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Introduction

On the 23' of June 1993, Andrew Wiles
concluded a three-day lecture series in Cam-
bridge, England, with the assertion:

Theorem. Fvery semi-stable elliptic curve is
modular.

This not only electrified number theorists
and mathematicians around the world, but
even made the headlines of many major news-
papers such as the New York Times, Le
Monde, Frankfurter Allgemeine,..., a rare
event for a mathematical theorem.

The main reason for this excitement and
publicity is due to the fact that it had just
been shown a few years earlier that the above
theorem implies the truth of Fermat’s Last
Theorem,
(FLT,) "yt # 2", ayz #0,
for any non-zero integers x,y,z € Z and n >
3; this had been asserted by Fermat 350 years
ago!

The purpose of this lecture is to relate some
of the history behind FLT (= Fermat’s Last
Theorem!), to explain in simple terms how
Wiles’s theorem is related to FLT and, above
all, to give you a glimpse of the significance of
Wiles’s result which, in fact, goes far beyond
FLT.

1. Early History

Although FLT is an assertion about sums
of n-th powers for n > 3, it was inspired
by looking at the case n = 2, the so-called
Pythagorean equation:

? +y? =22

'S0 called because it was the last of Fermat’s many
assertions which still had to be resolved.

In high school, every student learns that
(3,4,5) and (5,12,13) are solutions (called
Pythagorean triplets) of this equation, but few
learn that

12,7092 4 13,500% = 18,5412,

Indeed, this solution, and many others like
it, had been known for almost 4000 years,
and were recorded on clay tablets around the
era of Hammurabi (ca. 1700 B.C.), more than
1000 years before Pythagoras (ca. 550 B.C.).
In fact, from the way the following tablet
(Plimpton 322, discovered by O. Neugebauer
and Sachs; cf. Figure 1) is arranged, historians
are convinced that the Babylonians already
knew the following formula (or something
close to it) for generating all Pythagorean
triplets:

(1) z=u?—v% y=2uww, z=u>+°
where u,v € Z; this formula is usually at-
tributed to Pythagoras or Plato (ca. 400
B.C.).

Certainly Diophantus of Alexandria (ca.
250 A.D.) was not only aware of this formula,
but even based a large number of problems on
it in his Arithmetica, a very remarkable collec-
tion of 13 books of which 9 have survived. (Of
these, only 6 were known in the Renaissance;
the other 3 were discovered only 20 years ago
in a library in Iran.) Thus we find in Book II:

Problem 8: Decompose a given square into
a sum of two squares.

Diophantus presents the numerical example
42 = (%)2+ (%)2, but his method is perfectly
general and actually leads to the formula

9 oma \? a(m? —1) 2
a? = + (=),
m? + 1 m? 41




Plimpton 322
ca. 1800 - 1650 B.C.

2_2 w d n h
s 119 169 | 1 120
25280625 | 3367 | 4825 | 2 3456
44200301 | 4601 | 6649 | 3 4800
345768681 | 19709 | 18541 | 4 || 13500
e 65 97 | 5 72
235000 319 | 481 6 360
2350000 2291 | 3541 7 2700
8667 799 | 1249 | 8 960
360000 481 | 769 | 9 600
G6601921 | 4961 | 8161 | 10 6480
% 45 75 | 11 60
S579041 1679 | 2929 | 12 2400
83521 161 | 289 | 13 240
170249206040401 17711 3229 | 14 2700
2809 56 | 106 | 15 90

Figure 1: A clay tablet and its translation:?> Pythagorean triplets h? + w? = d?

where a? is the square to be decomposed and
m is any integer. This, of course, is just a
variant of the formula (1).

While studying this problem, Pierre De
Fermat (1601 -1665) wrote the following text
in the margin of his copy of the Arithmetica
(which had recently been translated from
Greek to Latin by Bachet):

Cubum autem in duos cubos, aut quadrato-
quadratum in duos quadrato-quadratos, et ge-
neraliter nullam in infinitum ulta quadra-
tum postestatem in duos ejusdem nominis
fas est dividere; cujus rei demonstrationem
mirabilem sane dexteri. Hanc marginis exi-
guitas non caperet.

Translation[He|: On the other hand it is im-
possible to separate a cube into two cubes, or
a biquadrate into two biquadrates, or gener-
ally any power except a square into two pow-
ers with the same exponent. I have discovered
a truly marvellous proof of this, which how-
ever the margin is not large enough to contain.

2This translation includes some corrections. In ad-
dition, the column h, which does not appear in the
original, was added for convenience.

