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Abstract. The discrete logarithm is an important crypto primitive for
public key cryptography. The main source for suitable groups are di-
visor class groups of carefully chosen curves over finite fields. Because
of index-calculus algorithms one has to avoid curves of genus ≥ 4 and
non-hyperelliptic curves of genus 3. An important observation of Smith
[S] is that for “many” hyperelliptic curves of genus 3 there is an explicit
isogeny of their Jacobian variety to the Jacobian of a non-hyperelliptic
curve. Hence divisor class groups of these hyperelliptic curves are mapped
in polynomial time to divisor class groups of non-hyperelliptic curves.
Behind his construction are results of Donagi, Recillas and Livné us-
ing classical algebraic geometry. In this paper we only use the theory
of curves to study Hurwitz spaces with monodromy group S4 and to
get correspondences for hyperelliptic curves. For hyperelliptic curves of
genus 3 we find Smith’s results now valid for ground fields with odd char-
acteristic, and for fields with characteristic 2 one can apply the methods
of this paper to get analogous results at least for curves with ordinary
Jacobian.
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1 Introduction

One fundamental need for many applications of public key cryptography is the
construction of groups with hard discrete logarithm. Nowadays, the main source
for such groups comes from arithmetic geometry and consists of divisor class
groups of curves over finite fields Fq with q elements.
This development was a great stimulus for computational arithmetic geometry.
A bit disappointing is that the same methods used for construction of candidates
?? supported by a Discovery Grant from the Natural Sciences and Engineering Research
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for cryptographically strong curves can be used for attacks (see Section 2).
The outcome is that curves of genus larger than 3 do not provide strong groups.
Even more surprising is Diem’s result [D] that for genus 3 there is an index-
calculus algorithm which makes the divisor class groups of generic curves weak
but does not affect the (more special) hyperelliptic curves.

Assume now that the characteristic of the ground field from 2. It was Smith
[S] who first realized that explicit isogenies for hyperelliptic curves of genus 3
can be used to transfer divisor classes of O(q5) hyperelliptic curves to those of
non-hyperelliptic curves of genus 3 and so make the discrete logarithm insecure
again. In his work he used results from “classical” algebraic geometry due to
Recillas, Donagi and Livné [DL].
The purpose of this paper is to give an elementary approach to Smith’s results
which uses only the theory of curves and elementary algebra and is otherwise
self-contained. This is based on the observation that the so-called “trigonal con-
struction” of Recillas, Donagi and Smith is a consequence of the study of certain
curve covers of P1 whose monodromy (or Galois) group is the symmetric group
S4. As a result, we find for every g a Hurwitz space (cf. Section 4) which pa-
rameterizes a subspace of those hyperelliptic curves C of genus g which admit a
non-trivial correspondence to a curve D of genus g that can be expected to be
non-hyperelliptic.
Moreover, if the ground field is Fq, then this correspondence is computable in
polynomial time in log(q).
For g = 3 we find the results of Smith again (and are able to extend them
to the case of characteristic 3 which he excludes.) To be more precise: By our
methods we find a rapidly computable isogeny from the Jacobian variety JC of
C to the Jacobian variety JD of D of small degree. A more detailed study of
the correspondence shows that this isogeny has as kernel an isotropic subspace
of the points of order 2 of JC and is indeed the isogeny studied by Smith. (De-
tails will be given in a forthcoming paper of the second author [Ka].) But we
emphasize that for application to cryptography the results given in this paper
are sufficient.
In addition we show that the space of hyperelliptic curves for which the cor-
respondence exists is parameterized by the (g + 1)-fold product of the generic
elliptic curve with a point of order 3 which gives immediately and without any
heuristic that O(qg+2) isomorphism classes of hyperelliptic curves over Fq are
affected.
Another advantage of our approach is that it can be applied also in characteristic
2 (but at present only to curves with an ordinary Jacobian variety). In the last
section we give a short sketch of this generalization; for details we again refer to
[Ka].

1.1 Discrete Logarithms

Many protocols for public key crypto systems are based on discrete logarithms
in groups G of prime order ` (see [F]).
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Definition 1. The computational Diffie-Hellman problem (DHCP) for G is: For
randomly given elements a, b ∈ G compute k ∈ Z/(ord(b)) such that bk = a. In
this case we write: k := logb(a).

There are families of algorithms using only the structure “group” (and called
generic) that compute discrete logarithms (DL) with complexity O(`1/2), e.g.
the baby-step-giant step algorithm of Shanks and Pollard’s ρ-algorithm ([ACF]).
By work of Maurer and Wolf [MW] we know that in black box groups we cannot
do better. This motivates the search for families of “concrete” groups G for which
DHCP cannot be solved with algorithms of complexity smaller than ∼

√
`, and

we shall say that the discrete logarithm in G is “weak” if we find an algorithm
that computes discrete logarithms faster, for instance with complexity O(`d)
with d < 1/2, or polynomial in log(`) or subexponential in log(`) ([ACF]).

1.2 Index-Calculus

All known algorithms that compute the DL in groups G′ faster than the generic
ones are built in the following way. One finds a transfer of the DL in G′ to the
DL in a group G that is computed in subexponential or even polynomial time
and in G one can apply the pattern of index-calculus, which we want to describe
now.
One destroys the “homogeneity” of groups and chooses a “factor base” consisting
of relatively few elements. Then one computes G as Z-module given by the free
abelian group generated by the base elements modulo relations.
Next one has to prove that with high probability every element of G can be
written (fast and explicitly) as a sum of elements in the factor base.
So one has to find a method to create sufficiently many relations in a short time.
Usually this is done by a kind of “sieving”. Crucial for the method is to balance
the number of elements in the factor base to make the linear algebra over Z
manageable and to guarantee “smoothness” of arbitrary elements with respect
to this base.
The classical example for index-calculus is applied to the discrete logarithm in
the multiplicative group of finite fields. The method was discovered by Kraitchik
1922 [Kr], re-invented several times and named as index-calculus by Odlyzko
1984 [O]. Theorems about the distribution of numbers with only small prime
divisors and sieving (algebraic number field sieve and function field sieve) yield
an algorithm of subexponential complexity with α = 1/3.

1.3 Acknowledgment

The authors would like to thank very much the referee for encouragement, careful
reading of the manuscript and for very helpful comments.

2 Discrete Logarithms in Divisor Class Groups

The success of the classical index-calculus method relies on the fact that points
on the group scheme Gm, the multiplicative group, can be easily lifted to points
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defined over number fields. This picture changes radically if we replace the multi-
plicative group by abelian varieties of positive dimension, for instance by elliptic
curves or more generally by Jacobian varieties of curves of genus ≥ 1 because of
structural results like the Mordell-Weil theorem, which prevents the existence of
“smooth” points over number fields.
To compute in JC one presents its points by divisor classes of degree 0.

