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1 Introduction

Around 1778 Euler discovered a method by which he could use certain numbers to
find large primes. However, not every number is suitable for this method and hence
he gave the name numeri idonei (= suitable, convenient numbers) to those numbers
that are suitable. Gauss also considered idoneal numbers from a related but slightly
different point of view. After Gauss, many people considered idoneal numbers, often
without being aware of the classical connection.

Recently it was discovered that idoneal numbers play an important role in studying
certain moduli problems of genus 2 curves [35], and that these questions naturally led
to certain generalizations of idoneal numbers [36]. In order to derive these results, it
was necessary to take another look at the classical results about idoneal numbers.

In reading over the literature on idoneal numbers, I was surprised to find a multi-
tude of misleading or erroneous statements. While some of these have been discussed
in various sources (Grube [23], Steinig [52] or Weil [61]), many others have not been
mentioned, but instead were reproduced by other authors. It thus seems worthwhile
to give a survey of the main results on idoneal numbers and to address (and to correct)
some of these misleading statements; cf. Remarks 7, 13, 21, 24, 26 and §2.5.

In section 3 we present some characterizations of idoneal numbers. One of these
(Theorem 32) is due to Weber, and is closely connected with another characterization
of idoneal numbers which is mentioned in Frei [18]. Another characterization (Propo-
sition 29) was suggested by the connection between idoneal numbers and genus 2
curves (cf. §4) and can be used to (partially) repair an error in Swift [53].

Some generalizations of idoneal numbers are explored in §5. Some of these were
studied by Weinberger [62], Miyada [44], Watson [55] and others, but other general-
izations such as Problems 44 and 45 are (as far as I know) new, and were suggested
by the study of genus 2 curves, as will be explained in §6. There is a surprising
connection between these problems; cf. Theorem 46.

It is a pleasure to dedicate this paper to my dear colleague (emeritus) Paulo
Ribenboim for his 80th birthday, particularly since he discussed idoneal numbers at
length in his paper [47].

* Supported by an NSERC Discovery Grant.
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2 Idoneal numbers: a historical overview

2.1 Euler

As was mentioned in the introduction, idoneal numbers were discovered around 1778
by Euler, who used them as a tool for testing large numbers for primality. One way
to define them is as follows (cf. Cox [11], p. 65):

Definition. An integer n ≥ 1 is called idoneal if it has the following property: if m
is an odd number prime to n which is properly represented by q(x, y) = x2 +ny2, and
if the equation q(x, y) = m has only one solution with x, y ≥ 0, then m is a prime
number.

While this definition is not identical to the one that Euler gave, it is similar (and
equivalent) to it. Indeed, Euler’s original definition is somewhat confusing and is
often misstated. The problems with Euler’s definition and how to correctly interpret
it are discussed in detail in Steinig [52]. (See also Weil [61], pp. 222-226.)

Euler discovered that there are precisely 65 idoneal numbers n ≤ 10, 000, the
largest being n = 1848. More precisely, he proved (by direct computation):

Theorem 1 If 1 ≤ n ≤ 10, 000, then n is idoneal if and only if n is one of the
following 65 numbers:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15,

16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45,

48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112,

120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280,

312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848.

The fact that he could not find any other idoneal numbers came as a complete
surprise to him: “J’ai donc été bien surpris de me voir arrêté au dernier 1848,. . . ”,
as he wrote to Béguelin in [15]. Later he referred to this phenomenon as a “paradox”
in [17]. However, he was convinced that there are no others, for he asserted at the
end of [16]: “Quia autem usque ad decies mille nulli allia se mihi obtulerunt, multo
magis verisimillimum videtur, post hunc terminum nullos praetera existere. . . ”. In
other words, we have:

Conjecture 2 (Euler) The largest idoneal number is n = 1848.

In order to convince himself of the validity of this conjecture, Euler [16] stated and
proved ten theorems about idoneal numbers. Many of these show that if we impose
extra conditions on n, then there are only finitely many such idoneal numbers. These
ten theorems are the following:
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Theorem 3 (Euler) 1. If n is an idoneal number which is a square, then n =
1, 4, 9, 16, or 25.

2. If n ≡ 3 (mod 4) is idoneal, then 4n is also idoneal.

3. If n ≡ 4 (mod 8) is idoneal, then so is 4n.

4. If λ2n is idoneal, then so is n.

5. If n ≡ 2 (mod 3) is idoneal, then so is 9n.

6. If n ≡ 1 (mod 4) is idoneal and n 6= 1, then 4n is not idoneal.

7. If n ≡ 2 (mod 4) is idoneal, then so is 4n.

8. If n ≡ 8 (mod 16) is idoneal, then 4n is not idoneal.

9. If n ≡ 16 (mod 32) is idoneal, then 4n is not idoneal.

10. If n is idoneal and if there is a prime p with p2 < 4n such that n + a2 = p2,
for some a ∈ Z, then 4n is not idoneal.

The above numbering scheme follows Euler’s; thus, part 1. above is Theorema 1
in [16], etc. Note that although the assertions are all correct, Euler’s proofs of these
results were not; they were criticized and corrected by Grube [23].

Euler himself realized that the property of being idoneal is really a property of
quadratic forms, and so he generalized this concept to other binary quadratic forms
(of discriminant −4n). However, Euler noticed that one doesn’t really get anything
new this way, for he proves in [16], p. 276, that a form f of discriminant −4n is
idoneal if and only if n is idoneal.

2.2 Gauss

As is well-known, Gauss [21] studied binary quadratic forms in his Disquisitiones
Arithmeticae in great depth. For the convenience of the reader (and to introduce
some notation) we briefly recall some of his main results. Here we shall not completely
follow Gauss’s terminology but instead use current terms (cf. [8] or [11]).

1) Following Lagrange, Gauss says in Article 158 that two binary quadratic forms
q1 and q2 are (properly) equivalent (notation: q1 ∼ q2) if there is a linear coordinate
transformation T ∈ SL2(Z) which transforms q1 into q2, i.e. if we have q1(T (x, y)) =
q2(x, y). It is easy to see that the discriminant ∆(q) := b2 − 4ac of a form q(x, y) =
ax2+bxy+cy2 does not change under such transformations. (Note that Gauss always
assumed that b is even and called ∆

4
the determinant of the form, but this restriction

is not necessary (nor desirable) for the theory.)
In Articles 175 and 191 he uses Lagrange’s reduction theory to prove Lagrange’s

fundamental theorem that there are only finitely many equivalence classes of forms
with fixed discriminant ∆. The number h(∆) of equivalence classes of primitive forms
of discriminant ∆ is now called the class number of ∆.
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2) In Article 231 he introduces the important (new) notion of the genus of a
binary quadratic form q: this set consists of those forms q′ whose values have the
same quadratic characters (and the same signature) as q. (A nice discussion of this
concept can be found in Cox [11], pp. 58-59; see also Buell [8], ch. 4.) The key point
here is that the primes p - ∆ which are represented by some form in a fixed genus can
be characterized by congruence conditions modulo ∆.

It is immediate from the definition (and from the finiteness of h(∆)) that the
genus of q consists of finitely many equivalence classes of forms. We denote this set
of equivalence classes by gen(q) and write c(q) = #(gen(q)).

3) In Articles 234–249, Gauss introduces a composition of quadratic forms and
shows that this makes the set Cl(∆) of equivalence classes of primitive quadratic
forms of discriminant ∆ into (what we now call) an abelian group. Its identity is (the
class of) the principal form 1∆ which is defined by 1∆(x, y) := x2− ∆

4
y2, if ∆ is even,

and by 1∆(x, y) = x2 + xy + 1−∆
4
y2, if ∆ is odd.

From this it follows easily that the principal genus gen(1∆) is a subgroup of Cl(∆),
and that each genus gen(q) = gen(1∆)q is a coset in Cl(∆). Thus, each genus has the
same number of elements, so c(q) = c(1∆) =: c(∆), for all q ∈ Cl(∆); cf. Article 252.

4) In Article 256 Gauss notes that there is an explicit relation between the class
numbers h(∆) and h(t2∆). In the case that t = p is a prime (and ∆ < 0), we have

h(p2∆) =
1

u∆

(
p−

(
∆

p

))
h(∆),(1)

where u∆ = 1 if ∆ < −4 (and u−4 = 2, u−3 = 3) and
(

∆
p

)
denotes the Kronecker-

Legendre symbol. Note that this formula is also correct if ∆ is an odd discriminant
or if p = 2; cf. Cox [11], p. 148.