We do not know the exact date of this entry,
but in 1638 he challenged Jumeau de Saint-
Croix to find two cubes whose sum is a cube
(and similarly for biquadrates), so it seems
likely that he became convinced of the truth
of FLT around that time.

Fermat himself gave a proof of FLT for n =
4 which he wrote in the margin at the end of
the last book of Diophantus. However, since
he does not seem to refer to this conjecture in
his correspondence (except in the case n = 4),
it might well have been lost to posterity had
not his son Samuel published in 1670 another
edition of Diophantus, interspersed with his
father’s comments (cf. Figure 2).

Now that I have dwelt in such detail on
the birth of the conjecture, I will be much
briefer with subsequent early developments.
The case n = 3 was done by L. Euler in
1753 (with some additional details furnished
later by C.F. Gauss). In 1825/28 Dirich-
let and Legrendre (independently) settled the
case n = 5 and in 1832 Dirichlet also did the
case n = 14. The latter result became super-
fluous when G. Lamé proved FLT for n = 7
in 1839. Later, in 1847, Lamé also presented
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Fermat’s comment in the
margin of the Arithmetica by Diophan-

where ¢, = er = cos(%r) + z'sin(%”), but
this proof was wrong since he assumed that
the property of unique factorization holds in
Z[Cp) for all p. (In fact, it is now known that
this holds if and only if p < 19.)

The most notable advance was made by
Ernst Edward Kummer. Already a year be-
fore Lamé’s hasty announcement, he had in-
vented his “ideal numbers” (precursors of
Dedekind’s theory of ideals, which we use to-

day) in order to rescue the unique factoriza-
tion property for Z[(,]. In 1847 (published
1850) he applied his methods to prove that
(FLT,) is true for all regular primes p. Fur-
thermore, he devised a method (based on
Bernoulli numbers) in order to test whether
a given prime number is regular or not. Us-
ing this, he found in 1874 that of the 37
primes p < 163, only 8 are irregular: p =
37,59,67,101,103, 131, 149, and 157.3

After Kummer, there were many partial
results on FLT for which I refer you to P.
Ribenboim’s excellent book [Ril]. By com-
bining these with Kummer’s general result, S.
Wagstaff was able to verify in 1976 with the
help of a computer that Fermat’s Last Theo-
rem is true for all integers n < 125, 000.

2. Recent Results

In the 1970’s and ’80’s, the deep and pow-
erful methods of Algebraic Geometry (as de-
veloped by A. Grothendieck and his school)
lead to many significant advances in the the-
ory of Diophantine Equations (named after
Diophantus). Most of these were not (or did
not seem to be) directly connected with FLT.
A notable exception was the Mordell Con-
jecture, which had been formulated by L.J.
Mordell in 1922, and which was then estab-
lished through the work of G. Faltings in 1983,
for which he received the Fields Medal* in
1986. Specialized to Fermat equations, Falt-

3This evidence suggests that there are more regu-
lar primes than irregular ones, and this is borne out
by further calculations (e.g. 8399 of 13848 primes
p < 150,000 are regular; cf. [Ri2]). In addition, C.L.
Siegel proved in 1964 that if certain (unproven) ran-
dom distribution property of Bernoulli numbers holds,
then % ~ 0.61 of all primes are regular. However, un-
conditionally it is still unknown whether there exist
infinitely many regular primes (whereas it was shown
in 1915 by Jensen that there are infinitely many irreg-
ular primes).

4The Fields Medal, named after the Canadian
mathematician John Charles Fields (1863 - 1932),
is the most prestigious prize for mathematical re-
search. It is awarded every 4 years at the International
Congress of Mathematicians to the top 2-4 researchers
under the age of 40.



ings’ theorem yields the following finiteness
result.

Theorem (Faltings, 1983) For each n > 4,
the set

{(z,y,2) € 2® : 2" +y" = 2" and (z,y, z) = 1}
1$ finite.

While this was clearly a very significant re-
sult (particularly in its more general form), it
did not convince skeptics about FLT. Indeed,
there did not seem to be any (conceptual) rea-
son whatsoever that the equation xP+y? = 2P
should have only the same five solutions for all
primes p > 2!

This changed drastically in the mid 1980’s
when not only one but two separate rea-
sons were advanced. On the one hand D.
Masser(1985) and J. Oesterlé(1988) proposed
a very remarkable general conjecture (called
the ABC-Conjecture) from which it would fol-
low that not only the Fermat equation but
also the twisted Fermat equation ax™ + yb"™ =
zc"™ (where a,b,c € 7 are fixed relatively
prime integers) has only “trivial” solutions (in
particular, only finitely many solutions) for all
sufficiently large exponents n. This conjec-
ture, as well as the statement about twisted
Fermat equations (called the asymptotic Fer-
mat Conjecture) is still open at present.’

