bound

sl(N)

N3
=
∏
p|N

(
1− 1

p2

)
>
∏
p6=5

(
1− 1

p2

)
=
(

1− 1

52

)−1

ζ(2)−1 =
25

4π2
.(3.48)

On the other hand we have the upper bound R2(N) ≤ c′c′′(ε)N3/2+ε (cf. (4.7.13)).

Here, the constant c′ of Proposition 3.4 is (by Remark 3.5b)) c′ = (p−1)(p−2)(p−3)
12(p2+1)

= 1
13
.

Moreover, since ζ
(

3
2

)
ζ(3)−1

(
1 + 1√

5

)−1
= 1.50168 . . . < 1.5198 . . . = 15

π2 , we see

from (3.44) that

c′′(ε) <
15

π2
c′(ε).

Substituting these bounds into (3.47) yields the lower bound (3.46).
Let us now take ε = 1 in (3.46). Then by definition (cf. (3.43))

c′(ε) =
2

log(2)

(
1 +

1√
2

)
2

log(3)

(
1 +

1√
3

)
= 14.14421 . . . ,

and so n(E,E,N) > 0 if N1/2 > 4
5
c′(1) = 11.3153 . . ., i.e. if N ≥ 129. The remaining

cases (N ≤ 128) are easily checked by hand (or by computer), using the formula

n(E,E,N) = sl(N)− 3s∗5(N)

which follows from (3.3). In particular, we have the following (partial) table for
n = n(E,E,N):

N 2 3 4 6 7 8 9 11 12 13 14 . . . 126 127 128 129
n 3 6 6 30 78 96 156 300 276 516 462 . . . 301506 472278 362496 440292
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Proposition 3.9 If p = 11 or 17 and j(E) = 0, then

n(E,E,N) >

(
p− 6

p− 1
− 37

2

p− 5

p− 1
N−1/3

)
sl(N), if p 6 | N.(3.49)

Moreover, n(E,E,N) > 0 for all N ≥ 2 with p 6 | N .

The basic method for proving this proposition is that outlined in Remark 3.3a).
However, in order to obtain sharper estimates, we refine the argument as follows.

Lemma 3.10 Let ε, ε′ > 0 and suppose c1 = c1(ε) and c2 = c2(ε, ε′) are such that
for all n ≥ 1 we have

n∑
k=1

(k,n)=1

d(k(n− k)) ≤ c1φ(n)nε and
∑
t|n

ψ(t)

tε
φ
(
n

t

)
≤ c2sl(n)nε

′−2.(3.50)

Then, in the situation of Proposition 3.2, we have with ε′′ := ε+ ε′ − 1 that

n(E,E,N) >

(
p− 6

p− 1
− 1

4
c1c2c(E)N ε′′

)
sl(N),(3.51)

where c(E) is as in Remark 3.3b). Moreover, if p = 11 or 17 and j(E) = 0 and
ε′′ > 0, then

n(E,E,N) > 0, if N ≥
(

3(p− 5)

2(p− 6)
c1c2

)1/ε′′

.(3.52)

Furthermore, the inequalities (3.50) are valid with

c1 =
cε/2
2ε

and c2 =
∏
p<M

max(1, fp(rp), fp(rp + 1)),(3.53)

where cε is as defined in (3.18), M = max(21/ε, (1 + ε/ε′)1/ε, (7/4)1/ε′) and

fp(r) =

(
1

pε′r

)(
p

p+ 1
+

1

pεr(p− 1)
+

1− p−εr

pε − 1

)
,

rp = max

(
1,

[
log

((
1 +

ε

ε′

)
(p− pε)(p+ 1)

(pε+1 + 1)(p− 1)

)
/ log (pε)

])
.

Proof. Since n(E,E,N) = sl(N)− 12
p−1

s∗p(N)−R0(N) by (3.11), and since s∗p(N) <
5
12
sl(N) (cf. Remark 3.3a)), it is enough to show that |R0(N)| ≤ 1

4
c1c2c(E)N ε′′sl(N).