5) In Articles 266–285 he develops a theory of ternary forms, which he then uses
in Article 286 to prove the fundamental result that a binary quadratic form q lies in
the principal genus if and only if q is a square in Cl(∆), i.e.

gen(1∆) = Cl(∆)2.(2)

From this it follows that the number g(∆) of genera of primitive forms of discriminant
∆ is g(∆) = [Cl(∆) : Cl(∆)2] = |Cl(∆)[2]|, where Cl(∆)[2] denotes the subgroup of
ambiguous classes, i.e. Cl(∆)[2] = {q ∈ Cl(∆) : q2 ∼ 1∆}. The order of this subgroup
is easily computed (cf. Article 257), and so Gauss obtains the formula

g(∆) = 2ω(∆)−1+ε(∆),(3)

where ω(∆) denotes the number of distinct prime divisors of ∆ and ε(∆) = 1 if
∆ ≡ 0 (mod 32), ε(∆) = −1 if ∆ ≡ 4 (mod 16) and ε(∆) = 0 otherwise. (Again, this
formula is also true for odd discriminants; cf. [11], p. 52.)
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6) In Article 303, Gauss presents a table of 103 even negative discriminants ∆ < 0
which he groups into 9 lists according to their type (g(∆), c(∆)). (His term for this
pair is “classification”.) The 9 types that he considers are: (2r, 1) with 0 ≤ r ≤ 4,
(2, c) with c = 2, 3, 7 and (1, 5). In his discussion of this table he states:

“Since the table from which we drew these examples has been extended far beyond
the largest determinants that occur here and since it furnishes no others belonging
to these classes, there seems to be no doubt that the preceding series do in fact ter-
minate, and by analogy it is permissible to extend the same conclusion to any other
classifications. [. . . ] However, rigorous proofs of these observations seem to be very
difficult.”

Thus, since h(∆) = g(∆)c(∆) has only finitely many factorizations, this statement
is equivalent to the following two conjectures:

Conjecture 4 (Gauss) (a) For each n ≥ 1, there are only finitely many discrimi-
nants ∆ < 0 such that h(∆) = n.

(b) For each of the 9 types (g, c) listed in the table we have |∆
4
| ≤ 1848.

It is interesting to note that while the first conjecture was proved by Heilbronn [28]
in 1934, the second was only established a few years ago. (It follows from Watkin’s
classification [57] of all (fundamental) discriminants ∆ < 0 with h(∆) ≤ 100.)

At the end of Article 303, Gauss augments his previous remarks by the following
two observations:

(i) The discriminants of type (2r, 1) that are listed in his table (i.e. r ≤ 4) are
precisely those of the form −4n, where n is one of the 65 idoneal numbers of Euler.

(ii) The discriminants of type (2r, 1) for r > 4 do not seem to exist.
Thus, in view of his earlier Conjecture 4(b), these statements amount to the

following conjecture:

Conjecture 5 (Gauss) If c(−4n) = 1, then n ≤ 1848.

This conjecture has not yet been completely settled (even though Buell [8] claims
the opposite on p. 81). However, due to the work of Chowla and Weinberger, this
statement has “almost” been proved, as will be explained in §2.6 below.

It is perhaps useful to observe that Gauss, in referring to Euler’s work, only quotes
Euler’s letter [15] because, as R. Fueter points out in the introduction to Euler’s
Collected Works (Opera Omnia, Ser. I, v. 4), Gauss did not have access to Euler’s
papers [16] and [17] since they were only published after 1801. Gauss says:

“The illustrious Euler (Nouv. mém. Acad. 1776, p. 338) has already singled out
these 65 numbers (under a slightly different aspect and with a criterion that is easy
to demonstrate; we will mention it later on.)”

In Article 334 he explains this parenthetic comment in more detail and presents
a variant of Euler’s method on how to use the 65 idoneal numbers for finding primes.
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2.3 Grube

In his beautiful but often overlooked paper, Grube [23] analyzes Euler’s results on
idoneal numbers by using Gauss’s theory of binary quadratic forms. In particular,
it follows from his work that Euler’s Conjecture 2 and Gauss’s Conjecture 5 are, in
fact, equivalent. More precisely, he establishes the following fundamental connection
between idoneal numbers and discriminants with one-class genera:

Theorem 6 (Grube) An integer n ≥ 1 is an idoneal number if and only if c(−4n) =
1, i.e. if and only if each genus of forms of discriminant −4n consists of a single class.

Proof. Cox [11], pp. 61–62. �

Remark 7 (a) In his paper, Frei [18] attributes this theorem to Gauss and calls it
“Gauss’s criterion”. He asserts that “Gauss certainly had a proof of this theorem”,
but does not explain why he believes this. Perhaps he is following R. Fueter, who
expresses a similar sentiment in the introduction to Euler’s Opera Omnia, I, 4.

What is clear from [21] is that Gauss had a proof of the easy implication “c(−4n) =
1 ⇒ n is idoneal”. Indeed, this is the basis of his primality test in Article 334, and this
certainly suffices for his purposes since he knew that the lists agree for n ≤ 10, 000.

However, the other implication is less obvious. Grube himself uses Schering’s
extension of Dirichlet’s Theorem that a primitive binary quadratic form represents
infinitely many primes (which Dirichlet had proved in 1840 only for quadratic forms
with prime determinant). Grube’s proof was criticized by Keller [38] because Schering
did not prove his asserted extension, and suggests that this result still is unproved.
It is curious that Keller was not aware that this gap had already been filled by
Weber [58] in 1882, or that Briggs [6] gave an “elementary” proof in 1954, or that it
follows nowadays from the Chebotarev density theorem; cf. [11], p. 188. Note that the
Dirichlet/Schering/Weber Theorem is also used by Cox [11] in the above-mentioned
proof of Grube’s Theorem.

(b) There are several equivalent ways of stating the condition c(∆) = 1; these are
listed in Theorem 3.22 of [11], p. 59. For example, by Gauss’s result (2) we see that
c(∆) = 1 ⇔ Cl(∆)2 = {1} ⇔ Cl(∆) is an elementary abelian 2-group ⇔ every class
in Cl(∆) is ambiguous.

Grube points out in §7 of his paper [23] that it is easy to see that if c(−4n) = 1
and n ≡ 3 (mod 4), then n = 3, 7, or 15, and uses this fact in the proof of his theorem.
We thus obtain:

Corollary 8 If n ≡ 3 (mod 4) is idoneal, then n = 3, 7 or 15.

In his paper, Grube [23] uses the above theorem to give correct and shorter proofs
of the ten assertions of Euler about idoneal numbers. In addition, he gives extensions
of many of Euler’s results. The basic principle in all these is to compare c(∆) with
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c(t2∆), for t > 1. Since c(∆) = h(∆)/g(∆), the relations (1) and (3) for h(∆) and
g(∆) yield such a result.

For example, by taking p = 2 in (1) and using (3), we obtain (as in [35]) the
following result:

Proposition 9 If n > 1, then

c(−16n) =

{
2c(−4n), if n ≡ 1 (mod 4) or n ≡ 0 (mod 8),
c(−4n), otherwise.

(4)

Note that this formula contains many of Euler’s results, for we have:

Corollary 10 (Euler) (a) If n ≡ 0 (mod 8) or if n ≡ 1 (mod 4) and n > 1, then 4n
is not idoneal. Thus, if n ≡ 0 (mod 32) or if n ≡ 4 (mod 16) and n > 4, then n is
not idoneal.

(b) If n ≡ 2, 3 (mod 4) or if n ≡ 4 (mod 8), then n is idoneal if and only if 4n is
idoneal.

Proof. (a) By (4) we have c(−16n) = 2c(−4n) ≥ 2, so 4n is not idoneal (by Grube’s
Theorem). The second statement is a restatement of the first.

(b) Here (4) gives c(−16n) = c(−4n), so 4n is idoneal if and only if n is. �

Remark 11 Note that Corollary 10(a) is actually the combination of Grube’s exten-
sions (labelled as 6′, (7 und 8)′ on p. 514 of [23]) of Euler’s Theoremae 6, 8 and 9,
whereas Corollary 10(b) is equivalent to the combination of Euler’s Theoremae 2, 3,
and 7.

By a similar method Grube proves the following important extension of Euler’s
Theorema 1:

Theorem 12 (Grube) If n is idoneal and t2|n, then t2 = 1, 4, 9, 16 or 25. Moreover:

(a) If n is idoneal and 9|n, then n = 9, 18, 45, 72.

(b) If n is idoneal and 25|n, then n = 25.

(c) If n is idoneal and 4||n, then n = 4, 12, 28, 60.

(d) If n is idoneal and 16|n, then n = 16, 48, 112, 240.

Remark 13 (a) Note that the above classification does not deal with the case that
8||n, for by Corollary 10(b) this case is essentially the same as the case n ≡ 2 (mod 4).
Thus, Frei’s assertion (cf. [18], p. 58) that “Grube determined all convenient numbers
which are divisible by a square k2 6= 1” is not quite correct.

(b) In connection with the above theorem we should note that if n is idoneal and
t2|n, then n/t2 is also idoneal; cf. Euler’s Theorema 4. By Theorem 6 above, this
follows immediately from the more general fact that we always have that c(∆)|c(t2∆)
which in turn follows in view of (2) immediately from the fact that there is a surjective
group homomorphism Cl(t2∆) → Cl(∆), and hence a surjection Cl(t2∆)2 → Cl(∆)2.
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The above results lead to the following classification of large idoneal numbers:

Corollary 14 If n > 288 is an idoneal number, then n 6≡ 3 (mod 4). Moreover, if
n ≡ 1, 2 (mod 4), then n is squarefree, whereas if n ≡ 0 (mod 4), then m := n

4
is a

squarefree idoneal number with m ≡ 2 (mod 4).