On the other hand, in a Paris seminar in
1985, G. Frey suggested a method (based
on some (vague) conjectures of Serre) that
a certain well-known conjecture, called the
Taniyama Congjecture (or (TWS)- Conjec-
ture), should imply FLT. I cannot resist the
temptation of relating a personal anecdote
about this discovery. Indeed, I can still re-
member the day (but not the date - proba-
bly in the spring of 1982) when Gerd Frey,
who is a good friend of mine, phoned me up
and said: “I’ve just proved FLT, can you find
the mistake?” Of course 1 couldn’t, but af-
ter giving me an hour lecture he himself saw
that there were a number of gaps to be filled.
These gaps were formulated in terms of a pre-
cise conjecture by J.P. Serre in a letter to

5For comprehensive discussion of how these and
other conjectures fit together, cf. Frey[Fr3].

Frey in 1985 and became known as the “e-
Conjecture”; this was published as part of
a far more general conjecture by Serre[Se] in
1987. In the meanwhile, Ken Ribet succeeded
in 1986/87 to prove the e-conjecture in an in-
genious way; cf. Ribet[R].

By this time number theorists were (for the
most part) convinced of the truth of FLT,
for the contrary meant to deny the Taniyama,
Conjecture which, in turn, would involve a
major rethinking of what we know (or conjec-
ture to be true) today. Nevertheless, it was
not expected to be proved soon, and so Wiles’
announcement in 1993 came as a big surprise!

3. A Basic Principle

Before explaining the method of Frey/Ri-
bet/Wiles, let me first formulate some basic
principles that have evolved over the years
concerning the nature of solutions of Dio-
phantine equations and which are a partial
motivation for the method. First, let me
formulate the basic problem of Diophantine
equations:

Problem: Find all the integer solutions
(x,y,2) € Z3 of a given Diophantine equation

(2) F(l‘,y, Z) =0,

where F' € Z[x,y, z] is an integral polynomial.

Examples: 1) Fermat polynomials:

F(z,y,2) = Fy(z,y,2) = 2" +y" — 2".
2) Elliptic curves:
Fop(z,y,2) = vz — a3+ axz? + b23,

where a, b € Z and the discriminant A(Fj, ) =
16(4a3 + 27b3) # 0.

To give you an impression of the difficulty
of this problem, let me remark that at present
no general algorithm is known which de-
cides in a finite amount of time whether a
given polynomial F'(z,y,z) has at least one
non-trivial integer solution (z,y, z) # (0,0, 0)



or not,% let alone an algorithm that finds all
the solutions! Let us, therefore, consider the
following

Easier Problem: For each prime number
p, solve the congruence

(3) F(z,y,z) =0 (mod p).

Clearly, this is a finite problem (for each p),
for we need to check only p* values. In par-
ticular, the number of solutions modulo p,

N;(F) = #{(z,y,2) € (z/pL)* :
F(x,y,2) =0 (mod p)}
= #{(z,y,2) €23:0< 2,y,2 <D
and p|F(z,y, 2)},

is finite: NX(F) < p®. Put:

Np(F) = (N (F) =1)/(p = 1)
= F#of essentially distinct solutions
of (3) (excluding (0,0,0)).

Question: Do these numbers shed any light
on the solutions of equation (2)?

The naive interpretation of this question
is blatantly false: there exist polynomials
F(z,y,z) with only trivial integral solutions,
yet Nr(p) # 0 for all primes p. In addition, it
follows from a theorem due to H. Hasse and
A. Weil that Ng(p) ~ p, for p large, so the
mere existence of solutions modulo p cannot
yield any information about the existence of
integral solutions. Nevertheless, we have the
following

Basic (Conjectural) Principle: the se-

quence of numbers
d
4) ap(F) © (p+1) = Ny(F), as p — oo,

should determine the nature of the solutions
of (2).

For elliptic curves, this principle assumes
the form of two very precise conjectures which
have been partly verified:

Tn fact, it is known that for integer polynomi-
als F(z1,...,2,) in » > 13 variables, no such algo-
rithm can exist, as was shown by Matijasevi¢ in 1970,
thereby supplying a negative answer to Hilbert’s 10th
problem; cf. [DMR].