If not otherwise stated, a curve C defined over a perfect field K (i.e. all
algebraic extensions of K are separable) is assumed to be projective, smooth
and geometrically connected. Its genus is denoted by g(C).
With Ks we denote the algebraic closure of K, and with Cs the curve obtained
from C by constant field extension from K to Ks.
By GK we denote the Galois group of Ks/K, i.e. the group of automorphisms
of Ks that fix K elementwise.
A divisor on Cs is a formal sum D =

∑
P∈C(Ks) zP P with zP ∈ Z and almost

all zP = 0. The degree of D is
∑

zP . Two divisors D1, D2 are equivalent iff
there is a function f on Cs such that the divisor of zeros and poles of f is equal
to D1 −D2. Pic0(Cs) is the group of divisor classes of degree 0 of Cs. There is
(after the choice of a “point at infinity” P∞ ∈ C(Ks)) a canonical isomorphism
between JC(Ks) and Pic0(Cs).
We now assume that P∞ ∈ C(K). Since GK acts on points, divisors, functions
and hence on the divisor class group of Cs in a canonical way, we get that the
divisor class group of degree 0 of C is Pic0(C) = Pic0(Cs)GK and that this group
is canonically isomorphic to JC(K).
The whole arithmetic in these divisor class groups is ruled by the theorem of
Riemann-Roch. As one consequence we state that with fixed P∞ we can represent
(not necessarily uniquely) elements in Pic0(C) by divisors P1 + · · ·+ Pt − t ·P∞
with t ≤ g(C) and Pi ∈ C(Ks) such that the natural action of GK leaves this
sum invariant.
To use these groups for cryptographic purposes one chooses C over a finite field
Fq and one has to solve deep problems in computational arithmetic geometry
like point counting and addition formulas in divisor class groups. For the needs
of cryptography, this has been solved at least partly in a satisfying way. We state
in particular that the results of Heß [He] yield algorithms for group operations in
divisor class groups that are of polynomial complexity both in g(C) (with fixed
q) and log(q) (with fixed g(C)).
As was said above, one of the main motivation for suggesting divisor class groups
for DL-systems (by Miller [M] and Koblitz [Ko1],[Ko2] around 1985) was the
difficulty to apply the “classical” index-calculus, and this is true till today. But
there are various other ways to find “special” elements in Pic0(C) if the genus of
C is larger than 1: There are classes which are presented by less than g(C) points,
and it may happen that the points representing the given class are rational over
K. Hence one can find factor bases, do index-calculus in a very refined way and
gets the following result:
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Theorem 1 (Diem, Gaudry, Thomé, Thériault[DGTT]). There exists an
algorithm which computes, up to log(q)-factors, the DL in the divisor class group
of curves of genus g(C) in expected time of O(q(2−2/g(C))).

As one consequence of the Hasse-Weil theorem (which is the analogue of the
Riemann hypothesis for curves), we get that for K = Fq the order of Pic0(C)
is O(qg(C)). It follows that for genus g(C) > 3 the index-calculus algorithm is
much faster than the generic algorithms, and hence these curves yield rather
weak crypto systems and should be avoided.
But a closer look, done by Diem [D], shows that one can alter the factor base
such that the degree of a plane model of C becomes the essential measure for
the efficiency of the index-calculus algorithm.

Theorem 2 (Diem). If C is given by a plane curve of degree d (singularities
allowed) then the DL in the group of divisor classes of degree 0 is, up to log(q)-
factors, of complexity O(q2− 2

d−2 ).

One sees immediately that curves of genus 1 (elliptic curves) and of genus 2
are not affected by these results since for them the order of Pic0(C) over Fq is
O(q) respectively O(q2).

3 Isogenies and Correspondences

Let C be a curve over K of genus g(C) > 0 with Jacobian variety JC .
We exploit the fact that Pic0(C) is canonically isomorphic to JC(K) and use
the theory of abelian varieties.

Definition 2. Let A,A′ be abelian varieties of dimension g over K and let
η : A → A′ be a K-rational homomorphism3 whose kernel is a finite group
scheme A0. Then η is called an isogeny and A is isogenous to A′. The degree of
η is the order of A0. Moreover, an isogeny η is separable iff A0 is an étale group
scheme, and then the degree of η is |A0(Ks)|.

Remark 1. – The homomorphisms of abelian varieties are analogous to those
of abelian groups. In particular, for any finite (K-) subgroup scheme A0 of
A there is a (K-rational) isogeny of A with ker(η) = A0 and this isogeny is,
up to isomorphisms, uniquely determined.

– On the other hand, abelian varieties are kind of rigid: If η is a morphism
from A to A′ mapping the neutral element 0A of A to the neutral element
0A′ of A′ then η is a homomorphism.

– As above, assume that A,A′ are abelian varieties of the same dimension and
that A or A′ is simple, i.e. has no proper abelian variety as subvariety. Then
a morphism η : A → A′ mapping 0A to 0A′ is an isogeny iff it is not constant.

3 i.e. η is a morphism of varieties compatible with the addition morphisms on A and
A′
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Let f : D → C be a non-constant K-rational morphism from the curve D to
the curve C. Then f induces an embedding f∗ of the function field F (C) of C
into the function field F (D) of D, and the degree deg(f) := [F (D) : f∗F (C)] of
this field extension is called the degree of f .
As before, let Cs and Ds be the curves over Ks obtained by constant field ex-
tension from K to Ks. Then f induces a morphism fs : Ds → Cs (which we
usually denote by f again).
The morphism f : D → C induces two homomorphisms f∗ and f∗ on the asso-
ciated divisor groups. To define the first, let P ∈ C(Ks) be a point. Then f∗(P )
is by definition the divisor of Ds which is given by the formal sum of the points
(with multiplicity in ramification points) lying in f−1(P ). By linear extension
f∗ defines a homomorphism from the divisor group of Cs to the divisor group of
Ds, called the conorm map (associated to f).
It is a basic fact of curve theory that divisors of degree n are mapped to divisors
of degree deg(f) ·n and that principal divisors are mapped to principal divisors.
We thus obtain an induced homomorphism from Pic0(Cs) to Pic0(Ds) which is
again denoted by f∗. This map is Galois invariant, and so it maps Pic0(C) to
Pic0(D).
The map f∗ is by definition the linear extension of f to the group of divisors
of Ds. Since f∗ maps a principal divisor (t) to the principal divisor (N(t)) of
its norm, we see that f∗ induces a homomorphism, again denoted by f∗, from
Pic0(Ds) to Pic0(Cs) that is Galois invariant. It is called the norm map (asso-
ciated to f).
Using the functorial properties of Jacobians, one can show that f∗ induces an
(algebraic) homomorphism from JC to JD and that f∗ induces an (algebraic)
homomorphism from JD to JC .