Proof. The first assertion follows from Corollary 8. If n ≡ 1, 2 (mod 4), then n is
squarefree by Theorem 12 (a), (b). Now suppose 4|n, and put m = n

4
. By Theorem

12 (c), (d) we have that 8||n, i.e., that m ≡ 2 (mod 4). Thus m is idoneal by Corollary
10(b). Moreover, since m > 288

4
= 72, it follows from Theorem 12 (a), (b) that m is

squarefree. �

Grube also discusses Euler’s criterion for testing whether or not a given num-
ber n is idoneal, and proposes two variants. In all these criteria, one considers the
factorization of the numbers n + k2, for k = 1, . . . , [

√
n
3
]. Euler’s criterion is the

following:

Criterion 15 (Euler) An integer n ≥ 1 is idoneal if and only if for every k =
1, . . . , [

√
n
3
] with (k, n) = 1 we have that n+ k2 = p, p2, 2p or 2s, for some odd prime

p and some integer s ≥ 1.

Remark 16 Euler states this criterion in the above form in his letter [15], but not
in his paper [16] where he leaves out the hypothesis (k, n) = 1. Grube [23] points
out that this hypothesis cannot be dropped by providing counterexamples; cf. [23],
p. 503. He also criticizes Euler’s proof of his criterion, and gives a partial correction.
Frei [18], p. 57, points out that Grube only proved one direction of this criterion and
says, “whether [this criterion] is also sufficient is still an open problem”.

In order to correct the problems with Euler’s criterion, Grube offers the following
two variants:

Proposition 17 (a) An integer n ≥ 1 is idoneal if and only if for every b =
1, . . . , [

√
n
3
], and every factorization

n+ b2 = ac with c ≥ a ≥ 2b(5)

we have that either a = c or a = 2b.

(b) Suppose n ≥ 1 is squarefree and n 6= 3, 7, 15. Then n is idoneal if and only if
for every k = 1, . . . , [

√
n
3
] we have that n + k2 = tp, tp2, or 2tp, where t|n and p is

an odd prime.
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Remark 18 (a) As Grube remarks, part (a) follows immediately from the classifi-
cation of (reduced) ambiguous classes ([21], Article 171). More precisely, if there is
a factorization n + b2 = ac with c > a > 2b, then q(x, y) = ax2 + 2bxy + cy2 is a
reduced form of discriminant −4n which is not ambiguous, so c(−4n) > 1. (Note
that if t := gcd(a, 2b, c) > 1, then q/t is a primitive reduced form of discriminant
−4n/t2, so c(−4n/t2) > 1 and hence also c(−4n) > 1 by Remark 13(b).) Conversely,
if c(−4n) > 1, then reduction theory and Article 171 show that there exist positive
integers a, b, c (with gcd(a, 2b, c) = 1) such that c > a > 2b and n+ b2 = ac.

(b) Note that the above proof shows that the condition of part (a) has to be
verified only for those factorizations (5) for which gcd(a, 2b, c) = 1.

2.4 Weber and Frobenius

In 1889 Weber [59] pointed out that the class-fields of imaginary quadratic fields
pertaining to idoneal numbers play a very special role in this theory (cf. Theorem 32
below). For this reason, he computes all such fields (for the known idoneal numbers).
In a footnote on p. 391 he remarks that the fact that there are only 65 idoneal numbers
was found by Euler and Gauss “by induction” (i.e. by computation) and that it has
not yet been completely proved (“noch nicht streng erwiesen”).

There are sporadic references to idoneal numbers (and their equivalents) in text-
books on number theory which were published around 1890. For example, Mathews
[43] devotes most of ch. IX to a presentation, based on Gauss, of Euler’s primality
test. Following Gauss, he gives on p. 263 a table of the 65 known idoneal numbers
(sorted according to g(∆)). Similarly, Bachmann [2], p. 253, repeats the assertion of
Gauss that there seem to be only 65 (even) discriminants ∆ < 0 with c(∆) = 1. It is
interesting to note that Bachmann introduces the notation H(D), G(D) and K(D)
for the class number h(4D), the number of genera g(4D) and the number c(4D) of
classes in the principal genus, respectively.

In an interesting paper Frobenius [20] studied, among other things, idoneal num-
bers n for which h(−4n) = 2. His motivation for this was an observation of Euler
[14] that for p = 3, 5, 11, 29, the numbers 2x2 + p are primes for |x| < p. He says that
he was not able to find a hint on how Euler proved his results, but is convinced that
Euler’s starting point for this was given by his idoneal numbers. (“Über den Weg, der
Euler zu seinen Ergebnissen geführt hat, habe ich keine Andeutung gefunden (auch
nicht die Angabe über 2x2 + 29). Aber ohne Zweifel bilden seine Numeri idonei für
ihn den Ausgangspunkt.)

Proposition 19 (Frobenius) Let n = 2p, where p is an odd prime, and put ϕ(x, y) =
x2 + ny2, ψ(x, y) = 2x2 + py2. Then the following conditions are equivalent:

(i) k2 + n is a prime or twice a prime, for all integers k with 0 < k <
√

n
3
;

(ii) h(−4n) = 2;
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(iii) The number q := ϕ(x, y) is prime whenever q is odd and 1 < q < ϕ(p, 1) =
p(p + 2), and similarly, q′ = ψ(x, y) is prime whenever q′ is odd and q′ < ψ(p, 1) =
p(2p+ 1).

If these conditions hold, then we have that 2x2+p is prime, for all integers |x| < p.

Remark 20 (a) Note that (i) can be viewed as a sharpening of Grube’s second
criterion (Proposition 17(b)) for idoneal numbers, so in particular any number n
satisfying (i) is idoneal. Similarly, it is easy to see that any n satisfying (ii) must be
idoneal.

As Frobenius remarks, it follows from Euler’s list (and Gauss’s class number com-
putations) that this proposition applies to the primes p = 3, 5, 11, 29 and no other
primes p < 10, 000. In fact, we now know that there can be no others because the
(fundamental) discriminants ∆ < 0 with h(∆) ≤ 2 are all known; cf. Stark [50],
Watkins [57] and the references therein. (Note that Baker’s result [4] is not quite
strong enough to be able to make this assertion.)

(b) The implication (iii) ⇒ (i) is not explicitly formulated (nor proved) in [20], but
it is easy to verify it as follows. Let k <

√
n
3
. If k ≡ 1 (mod 2), then k2 + n = ϕ(k, 1)

is prime by the criterion in (iii). If k = 2x, then ψ(x, 1) is prime by the criterion in
(iii) and so k2 + n = 2ψ(x, 1) is twice a prime. Thus (i) holds.

(c) Frobenius also has a statement similar to Proposition 19 in the case that n = p
is prime and p ≡ 1 (mod 4). In this case ψ(x, y) = 2x2 + 2xy + py2 and the bounds
in (iii) are slightly different. As he points out, this case applies to p = 5, 13, 37.

(d) Frobenius also considers the polynomial x2 + x+ p, where p ≡ 3 (4) is prime
and shows that f(x) is prime for |x| < p if h(−p) = 1. This statement is often cited;
cf. Ribenboim [46], p. 137, for a discussion of its history.

In addition, motivated by some (unpublished) work of Remak, Frobenius also stud-
ies the indefinite form x2 + xy − py2 and the associated prime-producing polynomial
x2 + x− p.

2.5 Dickson and Hall

In his History of Number Theory, Dickson [13] discusses the history of idoneal numbers
(up to 1919) on pp. 361–365. Steinig [52], p. 86, calls this “a rather confused account”
of idoneal numbers and explains the mistake in Dickson’s definition of an idoneal
number. In addition, I feel that Dickson’s discussion of Grube’s paper on p. 363
of [13] is substandard. Not only are Grube’s most important results (Theorems 6
and 12) not mentioned, but he also makes the following very puzzling statement in
connection with Euler’s criterion: “Grube could only prove the following modification:
Let Ω be the set of numbers D+ n2 ≤ 4D in which n is prime to D. According as all
or not all numbers of Ω are of the form q, 2q, q2 or 2λ (q a prime), D is or is not an
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idoneal number.” I fail to see in what way this “modifies” Euler’s (original) criterion
(as stated above and on p. 361 of [13]), except that Dickson’s error (as analyzed by
Steinig [52]) has been corrected. On the other hand, he does not mention that Grube
could only prove one direction of this criterion; cf. Remark 16.

In his textbook on number theory (published in 1929), Dickson [12] devotes Chap-
ter V to binary quadratic forms. His main interest in that chapter is to determine
the number of representations of positive definite quadratic forms, and to this end he
presents a section (§55) entitled Positive forms with a single class in each genus be-
cause “it is only for forms of such discriminants that we can find a simple expression
for the number of representations”, as he states (without proof) on p. 88.

Here he considers not only even discriminants, but odd (negative) discriminants
as well. For the latter he introduces on p. 88 a criterion to test whether a given ∆
has the property that c(∆) = 1; this criterion is similar to those of Euler and Grube
for even discriminants.