(TWS)—Conjecture: - due to Y. Taniyama
(1955), A. Weil (1967), G. Shimura (1971)

(B/SwD)—Conjecture: - B. Birch, H.P.F.
Swinnerton—Dyer (1960’s)

The (TWS)-Conjecture will be explained
in the next section. I will not discuss the
(B/SwD)- conjecture in detail here, but only
mention the following recent result (which at
the same time shows the importance of the
(TWS)-conjecture):

Theorem 1 (V. A. Kolyvagin (1988),
K. Murty, R. Murty (1991)).7 Let E :
Fop(z,y,2) =0 be an elliptic curve satisfying
(TWS). Then the sequence of numbers

ap(E) :p+ 1— Np(Fa,b)v b — o0,

determines a (“computable”) real constant
LE(l) eER. If

then the equation Fy(z,y,2) = 0 has only
finitely many integral solutions (z,y,z) € Z°
with ged(z,y,z) =1, and these can be explic-
itly calculated.

Note. The above theorem constitutes an ex-
plicit algorithm which has been implemented
on a MAPLE package called APECS.

Example (Frey). The above leads to a com-
puter proof (a true proof!) of FLT3 and
FLTy, using only four short computer com-
mands.

4. The TWS—Conjecture

Roughly speaking, the TWS-Conjecture may
be viewed as stating that the numbers a,(E)
possess many “hidden symmetries”; in par-
ticular, the knowledge of the a,’s for the first
few p’s determines all the others.

Before explaining this more precisely, let us
look at the elliptic curve E defined by the
equation

y2 +y= 3+ .

"This theorem was first proven by Kolyvagin un-

der an additional hypothesis, which was then later

removed by Murty-Murty and, independently, by D.
Bump, S. Friedberg and J. Hoffstein.




The Elliptic Curve E : y* + y = 2° — 22

The number N, (E) of solutions of E over F, = Z/pZ and the number a,(E) = p+1—N,(E)

are given by:

P 2 3 5 7 11|13 17 19 23 29|31 37 41
10 20 20 25 30[25 35 50
ap(E) |2 -1 1 2 1]4 =2 0 -1 0]7 3 -8

On the other hand, the unique newform f(z) € S3(T'o(11)) of level 11 is:

—qH 1—q")

n=1

oo

> anl(f)g"

n=1

11n)2

=2 — P42 4 P42 =27 =247 — 20 + ¢ — 2412 4 4¢" 4 4
4% —2g" T 14 2620 424 —2¢2 — B — 4¢P — 8¢ + 5477
A2 4 TP 8¢ — B AP —2¢P 4P 435 — 4 -8 M+ ...

Its first few Fourier coefficients at prime indices are:
p |2 3 7 11|13 17 19 23 29|31 37 41
ap(f) | -2 -1 2 114 -2 0 -1 0|7 3 -8
In this case, the numbers a,(FE) have a very N | Agyp

remarkable interpretation: each turns out to
be equal to the p-th Fourier coefficient of the
function f defined by product expansion

00
H 1 _q qlln)Z,

where ¢ = €2™% (see the insert on the top of

this page). Now it can be shown that this
function has many “hidden symmetries”, i.e.
it satisfies the transformation law (5) below
(with N = 11), and that this characterizes
the function f uniquely.

This phenomenon can be generalized to ar-
bitrary elliptic curves, but for this we need
the following two concepts:

1) The conductor N = N of an elliptic curve
E = E,3: this is a positive integer

which is closely related to the discriminant
Agp (and which is explicitly computable).

2) The space S(N) = So(To(NV)) of modular
forms of level N: this consists of (complex-
valued) functions of the form

= Z a’fl(f)qna
n=1

where the a,(f) € C and the sum converges
for Im(z) > 0; these are to satisfy certain
additional properties such as the rule

(5) s (az+b> _

cz+d

27rzz

with g =€

(cz +d)*f(2),

where a, b, c,d € Z are any integers with ad —
bc =1 and Nle.



Properties: 1) S(N) is a finite-dimensional
C-vector space. There is an explicit formula
for its dimension gy := dim¢ S(N), which is
approximately gy = %

2) Each f € S(N)
by its first 2gy =~
a1(f),... 70’29N(f)'

3) The space S(N) has a distinguished C-
basis B(N) = B1(N) U B (N). The func-
tions in BT (N) are called newforms, those in
B~ (N) oldforms. For each N, these forms are
explicitly computable (and have been com-
puted for N < 10°).

s uniquely described

i
% Fourier coeflicients

The above properties show that for each
N, the set of functions B(N) is determined
by a finite amount of data, and hence may
be viewed as being explicitly known. The
(TWS)-Conjecture relates the Diophantine
numbers a,(£) to these functions as follows.