Now assume that C1, C2, D are curves over K. Let fi : D → Ci be non-
constant K-rational morphisms. It follows that Tf1,f2 := (f2)∗ ◦ f∗1 induces a
homomorphism from JC1 to JC2 that we call the correspondence attached to
(f1, f2).
We shall describe Tf1,f2 explicitly in the special case that f1 is fully ramified in a
point P∞ ∈ C1(Ks); i.e., that there is a unique point Q∞ of Ds that is mapped
to P∞ by f1.
We can represent a divisor class c of degree 0 of C1 by

∑
i≤g1

Pi − g1P∞, where
g1 = g(C1). Let (Qi,j)1≤i≤g1,1≤j≤deg(f1) be the set of points (listed with multi-
plicities) in D(Ks) which are mapped to P1, . . . , Pg1 by f1. Then Tf1,f2(c) is the
divisor class of

∑
i,j f2(Qi,j)− deg(f1)g1f2(Q∞).

Lemma 1. In the above situation, assume in addition that JC1 is a simple
abelian variety, and that there is no non-constant morphism of degree ≤ deg(f1)
from C2 to the projective line. Then Tf1,f2 has a finite kernel, and if g(C1) =
g(C2), then Tf1,f2 is an isogeny.

Proof Since JC1 is simple, it is enough to show that Tf1,f2 is not the zero
map. So take a point Q1 ∈ D(Ks) \ f−1

2 (f2(Q∞)) and let c be the class of
P − P∞, where P = f1(Q1). Then Tf1,f2(c) is the class of the divisor DP :=
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∑
Q∈f−1

1 (P ) f2(Q) − deg(f1) · f2(Q∞). Note that DP 6= 0 (as a divisor). If the
class of DP is trivial, then we find a non-constant function on C2 with pole order
≤ deg(f1) and hence a non-constant map of C2 to the projective line of degree
≤ deg(f1), contradiction.

4 Hurwitz Spaces Attached to Hyperelliptic Curves in
Odd Characteristic

4.1 The Case of Algebraically Closed Ground Field

In this subsection we assume that K = Ks is algebraically closed.
For the first statements of this section K is allowed to have arbitrary character-
istic but for the major part it is necessary to assume that the characteristic of
K is odd. This hypothesis will be done in due time.

We first review the following concepts and terminology.
Let f : D → C be a non-constant separable morphism of curves. We call f

(or D, if the context is clear) a cover of C. Let F̃ be the splitting field (or Galois
closure) of the associated extension F (D)/f∗F (C) of function fields. Since K is
algebraically closed, it follows that F̃ = F (D̃) is the function field of a curve
D̃/K. Moreover, the inclusion F (D) ⊂ F̃ induces an (essentially unique) cover
f ′ : D̃ → D. We call the composition f̃ = f ◦ f ′ : D̃ → C the Galois closure of
the cover f : D → C.
The monodromy group of f : D → C is the group Gf := Aut(f̃) = {α ∈
Aut(D̃) : f̃ ◦ α = f̃} of automorphisms of its Galois closure f̃ . Thus, Gf is
(isomorphic to) the Galois group of the Galois field extension F̃ /f∗F (C), i.e.,
Gf ' Gal(F̃ /f∗F (C)).
If P ∈ D̃(K), let GP = GP (f̃) = {α ∈ Gf : α(P ) = P} be the ramification
group (or decomposition group) at P . Thus |GP | = eP (f̃) is the ramification
index of P . The set Ram(f̃) of ramified points Q of f̃ on C is the set of points
in C(K) for which one (and hence each) point in f̃−1(Q) has ramification index
> 1.
We recall that a cover f : D → C is tamely ramified if it is separable and if all
ramification indices are prime to the characteristic of the ground field. In this case
all ramification groups GP are cyclic, the contribution of the point P ∈ D(K)
to the discriminant divisor of f is |GP | − 1 and the Riemann–Hurwitz genus
formula (used many times in the following) is very easy to handle. Moreover
the compositum of tamely ramified covers is tamely ramified, and the so-called
Lemma of Abhyankar holds. For all these facts we refer to [St].
The cover f̃ (respectively f) is unramified if Ram(f̃) = ∅.
We observe:

Lemma 2. If C = P1, then Gf = 〈GP 〉P∈D̃(K).

For U := 〈GP 〉P∈D̃(K) has as its fixed field the function field of an unramified
cover of P1 , so U = Gf because P1 has no non-trivial unramified covers.
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The collection ({GP }P∈f̃−1(Q) : Q ∈ Ram(f̃)) of the conjugacy classes of
the ramification subgroups of Gf (indexed by the set Ram(f̃)) is called the
ramification type C of the cover f̃ (or of the cover f).

A Hurwitz space is a moduli space which parameterizes (isomorphism classes)
of covers h : C → P1 of the projective line of given degree n and given rami-
fication type. Hence Hurwitz spaces are moduli spaces for covers with given
ramification type and monodromy group.

We now turn to the construction of certain covers (and associated Hurwitz
spaces) whose monodromy group is S4, the symmetric group of degree 4. For
this, we shall assume for the rest of this subsection that char(K) 6= 2.

Lemma 3. Assume that f : C → P1 is a tamely ramified cover of degree n and
that for every ramified point Q ∈ P1(K) the number of points in f−1(Q) with
even ramification order is even. Then Gf ⊂ An, the alternating group of degree
n.

Proof Let {P1, . . . , Pt} be the ramified points over Q. Let ei be the ramification
index of Pi. Since ei is prime to the characteristic of K by hypothesis, the
multiplicity of the discriminant divisor of f at Q is

∑t
i=1(ei−1) and hence is even.

So the field discriminant disc(F (C)/f∗F (P1)) is a square in f∗F (P1) ' K(x),
and hence by field theory, Gf ≤ An.

Theorem 3. Let f2 : C1 → P1 be a cover of degree 3 such that every point on
P1 has at least one unramified extension.
Let f1 : C → C1 be a ramified cover of degree 2 with ramification points
P1, . . . , P2t on C1 such that exactly one point in f2

−1(f2(Pj)) is unramified
with respect to f1 and such that all ramification points of f2 are unramified
under f1.
Define f : C → P1 by f = f2 ◦ f1. Denote by C̃1 the Galois closure of the cover
given by f2, by C̃ the Galois closure of the cover f : C → P1 and by C∆ the
cover over P1 obtained by adjoining the square root of the discriminant of f2 to
the function field of P1 .