Using this criterion, he gives on p. 85 a table of all (equivalence classes of) forms
with c(∆) = 1 for −400 < ∆ < 0 and on p. 89 he lists further discriminants with this
property in the range −23000 < ∆ < −400. He also remarks that if ∆ is even, then
these discriminants correspond to the idoneal numbers of Euler, but as in his other
book [13], he does not give the correct definition of an idoneal number.

A decade later N. Hall takes up this theme again in his thesis (cf. Hall [25]) and
writes down an explicit formula for the number of representations for a positive binary
quadratic form of discriminant ∆ when c(∆) = 1. This motivates him to study in [24]
the question of “whether the known discriminants as given by Dickson [in his book]
comprise all for which there is a single class in each genus.”

Although he knows of Chowla’s article [9], which refers to Gauss, he seems to be
unaware of the earlier work by Euler, Gauss and Grube, and bases his work solely on
Dickson [12].

He begins his article by stating a criterion for the condition c(∆) = 1 which
is exactly the same as Grube’s first variant of Euler’s criterion (Proposition 17(a)),
except that he adds the hypothesis that gcd(a, 2b, c) = 1 and that he also allows odd
discriminants.

He then proceeds to transport Dickson’s criterion (for odd discriminants) to even
discriminants, and thus arrives at a weak version of Euler’s criterion. Nevertheless, he
says (on p. 86): “A search of the literature fails to disclose the corresponding rather
evident tests for even discriminants.”

More precisely, if ∆ = −4n and c(∆) = 1, then he investigates the factorization
of the numbers Sk = n + k2, for k = 1, . . . , 5. Here he obtains results similar (but
not identical) to those of Euler and Grube. (For example, for k = 2 he obtains that
S2 = p, p2, 2p, 4p, 24, 25 or 26, where p is some prime.) He then uses these results
to derive two theorems which are (for even discriminants) completely contained in
Grube’s results (specifically, in Corollary 8 and Theorem 12).

11



2.6 Chowla and Weinberger

Already in 1918 Hecke and Landau observed that the Generalized Riemann Hypothe-
sis (GRH) for quadratic characters gives effective lower bounds for the class number
h(∆) and that this leads to a (conditional) proof of Gauss’s Conjecture 5(a). This
observation was written up by Landau [40]. Here Hecke and Landau restrict their
attention to fundamental discriminants ∆ < 0, i.e., to those discriminants that are at-
tached to the rings of integers of imaginary quadratic fields. (Thus, ∆ is fundamental
if and only if either ∆ is odd and squarefree, or if ∆

4
6≡ 1 (mod 4) and is squarefree.)

More precisely, Hecke’s result (cf. [29]) is the following: there exists a (computable)
constant c > 0 such that for every fundamental discriminant ∆ < 0 we have

L(s, χ∆) :=
∞∑
n=1

(
∆

n

)
n−s 6= 0 for s > 1− 1

log |∆|
⇒ h(∆) > c

√
|∆|

log |∆|
.(6)

Note that it is still unknown whether the hypothesis (on the left hand side) of (6)
holds for every ∆. This would follow from GRH (for quadratic characters) which
conjectures that L(s, χ∆) 6= 0 for Re(s) > 1

2
.

In 1934 Heilbronn [28], inspired by work of Deuring (and others), showed that if
GRH is false, then one can still conclude that h(∆) → ∞, if −∆ → ∞ (where ∆ ≡
0, 1 (mod 4)), and so Gauss’s Conjecture 5(a) (and its extension to odd discriminants)
is unconditionally true. This proof is non-effective, and an effective proof was found
only in 1986. (For more information, see Stark’s essay [51].)

In the same year, Chowla [9] modified Heilbronn’s argument to show that c(∆) →
∞, if −∆ → ∞; in fact, his article appears right after Heilbronn’s in the same
journal. Thus, there are only finitely many idoneal numbers. Although Chowla does
not mention idoneal numbers explictly, he does refer to this as a conjecture of Gauss.

Later that year Heilbronn and Linfoot [29] refined the argument of [28] to prove
that besides the 9 known fundamental discriminants ∆ < 0 with h(∆) = 1, there
can be at most one more. It was not until 1952 that Heegner showed that no such
tenth discriminant exists. At first it was thought that Heegner’s proof contained a
gap, and hence credit for this result was given to Stark[49], but later it was found
that Heegner’s proof was correct; cf. Stark [51] and/or Cox [11], p. 271, for more
information and references, and Cox [11], §12E, for a nice presentation of Heegner’s
proof. In this connection one should also mention Baker[3] who, in the words of
Serre[48], p. 296, “proved an important general theorem which reduces the problem
of its existence to a finite amount of computation.”

In 1954 Chowla and Briggs [10] proved a similar result for fundamental discrim-
inants ∆ < 0 with c(∆) = 1: there is at most one more such discriminant with
|∆| > 1060. (There is an annoying typo in the statement of their Lemma 4: k1/27

should be replaced by k−1/27.) They also show that GRH (or a somewhat weaker
hypothesis) implies that no such example exists for |∆| > 1014.

12



This last result was improved by Grosswald [22] who showed that GRH, together
with certain computer computations, implies that the extended Conjecture of Gauss
and Euler is true, i.e. that c(∆) > 1 if ∆ < (−4)1848 for all discriminants ∆ ≡
0, 1 (mod 4).

Remark 21 In his Theorem 1, Grosswald [22] classifies the non-fundamental dis-
criminants ∆ < 0 for which c(∆) = 1, thereby extending Grube’s result (cf. Theorem
12) to odd discriminants. Unfortunately, his theorem, as stated, is incorrect: the
cases listed in Theorem 12(a)–(c) give counterexamples to his assertion. (Here one
should exclude the 5 counterexamples that are squares because Grosswald excludes
the case that |∆| is a square.) Thus, one should add the hypothesis d > 315 to the
statement of Grosswald’s Theorem 1, for this is what he assumes in his proof.

By using results by Tazutawa and other ideas, Weinberger [62] was able to improve
the results of Grosswald and Chowla/Briggs to prove:

Theorem 22 (Weinberger) (a) There is at most one fundamental discriminant
∆ < −5460 = (−4)1365 with c(∆) = 1.

(b) If GRH is true, then c(∆) > 1 if ∆ is a fundamental discriminant with
∆ < −5460.

Proof. Let K = Q(
√

∆). Since ∆ is fundamental, we have that ∆ = dK is the
discriminant of K and that Cl(∆) ' Cl(K) = Cl(OK) is isomorphic to the class
group of K; cf. e.g. [11], p. 137. Thus, by Remark 7(b) we know that c(∆) = 1 if and
only if Cl(K)2 = 1, i.e., if and only if E(dK) ≤ 2, where (as in [62]) E(dK) denotes
the exponent of the class group Cl(K). Via these translations we see that the above
theorem follows directly from Theorem 1 of Weinberger[62]. �

As a consequence, we obtain:

Corollary 23 There is at most one squarefree idoneal number n∗ > 1848, and hence
either

(i) there is no idoneal number n > 1848; or

(ii) there is one idoneal number n > 1848 and it is squarefree and satisfies n ≡
1 (mod 4); or

(iii) there are two idoneal numbers n1 > n2 > 1848. The smaller one is square-free
and satisfies n2 ≡ 2 (mod 4) and the other is n1 = 4n2.

Thus, there are at most 67 idoneal numbers. Moreover, if GRH holds, then only case
(i) is possible, so Euler’s Conjecture 2 holds and thus there are precisely 65 idoneal
numbers.

13



Proof. Suppose that n∗ > 1848 is idoneal and squarefree. Since n∗ 6≡ 3 (mod 4) by
Corollary 8, it follows that −4n∗ is fundamental discriminant, and so by Theorem
22(a) there is at most one such n∗. This proves the first assertion.

Now suppose that case (i) does not hold, so there exists an idoneal number n >
1848. If all such numbers n are squarefree, then n = n∗ is unique by what was
just said. It thus follows from Corollary 14 that n ≡ 1 (mod 4) because otherwise
n ≡ 2 (mod 4) and then 4n > n is an idoneal number which is not squarefree,
contradiction. We thus see that in this case we are in case (ii).

Now suppose that there is at least one idoneal n > 1848 which is not squarefree.
Then n ≡ 0 (mod 4) by Corollary 14. Since by Theorem 1 there are no idoneal
numbers in the range 1848 < n ≤ 7392, we many assume that n > 7392. Then by
Corollary 14 we have that m = n

4
> 1848 is a squarefree idoneal number, and so

m = n∗ and hence n = 4n∗. Thus n is the unique non-squarefree idoneal number
with n > 1848. Since m ≡ 2 (mod 4) by Corollary 14, we thus see that we are now in
case (iii). Thus, the above cases (i) – (iii) are the only possibilities, and hence there
are at most 67 = 65 + 2 idoneal numbers.