Conjecture (TWS): For every elliptic curve
E of conductor N, there is a (unique) new-
form f(z) =Y an(f)g" € BT(N) of level N
such that

(6) ap(E) = ap(f), for all primes p / N.

At first sight, this seems to be a rather dar-
ing and mysterious conjecture: why should
the numbers a,(F) have anything to do with
modular forms?

The first major piece of evidence for this
conjecture was provided by A. Weil who
showed in 1967 that its falsity would contra-
dict a main principle of Number Theory (the
principle that certain arithmetically defined
functions (called L-functions) should have a
functional equations). Shortly thereafter, G.
Shimura[Sh] showed that the converse to the
conjecture is in fact true:

Theorem 2 (Shimura, 1971). For each
f € BT (N) with integral Fourier coefficients
there is an elliptic curve E (of conductor N)

such that (6) holds.

Although this result provides us with many
explicit (numerical) examples for which the
(TWS)-Conjecture is true, it is too weak to

prove that there are infinitely many ellip-
tic curves which satisfy (TWS), for there is
no way to guarantee that there any modular
forms with integral coefficients for large .
This, however, and much more, follows from
the important theorem proven by Wiles|W]
(with the help of R. Taylor®):

Theorem 3 (Wiles, 1995). The conjecture
(TWS) is true if Ng is squarefree.’

As should be evident from the above dis-
cussion, Wiles’s result goes much further than
merely proving (FLT): it should be viewed as
an important step towards realizing the goal
of finding a general algorithm for solving Dio-
phantine problems involving elliptic curves.

5. TWS,; = FLT

Although the work of Wiles!” clearly advances
our understanding of the arithmetic of ellip-
tic curves, it is less evident how it relates to
FLT, and indeed, the deduction of FLT from
Theorem 3 constitutes another major step in
the proof of FLT. Here is a brief sketch of the
ideas involved:

Proof of TWS,, = FLT: Since FLT3 and
FLT, are known to be true, it is elementary
to see that we can restrict attention to primes
p = 5.

Suppose, therefore, that FLT, is false, i.e.
that there exist a,b,c € Z with abc # 0 such
that

al + b’ = P,

8The original proof of Wiles and Taylor is 130 pages
long, and fills an entire issue of the Annals. Since
its publication, a number of simplifications have been
suggested by a number of people such as G. Falt-
ings, H. Lenstra and F. Diamond; cf. [Di]. For an
overview of the original proof, together with a lot of
background information, the reader is encouraged to
consult [DDT].

9Recently (February, 1997), Conrad, Diamond and
Taylor have announced that they can prove that
(TWS) is true as long as 27 does not divide Ng.

Dye to the age restriction, Wiles just missed get-
ting the prestigious Fields Medal for his work. How-
ever, he has received many other awards, including an
Honourary Doctorate from Queen’s University in May
1997.



By interchanging a and b we may suppose
without loss of generality that 2|a, and so we
have in particular that 16|a?. Consider the
elliptic curve

E: vz = z(x —alz)(z +bP2),

called a Frey curve.'' Then:

1) A = (abc)??

2) Ng is squarefree (this uses the fact that
16]a?).

Thus, by Wiles’s theorem, there is an f =
fr € BT (Ng) such that (6) holds.

Claim: Such an fg does not exist!

The verification of this claim is really the
heart of the proof. For this, Ribet[R] proves
the following “Lowering the Level Principle”
(also known as Serre’s e-Conjecture) which is
a special case of Serre’s general conjecture (cf.

[Sel):

Theorem 4 (“Lowering the Level” - Ri-
bet, 1991). Suppose f = fp € BT(N) is a
newform of level N. For a fixed prime number
p > 3 let M, denote the product of the prime
numbers q > 2 such that plexpt,(Ag). Then
there exists g € B+ (N/M,) such that

an(g) = an(f) (mod p),

for all n > 1 with ged(n, N) = 1.12

Conclusion. Apply this to fg as above.
Then by 1) we obtain that M, = %, so by Ri-
bet’s theorem there is a newform g € B7(2).
But this is impossible since dimS(2) = 0.
Thus, no such modular form fg can exist,
so neither can E and hence no such Fermat
triplet (a,b, c) exists!

11n his fundamental paper, Frey[Fr1](see also [Fr2])
showed how many Diophantine statements can be re-
duced to the study of elliptic curves by means of cer-
tain elliptic curves now called Frey curves.

12This theorem should be read with a grain of salt,
for one cannot assume that ¢ has coefficients in Z.
Thus, while the precise statement of the theorem is
somewhat more technical, the basic flavour is the
same.
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