1. The monodromy group of f2 is isomorphic to S3, the symmetric group of
degree 3.

2. The cover C̃1/C∆ is unramified and is cyclic of degree 3.
3. The monodromy group Gf of f is isomorphic to S4.

Proof 1. The assumption on the ramification behavior of f2 forces that f2 cannot
be Galois. Since deg(f2) = 3, it thus follows that its Galois closure has Galois
group S3.
2. From part 1. (or otherwise), we see that that the discriminant divisor disc(f2)
of f2 cannot be a square, and hence C∆ is the unique quadratic cover of P1

over which f̃2 factors. By Galois theory, C̃1/C∆ is a Galois extension with cyclic
Galois group of order 3. Since all ramification indices of f2 (and hence of f̃2) are
≤ 2, we see that C̃1/C∆ is unramified.
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3. Let F = F (P1), F1 = F (C1) and F2 = F (C) be the function fields of the
curves P1, C1 and C. Then f1 and f2 induce inclusions F ⊂ F1 ⊂ F2. Since
the assumptions of Lemma 3 are satisfied for f , we see from the proof of the
lemma that disc(F2/F ) is a square in F , and so the hypotheses of the following
Proposition 1 are satisfied. It thus follows from that proposition that Gf ' S4,
as claimed.

Proposition 1. Let F ⊂ F1 ⊂ F2 be a tower of separable field extensions,
and let F̃2/F be the Galois closure (or splitting field) of F2/F . Assume that
Fi/F is not normal for i = 1, 2 and that [F2 : F1] = 2 and [F1 : F ] = 3. If the
discriminant disc(F2/F ) is a square in F and if char(F ) 6= 2, then Gal(F̃2/F ) '
S4.

Proof Let F̃1 be the Galois closure of F1/F . Since [F2 : F1] = 2, we see that
F̃2/F̃1 is a compositum of quadratic extensions which are all conjugate to F2F̃1,
and so N := Gal(F̃2/F̃1) is an elementary abelian 2-group.
Since disc(F2/F ) is a square, we know that G := Gal(F2/F ) is a subgroup of
the alternating group A6. Thus also N ≤ A6. But every non-cyclic elementary
abelian 2-group of A6 is of the form {gigj}, where g1, g2, g3 ∈ S6 are 3 disjoint
transpositions, and hence |N | ≤ 4. Now N 6= 1 because otherwise F2 = F̃1,
so F2/F would be normal, contradiction. Moreover, |N | 6= 2 because otherwise
N = 〈g〉 E G, where g ∈ A6 is a (2, 2)-cycle. Since 3 = [F1 : F ] | |G|, ∃σ ∈ G
of order 3 which therefore centralizes g. But no such pair (g, σ) exists in A6,
contradiction. Thus |N | = 4, and hence |G| = [F̃2 : F̃1][F̃1 : F ] = |N | · 6 = 24.
Let P3 = 〈σ〉 be a 3-Sylow subgroup of G. If P3 E G, then the “Normaliza-
tor/Centralizator theorem” [Hu] yields that G/CG(P3) with CG(P3) the central-
izer of P3 would be a subgroup of Aut P3 and hence CG(P3) would have index
dividing 2. So it would contain N . This is a contradiction because as was men-
tioned above, the elements of N do not centralize σ. Thus, by Sylow, G has 4 dis-
tinct 3-Sylow subgroups P3,i and so the conjugation action on the set {P3,i}4i=1

defines a homomorphism ϕ : G → S4 whose kernel is N1 := ∩4
i=1NG(P3,i).

Clearly, 3 - |N1|, so |N1| | 2 (because |NG(P3,i)| = 6). If |N1| = 2, then N1 6≤ N
because N has no subgroup of order 2 which is normal in G. But then N1N is
an elementary abelian subgroup of order 8 in A6, contradiction. Thus N1 = 1,
so ϕ is injective and hence yields an isomorphism G ' S4.

Remark 2. In the situation of Theorem 3, assume that s points Q1, . . . , Qs of
P1 ramify in the cover f2. Then the Riemann-Hurwitz formula [St] shows that
g(C1) = s/2− 2 and g(C∆) = s/2− 1. In particular, s ≥ 4 because g(C1) ≥ 0.
Moreover, if (as in Theorem 3) 2t points of C1 ramify in the cover f1, then
g(C) = 2g(C1)− 1 + t = s + t− 5.
We thus see that s + t points of P1 ramify in the S4-cover f̃ : C̃ → P1. Since all
have ramification index 2, we see by the Riemann-Hurwitz formula that g(C̃) =
6(s + t− 4) + 1.
The ramification structure of f̃ is a follows. If Q′ ∈ C̃(K) lies above some Qi,
then Q′ is unramified over C̃2 so GQ′ is generated by a transposition (because
Gal(C̃/C̃2) = N contains all (2, 2)-cycles of S4). On the other hand, if P ′ ∈ C̃(K)
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lies above some f2(Pi), then P ′ is ramified over C̃2, so GP ′ is generated by a
(2, 2)-cycle. Thus, the ramification type C of f̃ consists of s conjugacy classes of
transpositions and t conjugacy classes of (2, 2)-cycles of S4.

The covers considered in Theorem 3 naturally give rise to Hurwitz spaces
H̃s,t and Hs,t as follows. For a given s ≥ 4 and t, let H̃s,t(K) denote the set of
isomorphism classes of covers f = f2◦f1 : C → P1 of the type defined in Theorem
3. (As usual, two covers f : C → P1 and f ′ : C ′ → P1 are called isomorphic if
there is an isomorphism α : C → C ′ such that f ′ ◦ α = f .) Moreover, since the
group Aut(P1) acts on H̃s,t(K) (via (α, f) 7→ α ◦ f), we can also consider the
orbit space Hs,t(K) := Aut(P1)\H̃s,t(K). Then we have

Theorem 4. The moduli problem H̃s,t is finely represented by a Hurwitz space
H̃s,t/K of dimension s + t and the moduli problem Hs,t is coarsely represented
by the quotient space Hs,t = Aut(P1)\H̃s,t of dimension s + t− 3.

Proof By Theorem 3 and Remark 2 we see that we can identify H̃s,t(K)
with the set Hin(S4,C) of S4-covers with ramification type C as in Remark
2. Since this extension is tamely ramified, the assertions follow from the work of
Fried/Völklein and Wewers, as was discussed in [FK], p. 37.