Finally, if GRH holds, then Theorem 22(b) shows that cases (ii) and (iii) are
impossible, so we are left with case (i). Thus (cf. Theorem 1) we have 65 idoneal
numbers. �

Remark 24 (a) Frei [18] claims that Weinberger’s result implies that there is at
most one idoneal number n > 1848, and this assertion is frequently repeated in the
literature; cf. e.g. [47], p. 339, 340. However, as was mentioned above, this cannot be
true unless we could show that there are no even idoneal numbers for n > 1848. It is
likely that Frei’s error is due to his earlier wrong assertion mentioned in Remark 13.

(b) Weinberger’s proof of Theorem 22 uses for both parts the assertion that c(∆) >
1 for −5400 > ∆ > −d11, where d11 = 2 ·3 ·5 · · · 31 = 200, 560, 490, 130 is the product
of the first 11 primes. (Thus, 2× 1011 < d11 < 2.1× 1011.) He mentions in [62] that
this assertion was verified by (undocumented) machine computations of Lehmer.

For part (b), however, one can avoid these extensive computations by using the
sharper estimates obtained by Louboutin[41] who shows that under GRH we have
that c(∆) > 1 if ∆ < 0 is a fundamental discriminant with |D| ≥ 2 · 107; cf. [41],
Theorem 2. (It is easy to verify with the help of a computer (cf. §2.7) that there are
no idoneal discriminants ∆ < 0 in the range 105 < |∆| < 108.)

(c) As was mentioned in the proof of Theorem 22, Weinberger’s statement of his
theorem [62] uses in place of the hypothesis “c(∆) = 1” the equivalent hypothesis
“E(Cl(∆)) ≤ 2”, where E(A) denotes the exponent of an abelian group A. This
allows him to generalize his method to prove that there are only finitely many fun-
damental discriminants ∆ < 0 for which E(Cl(∆)) ≤ 3.
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2.7 Numerical computations

By using his criterion of Proposition 17(a), Euler found in 1778 (by hand) that there
are precisely 65 idoneal numbers less than 10,000. Similarly, around 1800 Gauss
calculated the types (g, c) of all even discriminants ∆ with 0 > ∆

4
> −10, 000 and

found that there are precisely 65 even discriminants in this range for which c(∆) = 1.
It is mentioned in [13], p. 365, that in 1901 Cunningham and Cullen checked that

there are no idoneal numbers n with 1848 < n < 50, 000, and that they found in 1919
that this is also true for n < 100, 000.

In his textbook, Dickson [12] lists on p. 85 and p. 89 all discriminants ∆ with
c(∆) = 1 and 0 > ∆ > −4 · 100, 000. (On p. 85 he lists more precisely all reduced
forms q with c(q) = 1 and 0 > ∆(q) > −400.) Thus, aside from the 65 even
discriminants found by Gauss (and Euler), there are also 36 odd discriminants; the
last in this range is ∆ = −3, 315 (as was found by Townes).

In 1948 Swift used Lehmer’s “linear congruence machine” to determine that there
are no discriminants ∆ with c(∆) = 1 and 4 · 1848 < −∆ < 107. (Note that the
lower bound of 3315 given in [53] is clearly incorrect.) To do this efficiently, he used
a new criterion for finding idoneal numbers which will be discussed in more detail in
the next section. Although this criterion is incorrect as stated (cf. Remark 26), this
does not affect the validity of his computations.

In his 1962 paper, Grosswald [22] asserts that J. Selfridge, M. Atkinson and
C. MacDonald extended Swift’s results up to −∆ < 109.12919, but it seems that their
paper (which is announced in [22] as “to appear in Math. Comp.”) never appeared.
However, I have checked that this is correct for −∆ ≤ 4 × 109 (when ∆ = −4n and
n ≡ 2 (mod 4)): using MAPLE, this took 4.15 hours on my laptop computer.

Similarly, in his 1973 paper, Weinberger uses machine computations (which he says
were done by D. H. Lehmer) which extend Swift’s work up to −∆ ≤ d11 ≈ 2× 1011.
Unfortunately, no documentation of these computations seems to exist.

Recently, Jacobson, Ramachandran and Williams [32] computed h(∆) and the
structure of the class group Cl(∆) for all fundamental discriminants ∆ < 0 with
|∆| < 1011. From their tables (which took 1501+2242 days of CPU time to compile),
one could check the validity of Lehmer’s computations for slightly less than half the
cases, for we need it up to 2.1× 1011. However, this gap should be filled soon, for the
authors state in [32] that they hope to extend their tables to 1012 in the near future.

3 Characterizations of Idoneal Numbers

We have already encountered several characterizations of idoneal numbers: 1) the
criteria of Grube given in Proposition 17 and 2) the characterization in terms of the
condition c(−4n) = 1 (cf. Theorem 6), which leads to several other characterizations
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(cf. Remark 7(b) and/or Cox [11], p. 59). Here is another test which is very useful
for computations:

Proposition 25 If n is an idoneal number, then the Legendre symbol satisfies the
condition (

−n
p

)
6= 1, for all odd primes p <

√
n.(7)

Proof. If not, then there exists an odd prime p <
√
n with

(
−n
p

)
= 1, and hence the

congruence b2 ≡ −n (mod p) has a solution b with 0 < b < p
2
. Write b2 + n = cp

for some c > 0. Since p2 < n, we see that c = b2+n
p

> b2+p2

p
> p > 2b. Since

b < p
2
<

√
n
4
<

√
n
3
, we thus see that b2 + n = pc is a factorization which violates

Grube’s criterion of Proposition 17(a), and hence n cannot be idoneal. �

Remark 26 (a) This proposition can be viewed as a correction of the test used by
Swift [53] in his computations. In his test he asserts that if n is idoneal, then (7) holds
for p2 < n+ 1

4
(p−1)2. This, however, is false if n has the form n = p2−1, where p is an

odd prime, for then clearly p2 = n+1 ≤ n+ 1
4
(p− 1)2 and (−n

p
) = (1

p
) = 1. Thus, the

idoneal numbers n = 8, 24, 48, 120, 168, 840 and 1848 (with p = 3, 5, 7, 11, 13, 29 and
43, respectively) show that the bound p <

√
n is quite sharp and that Swift’s assertion

is false unless we make further assumptions on n. Indeed, as will be shown below (cf.
Corollary 30), if we assume that n ≡ 2, 4, or 6 (mod 8), then Swift’s criterion is true,
even for p2 < 4n+ 1.

Note that this error does not affect the validity of Swift’s calculations because if
n is not idoneal, then in practice one can find already a very small prime p which
violates (7). Swift remarks that for |∆| < 107 the largest prime needed was p = 79,
and in my computations for n < 109 (and n ≡ 2 (mod 4)) the largest prime was
p = 103.

(b) This test can be extended to odd discriminants as well; i.e. we have that if
c(∆) = 1, (∆ < 0), then (∆

p
) 6= 1 for all primes p < 1

2

√
|∆|. Indeed, such a statement

(for fundamental discriminants) constitutes one part of the proof of Weinberger’s
Theorem 1; cf. [62], p. 119.

A natural question is whether the converse of Proposition 25 holds. Strictly speak-
ing, the answer is no: the numbers n = 19 and n = 43 satisfy (7), yet are not idoneal
by Corollary 8. Thus, extra conditions have to be imposed. We begin with the fol-
lowing partial converse to Proposition 25. Since there is no extra work involved, we
also include the case of odd discriminants:

Proposition 27 Let ∆ < 0 be a fundamental discriminant. If (∆
p
) 6= 1 for all primes

p with p2 < 1
3
|∆|, then c(∆) = 1.
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Proof. By Remark 7(b) it is enough to show that Cl(∆) is an elementary 2-group.
Since ∆ is a fundamental discriminant, we have that Cl(∆) is isomorphic to the class
group Cl(OK) of the ring of integers OK of K = Q(

√
∆); cf. e.g. [11], p. 137. The

hypothesis implies:

p ⊂ OK prime ideal with Np <
√
|∆|/3 ⇒ p2 = (α) is a principal ideal.(8)

Indeed, if p is such a prime ideal, then p ∩ Z = (p) for some prime p. If (∆
p
) = −1,

then p = (p) (cf. [11], p. 103), and the assertion is trivial. If (∆
p
) 6= −1, then Np = p.

But the hypothesis forces that (∆
p
) = 0, i.e. p|∆, and so p2 = (p), which proves (8).

From (8) it follows Cl(OK) is an elementary abelian 2-group because its generators
have order at most 2. Here we have used the following well-known fact:

Cl(OK) is generated by the classes of prime ideals p with Np <
√
|∆|/3.(9)

For convenience of the reader, we sketch the proof of (9); cf. [7], p. 196. By combining
the reduction theory of quadratic forms with the isomorphism Cl(∆) ' Cl(OK), we
see that each ideal class of Cl(OK) contains an ideal a with Na <

√
|∆|/3; cf. [7],

p. 195. Since we can write a = p1 · · · pr as a product of prime ideals (and then
Npi ≤ Na), the assertion follows. �

Remark 28 (a) If we specialize Proposition 27 to the case ∆ = −4n, then we get:

if n 6≡ 3 (mod 4) is squarefree and (−n
p

) 6= 1 for all odd primes p <
√

4
3
n, then n

is idoneal. Thus, aside from the restriction that n be squarefree, the hypothesis of
Proposition 27 is stronger than the conclusion (7) of Proposition 25.