But since |R0(N)| ≤ 1
2
c(E) maxj |f̃j(N)|, this follows immediately from the following

inequality which is derived in the same way as (3.19):

|f̃j(N)| ≤ 1

2
c1c2N

ε+ε′−1sl(N), for 1 ≤ j ≤ g.
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Now suppose that p = 11 or 17 and that j(E) = 0. Then (cf. Remark 3.3b)) we
have

c(E) = a(E)− 24

p− 1
= 6− 24

p− 1
= 6

p− 5

p− 1
,(3.54)

and so we see that the factor in front of sl(n) in (3.51) is non-negative if and only

if N ε′′ ≥
(

3(p−5)
2(p−6)

c1c2

)
, which proves (3.52).

Next we observe that from (3.9) we have
n∑
k=1

(k,n)=1

d(k(n−k)) ≤
n∑
k=1

(k,n)=1

cε/2(k(n−k))ε/2 ≤
n∑
k=1

(k,n)=1

cε/2(n2/4)ε/2 =
cε/2
2ε

φ(n)nε,

which shows that (the first equality of ) (3.50) holds with c1 = cε/2/2
ε.

Finally, to verify that (3.50) holds with c2 as in (3.53), we first note the formula

∑
t|n

ψ(t)

tε
φ
(
n

t

)
=

∏
pr||n

fp(r)

 sl(n)nε
′−2,

which is easily checked by observing that both sides are multiplicative functions.
Viewing fp(r) as a function of a real variable r, we see by computing its derivative

that fp(r) assumes its maximum value at

r̃p = log

((
1 +

ε

ε′

)
(p− pε)(p+ 1)

(pε+1 + 1)(p− 1)

)
/ log (pε) ,

and so it follows that∏
pr||n

fp(r) ≤
∏
p

max(1, fp(rp), fp(rp + 1))

where, as above, rp = max(1, [r̃p]). Thus, to finish the proof, it remains to show
that max(1, fp(rp), fp(rp + 1)) = 1 if p ≥ M . Indeed, if p ≥ M , then in particular
pε ≥ (1 + ε/ε′), so log((1 + ε/ε′)((p − pε)/(p − 1))((p + 1)/(p1+ε + 1))) ≤ log(pε),
which means that r̃p ≤ 1 and rp = 1. Thus, since also pε ≥ 2 (so p ≥ 3) and pε

′ ≥ 7
4
,

we obtain

fp(rp + 1) ≤ fp(rp) =

(
p

p+ 1
+

1

pε(p− 1)
+

1

pε

)(
1

pε′

)
≤
(

1 +
1

4
+

1

2

)(
4

7

)
= 1,

which proves that max(1, fp(rp), fp(rp + 1)) = 1, as desired.

Proof of Proposition 3.9. We shall apply Lemma 3.10 with ε = 5/9 and ε′ = 1/9.
Then, using formula (3.23) for c5/18, we obtain

c1 =
c5/18

25/9
=

1

25/9

(
2

77

(
216385137131113

) 1
18

)
.
= 3.928381768 . . . ,

c2 = f2(2)f3(1)f5(1)f7(1)
.
= 3.10599597 . . .
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Thus c1c2 = 12.2015 . . . < 121
3
, and so the estimate (3.49) follows from (3.51).

(Recall that c(E) = 6(p− 5)/(p− 1); cf. (3.54).)
Moreover, using (3.52) we therefore have that

n(E,E,N) > 0, if N ≥
(

3(p− 6)

2(p− 5)
c1c2

)1/3
.
=

 10594.0 if p = 11

7959.5 if p = 17
.