4.2 Rationality

We now investigate to what extent the constructions of the previous subsection
can be done over an arbitrary perfect ground field K (with char(K) 6= 2). Here
a basic difficulty is that the technique of Galois closure does not lead in general
to curve covers.
To explain this in more detail, let f : D → C be a K-cover of curves, i.e. f
is a separable, non-constant K-morphism of curves over K. As before, f gives
rise to a separable extension F (D)/f∗F (C) of the associated function fields,
and so we can consider the splitting field (or Galois closure) F̃ of the extension
F (D)/f∗F (C).
However, F̃ need not in general be the function field of a (geometrically con-
nected) curve D̃/K. For this it is sufficient and necessary that K is algebraically
closed in F̃ . In this case we say that f admits a Galois closure, for we have as
before two induced Galois covers f ′ : D̃ → D and f̃ = f ◦ f ′ : D̃ → C. It is im-
mediate that if f̃ exists, then this construction commutes with base-change, and
so Gf := Aut(f̃) ' Gfs is the (geometric) monodromy group of the Ks-cover
fs : Ds → Cs

Theorem 5. Let f2 : C1 → P1
K and f1 : C → C1 be two K-covers of curves

such that their base-changes with Ks satisfy the hypotheses of Theorem 3.
Then f = f2 ◦ f1 : C → P1

K admits a Galois closure if and only if the field
discriminant δ := disc(F (C)/f∗F (P1

K)) is a square in f∗F (P1
K) ' K(x). If this

is the case, then the Galois closure of f is an S4-cover f̃ : C̃ → P1
K .
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Proof Let F := f∗F (P1
K) ⊂ F (C) =: F2, and let F̃ be the splitting field of the

extension F2/F .
Suppose first that f admits a Galois closure, i.e. that K is algebraically closed
in F̃ . Then F̃ and Ks are linearly disjoint over K, so F̃Ks is the splitting field
of the extension F2Ks/FKs, and Gal(F̃ /F ) = Gal(F̃Ks/FKs). By the proof of
Theorem 3 we know that Gal(F̃Ks/FKs) ≤ A6, and so also Gal(F̃ /F ) ≤ A6.
By field theory, this means that δ ∈ (F×)2.
Conversely, assume that δ is a square in F . Then the tower F ⊂ F1 := f∗1 F (C1) ⊂
F2 of field extensions satisfies the hypotheses of Proposition 1, and so Gal(F̃ /F ) '
S4. Since also Gal(F̃Ks/FKs) ' S4 by Theorem 3, it follows that F̃ and Ks are
linearly disjoint over K, so K is algebraically closed in F̃ and hence f admits a
Galois closure.

Remark 3. In the situation of Theorem 5, suppose that δ is not a square in
F ' K(x). Since δ is a square in FKs = Ks(x) (cf. Theorem 3), we see that
F ′ := F (

√
δ) is a quadratic constant extension of F , i.e., F ′ = FK ′, where

K ′ = K(
√

c), for some c ∈ K. Thus, it follows that the cover fK′ : CK′ → P1
K′

(which is obtained from f by base-change with K ′) does admit a Galois closure.
Moreover, by replacing the quadratic cover f1 : C → C1 by its quadratic twist
fχ
1 : Cχ → C1 (associated to the extension K ′/K), we see that the twisted cover

fχ = f2 ◦ f ′1 : C ′ → P1
K satisfies the hypotheses of Theorem 5 and hence admits

a Galois closure f̃χ : C̃ ′ → P1
K with group S4.

So we get: Either f : C → P1 or its twist fχ : C ′ → P1 admits a Galois closure,
which is a S4-cover.

4.3 The Hyperelliptic Case

For the rest of this section and for the whole following section we take s = 4.
This is equivalent to the hypothesis that g(C1) = 0 or to the hypothesis that
C is a hyperelliptic curve of genus t − 1 with hyperelliptic cover f1. The curve
C∆ is an elliptic curve E, and we can choose as the origin of E for instance the
unique point over Q1. Then the cover E/P1 is given by computing modulo −idE ,
i.e., by mapping a point on E to its x−coordinate, if E is given by a Weierstraß
equation.
The moduli space of hyperelliptic curves MH,t−1 of genus t − 1 has dimension
2t− 3.
For t = 3 Theorem 4 shows that the dimension of Ht := H4,t is 4 and hence
larger than the dimension of the moduli space MH,2 of curves of genus 2. (Recall
that all curves of genus 2 are hyperelliptic.). We can interpret this by the fact
that there are infinitely many covers f2 which give rise to the same isomorphism
class of curves of genus 2. In fact for a given set of 6 points on P1 there are
infinitely many maps of degree 3 such that pairs of these points have the same
image.
For t > 4 the dimension of Ht is smaller than the dimension of MH,t−1, and so
we will get only very special hyperelliptic curves attached to points on Ht.
But the interesting case is t = 4. We get hyperelliptic curves of genus 3, and the
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moduli space of such curves is irreducible and has dimension 5.
By elementary linear algebra we shall see in Subsection 5.1 that every hyperel-
liptic curve of genus 3 covers P1 by a map f such that f corresponds to a point
in Ht, and that, generically, to given hyperelliptic curve C there are exactly 2
such covers up to equivalence. Hence we get a 2-fold cover map from Ht to the
moduli space of hyperelliptic curves of genus 3.

Construction of Points on Ht Take f = f2 ◦ f1 : C → P1 as above. It follows
that both C∆ and C̃1 are elliptic curves E and E′, respectively, which come
equipped with an isogeny ρ : E′ → E of degree 3.
We have a bit more: The monodromy group of f2 is S3. We embed it into the
group of automorphisms AutK(E′). Let ϕ be such an automorphism. Then ϕ is
of the form ±idE′ + tV where tV is the translation on E′ by a point V .
Let σ ∈ S3 be an element of order 2 and τ ∈ S3 be an element of order 3. Since
〈σ, τ〉 = S3, we have σ = −idE′ + tR with R ∈ E′(Fq) and τ = tV3 , where V3

is a point of order 3 of E′. By an appropriate choice of the neutral elements of
E and E′ (we use that K = Ks) we can assume that V = 0 and that f2 is an
isogeny.
Let R1, R

′
1, R2, R

′
2, . . . , R2t, R

′
2t be the set of points on E′ which ramify in

C ×C1 E′/E′. Then we find εj ∈ {−1, 1}; 1 ≤ j ≤ t such that after a suit-
able ordering we get Rk = −R′k for k = 1, . . . , 2t and Rj = Rt+j + εj · V3 for
j = 1, . . . , t.
Conversely, begin with an elliptic curve E with Q′1, . . . , Q

′
4 ∈ E(K)[2], the group

of points of order 2 of E. We normalize and assume that Q′1 is the neutral element
of E and denote by πE the map from E to E/〈−idE〉 = P1. Define Qj := πE(Q′j).
Take E′ with point V3 of order 3 such that ρ : E′ → E is an isogeny of degree 3
with kernel 〈V3〉.
Since ρ(0E′) = 0E , the curve E′/〈−idE′〉 is a projective line covering E/〈−idE〉
by a map fρ of degree 3 that is ramified exactly in Q1, . . . , Q4 in the follow-
ing way: In the inverse image of Qi under fρ there is one point with ramifica-
tion index 2 and one unramified point. Hence the discriminant divisor of fρ is
Q1 + · · ·+ Q4.
Define Γρ as the subset of E′t consisting of all the t-tuples (R1, . . . , Rt) for which
{±Rj ,±(Rj +εj ·V3)); 1 ≤ j ≤ t} (the signs ± taken independently) has strictly
less than 4t elements.
Next choose t points R1, . . . , Rt ∈ E′(K) \ Γρ.
Take P1, . . . , P2t as the images under πE′ of {Rj , Rj + εj · V3, j = 1, . . . , t}.
By assumption, these points are distinct and we have fρ(Pj) = fρ(Pj+t) for
j = 1, . . . , t.
It follows that fρ, P1, · · · , P2t give rise to a point in Ht.
From the above considerations we know that we get all points of Ht by this
construction.
Before we summarize we make one remark. We have to look at covers f modulo
the equivalence relation induced by automorphisms of P1. But applying such
an automorphism does not change the isomorphism class of the elliptic curve E.
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Moreover elliptic curves with points of order 3 are parameterized by the modular
curve X1(3) (which has genus 0).