(b) It is clear from the above proof that this criterion could be improved if we had
a better estimate for the norms of generators of Cl(OK) in (9). Such (unconditional)
improvements, however, seem to be very difficult. In 1990 Bach [1], p. 376, proved
that GRH implies that (9) holds if we replace

√
|∆|/3 by 6(log |∆|)2, and [32] shows

that this agrees with numerical evidence up to |∆| < 1011. See also [7], p. 196ff, and
[32], where algorithms for determining Cl(∆) are discussed.

Another line of attack is based on the following criterion which was suggested by
the connection with genus 2 curves. This connection will be explained in more detail
in the next section.

Proposition 29 If n ≡ 2, 4 or 6 (mod 8), then n is idoneal if and only if for every
prime p > 2 we have that

nt2 = k(p− k) has a solution t, k ∈ Z with t, k > 0 whenever

(
−n
p

)
= 1.(10)
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Before giving the proof, we observe that the above result implies that Swift’s test
(cf. Remark 26) is correct when n ≡ 2, 4, 6 (mod 8). It also implies that the converse
of Proposition 27 holds, provided that ∆ = −4n, where n ≡ 2 (mod 4).

Corollary 30 (a) If n ≡ 2, 4, 6 (mod 8) is an idoneal number, then (−n
p

) 6= 1, for all

odd primes p <
√

4n+ 1.

(b) If n ≡ 2 (mod 4) is squarefree, then the following conditions are equivalent:

(i) n is idoneal;

(ii) (−n
p

) 6= 1, for all odd primes p <
√

4
3
n;

(iii) (−n
p

) 6= 1, for all odd primes p <
√

4n+ 1.

Proof. (a) Suppose that p is an odd prime with (−n
p

) = 1. Then by Proposition 29 there

exist t, k ≥ 1 such that nt2 = k(p−k). Then clearly k < p, and by replacing k by p−k,
if necessary, we can assume that k ≤ p−1

2
. Since the function k(p− k) is increasing in

the range 1 ≤ k ≤ p−1
2

, we obtain that n ≤ nt2 = k(p− k) ≤ (p−1
2

)(p+1
2

) = 1
4
(p2 − 1),

or p2 ≥ 4n+ 1, and so (a) holds.
(b) The implication (i) ⇒ (iii) follows from part (a), that of (iii) ⇒ (ii) is trivial,

and (ii) ⇒ (i) is Proposition 27; cf. Remark 28(a). �

Proof of Proposition 29. Recall from Remark 7(b) that n is idoneal if and only if every
primitive form of discriminant −4n is ambiguous. Since n is even but not divisible
by 8, every ambiguous form is equivalent to ax2 + by2 (cf. [21], Art. 257-8), so we see
that in this situation n is idoneal if and only if we have:

q ∈ Cl(−4n) ⇒ q(x, y) ∼ ax2 + cy2, where ac = n and (a, c) = 1.(11)

Thus, it is enough to show that (11) is equivalent to (10).
Suppose first that (11) holds, and let p be an odd prime with (−n

p
) = 1. Then

∃b 6≡ 0 (mod p) such that b2 ≡ −n (mod p), so b2 + n = pm, for some m. Consider
q(x, y) = px2 + 2bxy + my2. Then ∆(q) = (2b)2 − 4pm = −4n, so q ∈ Cl(−4n).
(Note that q is primitive because (2b, p) = 1.) Thus, by condition (11) we have that
q ∼ ax2 + cy2, for some a, c with ac = n and (a, c) = 1. Since q properly represents
p (for p = q(1, 0)), it follows that this is also true for q′ := ax2 + cy2, so there exist
t1, t2 ∈ Z with (t1, t2) = 1 such that p = at21 + ct2. Clearly t1 6= 0 (for otherwise
p = ct22 = c|n, contradiction) and similarly t2 6= 0. Put k = at21. Then p − k = ct22
and so k(p− k) = at21ct

2
2 = nt2, where t = |t1t2| > 0. Thus property (10) holds.

Now suppose conversely that (10) holds, and let q be a primitive quadratic form
of discriminant −4n. By Dirichlet’s Theorem ([11], p. 188), q represents infinitely
many primes p, so there is a prime p - 4n represented by q. For any such prime we
have (−n

p
) = 1; cf. [11], p. 30.

18



By hypothesis (10) ∃k, t ≥ 1 such that k(p − k) = nt2. Put k1 = k, k2 = p − k,
and for i = 1, 2, put ai = (ki, n), ti = (ki, t). Since (k1, k2) = 1 and n|k1k2, we
see that a1a2 = n, and similarly t1t2 = t. Thus, (a1t

2
1)(a2t

2
2) = nt2 = k1k2, and so

ki = ait
2
i , for i = 1, 2, because (a1t

2
1, a2t

2
2) = 1 and ki|ait2i . This means that if we

let q′(x, y) = a1x
2 + a2y

2, then q′ is primitive with ∆(q′) = −4n, and q′ represents p
(because q′(t1, t2) = a1t

2
1 + a2t

2
2 = k1 + k2 = p).

We thus have that q and q′ both represent the prime p - 4n. From this it follows
that either q ∼ q′ or q ∼ (q′)−1; cf. Piehler [45]. But since q′ is ambiguous, we have
(q′)−1 ∼ q′, and so q ∼ q′. This shows that (11) holds, and so n is idoneal. �

Remark 31 The above proof can be generalized to show that the condition (10) of
Proposition 29 is equivalent to the following more general assertion: for every odd
integer m > 1 we have that

nt2 = k(m− k) has a solution t, k > 0 whenever (−n
p

) = 1, for all primes p|m.(12)

Indeed, clearly (12) implies (10). On the other hand, if m is an odd integer with
(−n
p

) = 1, for all primes p|m, then (m,n) = 1 and −n is a square mod m; cf. e.g.

Hua [30], p. 44. Thus, there are integers b, c such that b2 + n = mc, and then
q = mx2 +2bxy+ cy2 ∈ Cl(−4n) primitively represents m. Thus, if n is idoneal, then
(the first part of) the proof of Proposition 29 shows that (12) holds.

We now come to the following characterization of idoneal numbers in terms of the
modular function j(τ). As was mentioned above, Weber [59] alludes to this connection
in the introduction of his paper, but without giving a precise statement (or proof).

Theorem 32 (Weber) Let n ≥ 1 be an integer. Then Q(j(
√
−n)) is a Galois (and

hence an abelian) field extension of Q if and only if n is idoneal.

Proof. Put K = Q(
√
−n). By the First Main Theorem of Complex Multiplication

([11], Theorem 11.1) we know that Ln := K(j(
√
−n)) is an abelian extension of K

with Gal(Ln/K) ' Cl(−4n). In addition, we have that Ln is Galois over Q with
Galois group G = 〈σ,H〉, where σ denotes complex conjugation (restricted to Ln)
and H = Gal(Ln/K). Furthermore, σ acts on H by inversion, i.e. σhσ−1 = h−1, for
all h ∈ H; cf. [11], Lemma 9.3. Thus Q(j(

√
−n))) = Fix(σ) because j(

√
−n) ∈ R

(cf. [11], Exercise 11.1).
By Galois theory we therefore see that Q(j(

√
−n)) is Galois over Q ⇔ 〈σ〉 is

normal in G ⇔ hσh−1 = σ,∀h ∈ H ⇔ σ−1hσ = h,∀h ∈ H ⇔ h = h−1,∀h ∈
H ⇔ H ' Cl(−4n) is an elementary abelian 2-group ⇔ n is idoneal (cf. Remark
7(b)). This proves the theorem. Note that the above argument also shows that if
Q(j(

√
−n)) is Galois over Q, then Ln/Q is abelian (with group G ' Z/2Z×H) and

so Q(j(
√
−n))/Q is abelian as well. �
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Remark 33 In his paper, Weber [59] does not compute j(
√
−n) directly (when n

is idoneal), but instead finds expressions for powers of f(
√
−n) (or of f1(

√
−n),

f2(
√
−n)), where f , f1 and f2 denote the Weber functions (cf. [11], §12.B). From

this one gets an expression for j(
√
−n) because j(τ)3 = γ2(τ) = (f(τ)24 − 16)/f(τ)8;

cf. [11], p. 249, 257. As Cox [11] remarks on p. 263, Weber’s method is based on
the Kronecker Limit Formula. Cox works out the details of the computation in
the case that n = 14 to obtain j(

√
−14)3 = γ2(

√
−14) = 2(323 + 228

√
2 + (231 +

161
√

2)
√

2
√

2− 1); cf. [11], §12.D. Note that in Table VI at the end of his textbook
[60], Weber lists the values of (powers of) the Weber functions for τ =

√
−n for

1 ≤ n ≤ 52 and for all the idoneal numbers n ≤ 1848 (together some other values
such as n = 55, 63, 67, . . . , 163, 193).

Closely connected with this theorem is the following characterization of idoneal
numbers which was mentioned in Frei [18] without proof or reference:

Corollary 34 Let n ≥ 1. Then the primes numbers of the form p = x2 + ny2 with
x, y ∈ Z can be characterized by congruence relations modulo m for some m if and
only if n is an idoneal number.