To deal with the remaining values (N < 10594), we proceed as follows. Although it
might be possible to calculate n(E,E,N) in this range explicitly, it is more expedient
to improve the above bounds. While the bound on c2 is sharp (it is assumed for
n = 22 · 3 · 5 · 7 = 420), the bound for c1 is quite far from the truth, for numerical
calculations show that

t(n) :=
n∑
k=1

(k,n)=1

d(k(n− k)) ≤ c∗1φ(n)n
5
9 , if 1 ≤ n ≤ 11000,

where c∗1 = t(17)/(φ(17)175/9) = 67
136

174/9 .
= 1.735409945 . . .. (In fact, it is likely that

this estimate holds for all n because t(n) grows much more slowly than φ(n)n5/9.)
Thus, if we use c∗1 in place of c1, then we obtain (for N ≤ 11000) that

n(E,E,N) > 0 if N ≥
(

3(p− 6)

2(p− 5)
c∗1c2

)1/3
.
=

 913.3 if p = 11

686.2 if p = 17
.

For remaining values (i.e. N ≤ 1000) we compute n(E,E,N) directly by using a
(small) computer. To do this, we shall use the formula (cf. (3.11) and (3.7))

n(E,E,N) = sl(N)− 12

p− 1
s∗p(N)− 3

p− 5

p− 1
f̃(N),

where f̃ = f̃1 is defined as in (3.12) using the unique normalized cusp form F (τ) =
F1(τ) =

∑
n≥1 f(n)qn of weight 2 on Γ0(p). For p = 11, the coefficients of F (τ) are

given by the product expansion

∞∑
n=1

f(n)qn = q
∞∏
n=1

(1− qn)2(1− q11n)2,

but for p = 17 it is not so easy to generate them. However, for both p = 11 and
p = 17 the coefficients f(`) of F for primes ` < 1000 are given in Table B of Miyake
[Mi], pp. 302–303, from which all the coefficients f(n) with n ≤ 1000 are readily
calculated. (Note, however, that in both tables the coefficient f(p) has the wrong
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sign: it should be f(p) = 1 in both cases, for otherwise F (τ) ∈ S+
2 (Γ0(p)); cf.

Remark 3.3c) and [SB], Theorem 3.) Checking these values for N ≤ 1000, we have
that n(E,E,N) > 0 in all cases; this is partly justified by the following tables, in
which np(N) = n(E,E,N) for E/K with j(E) = 0 and char(K) = p:

N n11(N) n17(N) N n11(N) n17(N) N n11(N) n17(N)
2 3 3 3 24 24 4 24 24
5 60 96 6 90 108 7 204 240
8 210 210 9 432 522 10 306 504
11 – 948 12 660 828 13 1308 1578
14 1110 1260 15 1812 2196 16 1788 1914
17 2916 – 18 2292 2766 19 3924 4896
20 3036 4044 21 5256 6006 22 – 5472
23 7272 8844 24 5532 6468 25 8364 10992
26 7542 9246 27 10920 13140 28 9144 10584
29 14448 17844 30 9996 12660 31 17544 21468
32 14364 16842 33 – 23394 34 16716 –
35 23184 29268 36 18372 22452 7 29892 36576
38 23052 28824 39 32712 38844 40 26556 32436
41 40524 49992 42 28932 34626 43 46968 57516
44 – 44292 45 46092 57984 46 42270 51120
47 61560 75180 48 44304 52692 49 68688 82986

N n11(N) n17(N) N n11(N) n17(N)
100 414828 517248 200 3372516 4147248
300 10174812 12532368 400 27116592 33289392
500 52864272 65052708 600 81576552 100056480
700 142217880 174867600 800 217196520 266662704
900 274994532 338067840 1000 424297008 520689948

Proof of Theorem 4. By Theorem 1 we only have to check the case that E = E ′ is
supersingular with j(E) = 0. Since this means in particular that p ≡ 2(mod 3), we
see that we only have to consider the cases that p = 5, 11 or 17 and so the theorem
follows from Propositions 3.8 and 3.9.
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