Theorem 6. We get a surjective map from the set of points of {(E′, V3) ∈
X1(3)(K), (R1, . . . , Rt) ∈ E′(K)t \ Γρ} to Ht(K) with finite fibres.
Hence there is a rational dominant morphism from (E3)t

X1(3)
(the t-fold fibre

product over X1(3) of the universal elliptic curve E3 over X1(3)) to Ht(K) with
finite fibres.

4.4 The Trigonal Construction

The basic task of the classical “trigonal construction” of Recillas, Donagi and
Livné (cf. [DL]) is the following. Given a curve C/K equipped with cover f =
f2 ◦ f1 : C → P1 with degree f1 = 2 and f1 = 3 (for short this is called usually
a (2,3)-cover), construct another curve D/K equipped with cover g : D → P1

that has degree 4 and a surjective homomorphism h : JC → JD (of a specific
type). In the cases studied by these authors, g(D) = 3, but this hypothesis is
not necessary. Here we shall see that the construction of the S4-cover via Galois
closure (cf. Subsection 4.1) naturally solves this task.

Thus, let f = f2 ◦ f1 : C → P1 be a (2, 3)-cover as in Theorem 3, and let
f̃ = f ◦ f ′ : C̃ → P1 be its Galois closure. Thus Gf = Aut(f̃) ' S4. The Galois
group H := Aut(f ′) of C̃/C has order 4 and contains two transpositions; let σ
be one of these. Then σ is contained in precisely two of the stabilizers T1, . . . , T4

of the elements {1, 2, 3, 4} on which S4 acts. If T = Ti is one of these, then we
have T ∩H = 〈σ〉.
Let πT : C̃ → D := C̃/T be the quotient map. Then f̃ factors over πT as
f̃ = g ◦ πT , where g : D → P1 has deg(g) = 4. Note that g is primitive (does not
factor over a quadratic subcover).
We can use the Hurwitz genus formula to compute the genus of D. (Assume
s = 4.) Since the Galois closure of g : D → P1 is f̃ : C̃ → P1, we see that exactly
the points on P1 ramified in C̃ are ramified in D. Since the fixed field of the
subgroup A4 is C∆ = E, the discriminant divisor of g equals the discriminant
divisor of C∆/P1 plus 2 times another divisor. This is enough to conclude that
the points Q1, . . . , Q4 have one ramified extension of order 2 and the t points
in {f2(P1), . . . , f2(P2t)} (recall that the image under f2 of {P1, . . . , P2t} consists
of exactly t points) have 2 ramified extensions. It follows that the genus of D is
equal to t− 1, and hence is equal to the genus of C.
Finally, we construct a correspondence from JC to JD. For this, let πσ : C̃ →
D′ := C̃/〈σ〉 be the quotient map. Then f ′ factors over πσ as f ′ = ϕ1 ◦ πσ and
similarly πS factors as πS = ϕ2 ◦ πσ.
We remark that ϕ1 cannot be unramified. For otherwise the compositum of the
function fields F (D′) and F (C̃1) would be unramified over F (C) · F (C̃1). But
the discussion in the proof of Theorem 3 shows that this is not true. We choose
one of these ramification points as P∞ on C and so the assumptions of Lemma
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1 are satisfied for ϕ1 : D′ → C.

Definition 3. The correspondence TC(f) := Tϕ1,ϕ2 is the homomorphism from
Pic0(C) to Pic0(D) induced by ϕ2∗ ◦ ϕ∗1.

Using Lemma 1, we obtain:

Theorem 7. Assume that the Jacobian JC is a simple abelian variety and that
D is not hyperelliptic. Then TC(f) is an isogeny.4

4.5 Rationality Questions over Finite Fields

Let K be the finite field Fq with q elements (q odd), and let Ks be its separable
closure. Let C be a hyperelliptic curve of genus g(C) > 1 defined over Fq with
cover f : Cs → P1 defined over Ks as above. We want to give conditions for the
rationality of the isogeny of JCs

induced by the correspondence TC(f).
Given C, there is a uniquely determined Fq-rational 2-cover f1 of C to the pro-
jective line, denoted by C1, with 2t = 2g(C)+2 ramification points P1, . . . , P2t ∈
C1(Ks). The discriminant divisor disc(f1) = P1 + . . . + P2t is K-rational, so in
particular the set {P1, . . . , P2t} is invariant under GK .
Conversely, to a given Galois invariant set {P1, . . . , P2t} of points on C1 = P1 we
find (in general) two hyperelliptic covers C/P1 and C ′/P1 whose branch loci are
{P1, . . . , P2t}. These two curves are twists of each other and become isomorphic
over Ks.
We now assume that the set {P1, . . . , P2t} is given and that we have a 3-cover
f2 : P1 → P1 defined over Fq which maps {P1, . . . , P2t} pairwise to t points on
P1. Then we know from Remark 3 that there is exactly one Fq-rational quadratic
cover f1 of P1 such that f := f2 ◦ f1 admits a Galois closure with Galois group
S4 and so there is a uniquely determined hyperelliptic curve cover C/P1 defined
over Fq with branch points {P1, . . . , P2t}. By the discussion of the “trigonal
construction” in Subsection 4.4, it is clear that the constructed curve D and
the correspondence TC(f) from JC to JD are both defined over Fq. Hence the
question about rationality of curves C with rational TC(f) boils down to the
question of finding f2.
This motivates the study of covers h = f2 : C1 = P1 → P1 with h of degree
3 defined over Fq with discriminant divisor Q1 + · · · + Q4, Qi 6= Qj ∈ P1(Ks)
for i 6= j. First we see that {Q1, . . . , Q4} is Galois invariant. Let Q′

1, . . . , Q
′
4

be the unramified extensions of Q1, . . . , Q4 under h. These 4 points are exactly
the ramification points of C̃1/C1 where as usual C̃1 is the Galois closure of
h : C1 = P1 → P1. Hence C̃1 is an absolutely irreducible curve over Fq of genus
1. Moreover, since our ground field is Fq, the curve C̃1 is an elliptic curve E′

defined over Fq. The monodromy group of h is S3. As was seen in the discussion
before Theorem 6, this implies that E′ has an Fq-rational point V3 of order 3.
4 A closer study ([Ka]) of the situation shows that the theorem is true without the

extra assumptions, and that the kernel of TC is a maximally isotropic subgroup of
JC [2]. In addition it is shown that TC(f) induces the isogeny constructed in [DL].
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Lemma 4. Let h : P1 = C1 → P1 be as above. Then C̃1 is characterized as the
elliptic curve E′ which is uniquely determined by an affine equation Y 2 = g′4(X)
with zeroes Q1, . . . , Q4 and which has an Fq-rational point V3 of order 3.
Let E = E′/〈V3〉. Then h induces an isogeny of degree 3 from E′ to E and E
has an Fq-rational point of order 3. This determines uniquely the twist class of
E.