Proof. By genus theory (and quadratic reciprocity) we know that the prime numbers
p which are represented by some form in the principal genus gen(1∆) of discriminant
∆ = −4n can be characterized by congruence conditions modulo |∆|. Thus, if n is
idoneal, the assertion holds with m = 4n.

To prove the converse, we shall use the following fact (proved in Cox [11], p.
189): the primes p which are represented by 1∆ = x2 + ny2 are (up to finitely many
exceptions) the primes p which split completely in the ring class field Ln of Z[

√
−n].

(This is the same field as that of the proof of Theorem 32 by [11], Theorem 11.1).
Suppose now that the primes p represented by 1−4n can be described by congruence

conditions modulo m. Then the primes which split completely in Ln are described
by the same conditions mod m, and so by class field theory over Q, the field Ln/Q is
abelian. By Theorem 32, this means that n is idoneal. �

Remark 35 (a) There also exist characterizations of idoneal numbers and/or idoneal
discriminants ∆ in terms of properties of the binary theta series

ϑq(z) =
∑
x,y∈Z

e2πiq(x,y)z

attached to a binary quadratic form q of discriminant ∆. It is well-known (cf. e.g.
[37] and the references therein) that ϑq ∈M1(|∆|, (∆

· )) is a modular form of weight 1,
level |∆|, and Nebentypus (∆

· ), where (∆
· ) denotes the Legendre-Kronecker character.

By [37], Remark 17(b), we have the following characterizations of idoneal discrim-
inants ∆ < 0:
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(i) ∆ is an idoneal discriminant, i.e. c(∆) = 1;

(ii) the theta-series ϑ1∆
associated to the principal form 1∆ is an Eisenstein series;

(iii) the space Θ∆ =
∑

q Cϑq generated by the theta-series ϑq associated to the
primitive forms q of discriminant ∆ does not contain any non-zero cusp forms.

Note that for a fundamental discriminant, the equivalence of conditions (i) and
(ii) was proved by Kitaoka [39], Theorem 3.

(b) Another interesting characterization of idoneal numbers was pointed out by
Eric Rains (2007): a number n ≥ 1 is idoneal if and only if the Diophantine equation

xy + yz + zx = n(13)

has no solution in distinct positive integers 0 < x < y < z. (This is essentially a
restatement of Grube’s Criterion (Proposition 17(a)) by putting b = x, a = x + y,
c = x+z.) A related result is proved in Louboutin and Newman [42]: the Diophantine
equation (13) has no solution is positive integers if and only if either n ∈ {1, 4, 18} or
n ≡ 2 (mod 4) is a squarefree idoneal number. Note that this list of idoneal numbers
is almost identical with the list of idoneal numbers described in Theorem 37 below;
cf. Remark 38.

4 Connections with genus 2 curves

We now turn to the connection between idoneal numbers and curves of genus 2 which
was mentioned above. For this, fix an (algebraically closed) field K and consider the
following problem.

Question 36 Let E1 and E2 be two elliptic curves over K. Is there a (smooth,
irreducible) curve C of genus 2 on the product surface E1 × E2?

By the theory of Jacobians of curves, this question is equivalent to: Is there a
curve C/K of genus 2 such that its Jacobian JC is isomorphic to E1 × E2?

This problem was first studied by Hayashida and Nishi [26], [27] in 1965, who
obtained partial results. A complete solution can be found in [36], and will be dis-
cussed in section 6. Here we shall focus on a special case of this question by imposing
the extra condition that E1 and E2 do not have complex multiplication (i.e. that
End(Ei) = Z) and that E1 and E2 are isogenous. Note that these two conditions are
equivalent to saying that Hom(E1, E2) = Zh, for some h 6= 0; we shall refer to this as
“the non-CM case”.

Definition. A pair (E1, E2) of elliptic curves is said to have type n if we have
Hom(E1, E2) = Zh, where deg(h) = n.
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The following result (which is a restatement of Theorem 5 of [35]) gives the con-
nection between certain idoneal numbers and the solution of the above question in
the non-CM case:

Theorem 37 If (E1, E2) is a pair of elliptic curves of type n, then the following
conditions are equivalent:

(i) there is no genus 2 curve on E1 × E2;

(ii) n = 1 or n is an even idoneal number which is not divisible by 8;

(iii) n 6≡ 3 (mod 4) and 4n is an idoneal number;

(iv) n ∈ {1, 4, 12, 18, 28, 60} or n ≡ 2 (mod 4) is a squarefree idoneal number.

Remark 38 From condition (iv) we see that the set of idoneal numbers satisfying
the equivalent conditions of Theorem 37 equals the union of the set {12, 28, 60} and
of the set of idoneal numbers appearing in Theorem 1 of Louboutin/Newman[42]; cf.
Remark 35(b).

Proof (Sketch) of Theorem 37. Note first that conditions (ii) and (iii) are equivalent
by Corollary 10, and that conditions (ii) and (iv) are equivalent by Theorem 12. In
order to prove the equivalence of conditions (i) and (iii), we shall outline the main
ideas of the proof and refer to [35] for the details.

Let P irr(A) denote the set of irreducible genus 2 curves C on A := E1 × E2. By
the adjunction formula, the self-intersection number of C is C2 = 2, so

P irr(A) ⊂ P(A) := {θ ∈ Div(A) : θ ≥ 0, θ2 = 2},

where Div(A) denotes the group of divisors on A. Here the notation P irr(A) reflects
the fact (due to Weil) that if θ ∈ P(A), then θ ∈ P(A)irr if and only if θ is an
irreducible curve.

To decide whether or not θ ∈ P(A) is irreducible, we shall use the refined Humbert
invariant qθ defined in [35] (which is closely related to the classical Humbert invariant
defined by Humbert). This is the quadratic form defined by the formula

qθ(D) = (D.θ)2 − 2D2, D ∈ Div(A),(14)

where (.) denote intersection numbers. It is clear that qθ can be viewed as a quadratic
form on the Néron-Severi group of A, i.e. on the quotient group NS(A) = Div(A)/≡,
where the equivalence relationD1 ≡ D2 (numerical equivalence) means that (D1.D) =
(D2.D), ∀D ∈ Div(A). Moreover, a short computation (using the fact that θ2 = 2)
shows that qθ is actually a quadratic form on NS(A, θ) := NS(A)/Zθ, and the Hodge
Index Theorem shows that qθ is positive definite (on NS(A, θ)).
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One of the key properties of qθ is the following irreducibility criterion (cf. [35],
Proposition 6):

θ is irreducible ⇔ qθ(D) 6= 1, for all D ∈ Div(A).(15)

So far, the above results are true for an arbitrary abelian surface A. We now
specialize to the case that A = E1 × E2, where (E1, E2) has type n. In this case we
have a complete classification of the quadratic forms qθ that can occur. Indeed, by
[35], Theorem 2 (or, better, by [35], Propositions 39 and 15), we know that qθ is a
binary quadratic form of discriminant ∆(qθ) = −16n which is either primitive and in
the principal genus or is of the form qθ = 4q′, where q′ is primitive of discriminant −n
and is in the principal genus. (Note that the last case can occur only if n ≡ 3 (mod 4).)
Moreover, up to equivalence, each such form is equivalent to some qθ, i.e. we have

{cl(qθ) : θ ∈ P(A)} = gen(1−4n) ∪ 4gen(1−n),(16)

where cl(qθ) denotes the equivalence class(es) defined by qθ. (Note that qθ is only de-
fined up to GL2(Z)-equivalence, and hence gives rise to (possibly) two proper equiv-
alence classes of forms.)

From these facts the equivalence of (i) and (iii) follow easily, for we have that
(i) ⇔ P irr(A) = ∅ ⇔ qθ ∼ 1−16n,∀θ ∈ P(A) ⇔ n 6≡ 3 (mod 4) and gen(1−16n) =
{cl(1−16n)} ⇔ n 6≡ 3 (mod 4) and c(−4n) = 1 ⇔ (iii). Here, the second equivalence
follows from (15) (together with the fact that a binary form represents 1 if and only
if it is equivalent to the principal form) and the third follows from (16), together with
the obvious fact that 4q′ can never represent 1. �

A closer study of genus 2 curves on E1 × E2 naturally leads to a condition of
the form (10). This is obtained by combining two facts. One of these is that such a
curve C admits (infinitely) many minimal elliptic subcovers f : C → E whose degrees
are given as the values of a certain binary quadratic form. (A cover f : C → E is
called minimal if it does not factor through a non-trivial isogeny of E.) The other is
that the reducibility criterion of [34] forces certain restrictions on the degrees of such
subcovers. More precisely, we have:

Proposition 39 Let C be a genus 2 curve on E1 × E2, where (E1, E2) has type n.
Then there exist integers z, r,m with rm = z2n + 1 and m ≥ 2 such that C has a
minimal elliptic subcover fd : C → E1 of degree d if and only if

d = nrx2 − 2nzxy +my2, for some x, y ∈ Z with (nx, y) = 1.(17)

Moreover, if n 6≡ 3 (mod 4), or if (r,m, 2) = 1, then there exist infinitely many d’s
which are prime, and for each such odd prime p = d we have

(−n
p

) = 1 and k(p− k) 6= t2n, for all integers k, t ≥ 1.(18)
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Proof. Since Hom(E1, E2) = Zh, where deg(h) = n, the only cyclic isogenies from
E1 to E2 are ±h. Thus, by [19], Proposition 6.5, there exist integers z,m such that
z2n ≡ −1 (mod m) and such that (in the notation there) we have C ' Cψ, where
ψ = zh|E1[m]. Thus, the first assertion follows directly from Corollary 6.6 of [19].