Conversely: Let E′ be an elliptic curve with a K-rational point V3 of order 3 and
let ρ : E′ → E be the isogeny with kernel 〈V3〉. Let σ′ = −idE′ + tR with some
point R ∈ E′(Fq) be an automorphism of E′ of order 2 and C1 := E′/〈σ′〉. Take
σ = −idE + tρ(R) and P1 = E/〈σ〉. Then ρ induces a map h′ : C1 → P1 with
C̃1 = E′ and the required properties.

Theorem 8. Let {P1, . . . , Pt} be a G(Ks/Fq)-invariant set of t points in P1(Ks).
Let g4(X) be a polynomial of degree 4 over Fq with distinct roots such that the el-
liptic curve E′ : Y 2 = g4(X) has an Fq-rational point Q of order 3. Let P̃1, . . . , P̃t

be points on E′ with X-coordinates P1, . . . , Pt. Choose ε1, . . . , εt ∈ {1,−1} and
define Pt+j as the X-coordinate of P̃j + εjQ. Assume that the cardinality of
{P1, . . . , Pt,Pt+1, . . . , P2t} is 2t (this is generically true).
Then there is an (up to Fq-isomorphism) unique hyperelliptic curve cover C/P1

with branch points {P1, . . . , Pt, Pt+1, . . . , P2t} that has an Fq-rational correspon-
dence of the form TC(f).

Remark 4. From the point of view of Hurwitz spaces Theorem 8 is a satisfying
result. But it does not solve the problem: For given C decide whether E′ exists
and compute the equation for E′.
We shall see an explicit result for g(C) = 3 in the next section.

4.6 Computational Aspects

We continue to take K = Fq and we assume that the conditions of Theorem 8
are satisfied for the curve C.

Precomputation
1) We know equations for E′/C1 and we can compute the isogeny ρ.
2) Next compute an equation for H := C ×C1 E′ (i.e. compute the compositum
F (C)F (E′) of the function fields of C and E′ over the rational function field
Fq(T ) embedded by the cover maps C → C1 and E′ → C1).
3) Knowing ρ, we can compute an equation for a conjugate Hτ of H with respect
to the automorphism τ of order 3 of E′ and hence for the Galois closure H̃ = C̃
of f .
4) Determine a subcover D′ = C̃/〈σ〉 of degree 2 of C̃ which covers C but not
E′ and compute an equation of the cover ϕ1 : D′ → C.
5) Choose a point P∞ ∈ C(Fq) (this exists in all interesting cases) and compute
ϕ∗1(P∞) = R1

∞ + R2
∞.

6) Determine a subcover D of degree 3 over D′ and compute an equation for D
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and for the cover ϕ2 : D′ → D.
7.) Compute Sj

∞ = ϕ(Rj
∞).

All these computations can be performed (cf.[He]) in time and space polyno-
mial in log(q).
Transfer of DL: Let c be a divisor class group of C. Present c by

∑

j=1,...,g(C)

Pj − g(C) · P∞.

Lift the points Pj to points Ri,j on D′ by using the equation of the curve cover
ϕ1 : D′ → C (or of the extension F (D′)/F (C)).
Determine the images Si,j of Ri,j on the curve to D by using the equation of
the curve cover ϕ2 : D′ → D.
Then T (f)(c) is the class of

∑
j=1,...,g(C),i=1,2 Si,j − g(C)(S1

∞ + S2
∞).

By methods of [He] one finds a representative of T (f)(c) as difference of divisors
of degree bounded by g(D) in polynomial time in log(q).

Result: For a known map f : C → P1 one can compute TC(f) in polynomial
time in log(q).

5 Curves of Genus 3

5.1 The Construction of Trigonal Subcovers

We recall that to every Fq-rational point on H4 we have an attached hyperelliptic
curve C of genus 3 and a map f : C → P1 of degree 6 such that TC(f) is Fq-
rational. C is determined up to Fq-isomorphisms, and TC(f) is computable in
time and space polynomial in log(q).
Let us look at the situation over Ks. Since the dimension of H4 is 5 we get a
dominant map from H4 to the moduli space of hyperelliptic curves of genus 3. In
other words: For given Weierstraß points Q1, . . . , Q8 of a “generic” hyperelliptic
curves C we find a cover f2 : P1 → P1 over Ks that maps these points pairwise
to 4 different points. In fact, there will be generically 2 such covers ([DL]). We
give a proof for this fact by elementary linear algebra.

Theorem 9. Over Ks there is a rational dominant map of degree 2 from H4 to
MH,3, the moduli space of hyperelliptic curves of genus 3.

Proof We fix 8 different points on P1(Ks) lying in an affine part with affine
coordinates u1, . . . , u8.
We look for a rational function h(U) = U3+x1U2+x2U+x3

x4U3+x5U2+x6U+x7
with xi ∈ Ks such

that (without loss of generality) h(u1) = h(u2) = 0;h(u3) = h(u4) = ∞, h(u5) =
h(u6) = 1 and h(u7) = h(u8) = t where t is an appropriately chosen element in
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Ks.
Hence (x1, . . . , x7) has to be a solution of the system of linear equations




u2
1 u1 1 0 0 0 0

u2
2 u2 1 0 0 0 0
0 0 0 u3

3 u2
3 u3 1

0 0 0 u3
4 u2

4 u4 1
u2

5 u5 1 −u3
5 −u2

5 −u5 −1
u2

6 u6 1 −u3
6 −u2

6 −u6 −1
u2

7 u7 1 −t · u3
7 −t · u2

7 −t · u7 −t
u2

8 u8 1 −t · u3
8 −t · u2

8 −t · u8 −t







x1

x2

x3

x4

x5

x6

x7




=




−u3
1

−u3
2

0
0
−u3

5

−u3
6

−u3
7

−u3
8




The parameter t occurs linearly exactly in two rows of the system and hence the
determinant of the extended matrix of the system is a polynomial of degree 2 in
t over Ks. The condition of solvability of the system, namely that the rank of
the extended matrix is ≤ 7, is satisfied if t is a zero of this polynomial, and so
generically two values are possible for t.

Now take a hyperelliptic curve C over Fq given by an equation Y 2 = f8(X)
and let {u1, . . . , u8} be the set of roots of f8. On this set we have an action of the
absolute Galois group of Fq. We know that these values come in pairs uj , u4+j

(j = 1, . . . , 4) with members behaving in the same way under the Galois action,
and we look for a Fq-rational map h with h(uj) = h(u4+j) = tj .
A first condition is that the set {t1, . . . , t4} is Galois invariant, too.
In addition, one knows that the absolute Galois group of Fq is generated by
the Frobenius automorphism φq, and so the cycles induced by this action on
{t1, . . . , t4} induce cycles of quadratic polynomials defined over Fq(t1, . . . , t4)
with zeros uj , . . . , u4+j . This is enough to list necessary and sufficient conditions
for the rationality of h (over a possibly quadratic extension of Fq) in terms of
the decomposition of f8(X) in irreducible factors over Fq.
For a detailed discussion we refer to [S].

Algorithmic Aspects For a given f1 : C → P1, we first check whether the
Weierstraß points satisfy the Galois condition from above. If so, we solve the
linear system found in the proof of Theorem 9 if possible, and hence we obtain
the rational map h (= f2 in our notation above). These computations are done in
an extension field of Fq of degree at most 8. Next we compute the discriminant of
h and so we find the elliptic curves E and E′. To determine the twist class of C,
we compute the class of the discriminant of h◦f1 modulo squares (alternatively,
one can check whether there is a point on P1(Fq) that is completely split under
h ◦ f1). Now we can proceed as in subsection 4.6.

5.2 Application to Discrete Logarithms

We now apply our results to hyperelliptic curves C of genus 3 with the additional
assumption that the Jacobian JC is a simple abelian variety. (This is the inter-
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esting case for cryptography and is true generically.) First assume that K = Ks.
We shall use two facts about curves of genus 3.

– The moduli space of curves of genus 3 is connected and has dimension 6.
Generic curves of genus 3 can be given by plane curves of degree 4 (without
singularities).

– The moduli space MH,3 of hyperelliptic curves of genus 3 is connected and
has dimension 5 and the generic hyperelliptic curve has no primitive cover
to P1 of degree 4.5

Thus, if C is a generic hyperelliptic curve of genus 3, then the curve D con-
structed by the above trigonal construction cannot be hyperelliptic because D
is a primitive cover of P1 of degree 4.

Consequence
There is a 5-dimensional subvariety U of MH,3 such that for C ∈ U the curve
D is not hyperelliptic.

Now take K = Fq and q large. Then the number of isomorphism classes of
hyperelliptic curves C of genus 3 defined over Fq and satisfying

1. JC is a simple abelian variety
2. C ∈ U
3. Tf (C) is rational over Fq

is of order O(q5).6

By Theorem 7 TC(f) is an isogeny over Ks and hence over Fq if C ∈ U . Even a
very coarse and elementary estimate of the degree of this isogeny shows that for
cryptographically interesting primes ` we get a transfer of the DL in Pic0(C)[`]
to the DL in Pic0(D)[`] in polynomial time and Theorem 2 yields that the
complexity of the discrete logarithm in Pic0(C)[`] is, up to logarithmic factors,
O(q).

Theorem 10 (Smith). There are O(q5) isomorphism classes of hyperelliptic
curves of genus 3 defined over Fq for which the discrete logarithm in the divisor
class group of degree 0 has complexity O(q), up to log-factors.
Since |Pic0(C)| = O(q3), the DL system of these hyperelliptic curves of genus 3
is weak.

6 The Case of Characteristic 2

The above method extends to the case of char(K) = 2 with some minor mod-
ifications, provided that C is an ordinary hyperelliptic curve of genus 3. Two

5 The authors would like to thank Lange ([L]) for pointing out this result
6 For a sharper estimate see [S]
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of the main differences here are that (i) the S4-extension is now wildly ramified
and that (ii) we cannot use the arguments involving the square roots of field
discriminants. But both these problems can be circumvented in the ordinary
case. We briefly outline the main ideas involved.

Let K = Fq, where q = 2n, and let C/K be a hyperelliptic curve of genus 3
with hyperelliptic cover f1 : C → C1 = P1. Then C is ordinary (i.e. its Hasse-
Witt invariant σC (or the 2-rank of JC) equals 3) if and only if the discriminant
divisor of f1 is of the form disc(f1) = 2(P1+. . .+P4), where P1, . . . , P4 ∈ C1(Ks)
are 4 distinct points.
By the linear algebra method of Subsection 5.1 it is easy to construct (many!)
degree 3 subcovers f2 : C1 → P1 such that f2∗(disc(f1)) = 4(P̄1 + P̄2), with
P̄1 6= P̄2 ∈ P1(Ks).

As before, put f = f2 ◦ f1 : C → P1
K , and let fs : Cs → P1 be the cover

induced by base-change. Then one can show that the monodromy group of fs

is again S4. To see this, note that the hypothesis of “ordinary” implies that all
non-trivial ramification groups GP are still cyclic of order 2, and that each is
generated by a (2, 2)-cycle in S6. Thus, by Lemma 2, it follows that Gfs

≤ A6,
and so the proof of Proposition 1 can be modified to show that Gfs ' S4.

By Galois theory (and group theory), the splitting field F̃ of F (C)/f∗F (P1
K)

is a Galois extension of F := f∗F (P1
K) of order dividing 48. Since we know by

the above that Gal(F̃Ks/FKs) ' S4, we see that either Gal(F̃ /F ) ' S4, and
that hence f has a Galois closure with group S4, or that there is a quadratic
twist fχ

1 of f1 : C → C1 such that fχ := f2 ◦ fχ
1 has a Galois closure f̃χ with

group S4.
Thus, up to a quadratic twist, f : C → P1

K has a Galois closure f̃ : C̃ →
P1

K with monodromy group S4. By the method of the trigonal construction of
Subsection 4.4, we thus obtain a K-rational curve D equipped with a primitive
cover g : D → P1

K of degree 4 and a correspondence TC(f) : JC → JD which
turns out to be an isogeny. This latter fact requires the arguments mentioned
in the footnote to Theorem 7. It is to be hoped that D turns out to be non-
hyperelliptic, but at present the authors do not know if the analogue of the
second “known” fact of Subsection 5.2 is true in characteristic 2.

References

[ACF] H.Cohen, G. Frey, (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography. CRC, 2005.

[DGTT] C. Diem, P. Gaudry, E. Thom, N. Thériault, A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp. 76 (2007), 475–492.

[D] C. Diem, An Index Calculus Algorithm for Plane Curves of Small Degree. In:
F.Heß, S. Pauli, M.Pohst (eds.), Proc. ANTS VII, Springer LNCS 4076 (2006),
543-557.
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