To prove the other assertions, note first that the quadratic form q(x, y) := nrx2−
2nzxy+my2 has discriminant ∆(q) = 4n2z2− 4nrm = −4n, and that (nr, 2nz,m) =
(r,m, 2). Thus, q is primitive if and only if (r,m, 2) = 1. This is always true if
n 6≡ 3 (mod 4), for if (r,m, 2) 6= 1, then z2n + 1 ≡ 0 (mod 4), so n ≡ 3 (mod 4). If
q is primitive, then by Dirichlet’s theorem q represents infinitely many primes p, i.e.
p = q(x, y). If p - n, then also (nx, y) = 1, and then d = p is one of the values of (17).
Note that since ∆(q) = −4n, we have (−n

p
) = 1 (if p 6= 2); cf. [11], p. 30.

Now fix p and write p = q(x, y). Then the proof of [19], Corollary 6.6, constructs
integers r′ and z′ such that r′p = (z′)2n + 1 and such that C ' Cψ′ , where ψ′ =
(z′)ψ|E1[p]. Suppose the equation t2n = k(p − k) had a solution k, t > 0. Then
(kz′)2 ≡ −k2 ≡ t2n (mod p), and so t ≡ kz′ (mod p) (replacing k by p−k, if necessary).
Thus kψ′ = h′|E1[p], where h′ = th. Note that deg(h′) = t2 deg(h) = t2n = k(p − k).

By the reducibility theorem of [34], Theorem 3, this means Cψ is a reducible curve,
contradiction. Thus, no such solution t, k can exist, and so (18) holds. �

Remark 40 Note that the above Proposition 39 combined with Theorem 37 gives a
quick proof of the fact that (10) implies that n is idoneal, which is the more difficult
direction of Proposition 29. Indeed, if n ≡ 2, 4, 6 (mod 8) were not idoneal, then by
Theorem 37 there would exist a genus 2 curve C on E1 × E2 (for some pair (E1, E2)
of type n) and then by Proposition 39 we would have that (18) holds for infinitely
many primes p, which violates (10). Thus n is idoneal.

Of course, this proof is much more complicated than the one given in section 3,
but it pointed the way to suggest the criterion (10).

5 Generalizations of idoneal numbers

A first generalization of idoneal numbers was already tacitly used above. Indeed,
since idoneal numbers are those numbers n ≥ 1 for which c(−4n) = 1 (Theorem 6),
the problem of classifying all discriminants ∆ < 0 which satisfy c(∆) = 1 constitutes
a first generalization of idoneal numbers. (Discriminants with this property are called
idoneal discriminants in Buell [8], p. 193.)

As was noted by Grube, Chowla and others, the problem of classifying idoneal
discriminants reduces to that of classifying those that are fundamental. Thus, as
was mentioned above, an equivalent problem is to classify those imaginary quadratic
fields K whose class group Cl(K) := Cl(OK) is an elementary 2-group; this was the
approach taken by Weinberger [62].
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Viewed from this angle, this problem has a natural generalization to other number
fields: classify the (totally) imaginary number fields K whose class group Cl(K) is an
elementary 2-group. This problem was studied by Miyada [44] who found that under
GRH there are precisely 301 abelian number fields with this property.

There is another natural generalization of idoneal numbers which is perhaps closer
to the original viewpoint of Euler and Gauss. In this generalization we consider
(positive definite) quadratic forms in an arbitrary number r ≥ 2 of variables. As
in the case of two variables, there is the concept of genus equivalence of forms in
r variables: two forms are genus-equivalent if they are p-adically equivalent for all
primes p (including p = ∞); cf. e.g. Jones [33], p. 106-7 or Watson [54], p. 72. If
gen(q) denotes the set of equivalence classes of forms that are genus-equivalent to q,
then one has as before that the number c(q) = #gen(q) is finite. Watson [55] calls
c(q) the class number of the form q. (It should be mentioned, however, that Watson
uses GLr(Z)-equivalence in place of proper or SLr(Z)-equivalence of forms, so in the
case that r = 2 his c(q) is in general not the same as the c(q) defined above in §2.2.
Nevertheless, the condition “c(q) = 1” coincides for both definitions.) Note also that
contrary to the case of 2 variables, it is no longer true that all (primitive) forms of
the same discriminant have the same class number when r ≥ 3.

In view of these definitions, a natural extension of the problem of determining all
idoneal numbers is the following.

Problem 41 Find all the equivalence classes of positive definite primitive forms q
with class number 1, i.e. with c(q) = 1.

This problem was studied by Watson in a series of papers in the years 1963–1978;
cf. [56] and the references therein. His main results are the following:

Theorem 42 (Watson) (a) For each r ≥ 3, the number Nr of equivalence classes
of positive primitive quadratic forms q in r variables with c(q) = 1 is finite.

(b) Such forms exist if and only if r ≤ 10, i.e. Nr > 0 ⇔ 1 ≤ r ≤ 10.

(c) We have N3 = 790, N4 ≥ 27, N5 ≥ 42, N8 = 36, N9 = 4 and N10 = 2.

Remark 43 Watson does not study the case r = 2 except to say that it “seems
hopeless” (cf. [55]) and that it is “very difficult” (cf. [56]). It is curious that he does
not mention the obvious connection with the work of Euler, Gauss and others.

There is still another generalization of idoneal numbers. This generalization is a
variant of Watson’s problem and was suggested by the study of genus 2 curves, as
will be explained in the next section. It is based on the following observation. If q is
binary quadratic form, then

q ∼ 1∆(q) ⇔ q → 1
def⇔ q(x, y) = 1, for some x, y ∈ Z,(19)
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where, as before, 1∆ denotes the principal form of discriminant ∆. This, therefore,
suggests the following (partial) generalization of Watson’s problem.

Problem 44 Find all the equivalence classes of positive definite primitive forms q in
r variables which satisfy:

q′ → 1, for all q′ ∈ gen(q).(20)

Indeed, in view of (19), it is clear that for r = 2 condition (20) holds for q = 1∆ if
and only if c(1∆) = 1, i.e. if and only if ∆ is an idoneal discriminant. Moreover, for
any r we see that if q → 1 and c(q) = 1, then q satisfies (20). Thus, every solution
q of Watson’s Problem 41 with q → 1 is a solution of Problem 44. It is not at all
obvious that the converse holds, but Theorem 46 below suggests that this is true at
least in some special cases.

Before stating the result of Theorem 46, let us look at yet another generalization of
idoneal numbers and/or forms. For this, we first introduce the following terminology.

Definition. Let q(x1, . . . , xr) be a positive definite quadratic form in r variables. We
say that q is an idoneal-valued form if its only (proper) values ≤ |∆(q)| are idoneal
numbers, i.e. if

q → n ≤ |∆(q)| ⇒ n is an idoneal number;(21)

here, the symbol q → n means that q properly represents n, i.e. that there exist
x1, . . . , xr ∈ Z with gcd(x1, . . . , xr) = 1 such that q(x1, . . . , xr) = n.

In addition, we say that q is a special idoneal-valued form if

q → n ≤ |∆(q)| ⇒ 4n is an idoneal number,(22)

and if in addition we have that q 6→ n, for any n ≡ 3 (mod 4) when ∆(q) 6≡ 1 (mod 4),
and that q 6→ n, for any n ≡ 3 (mod 4) with n < |∆(q)| when ∆(q) ≡ 1 (mod 4).

Clearly, the 1-variable form q(x) = nx2 is idoneal-valued if and only if n is an
idoneal number because ∆(nx2) = n (cf. [55], p. 2) and n is the only value which is
primitively represented by q. Moreover, nx2 is a special idoneal-valued form if and
only if n satisfies condition (iii) of Theorem 37. Thus, this concept gives another
generalization of idoneal numbers, and hence the following problem generalizes the
search for idoneal numbers.

Problem 45 Classify all the equivalence classes of positive definite quadratic forms
which are idoneal-valued.

At first sight it might seem unlikely that idoneal-valued forms in r ≥ 2 variables
exist at all. However, such forms do exist, as following result shows. It also shows
that there is a (perhaps surprising) connection between Problems 41, 44 and 45.
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Theorem 46 Let q(x, y) = ax2 + bxy + cy2 be a positive-definite binary quadratic
form, and let Qq(x, y, z) = z2 + 4q(x, y). If either ∆ := b2 − 4ac ≡ 1 (mod 4) or if
q 6→ n, for any n ≡ 3 (mod 4), then the following conditions are equivalent:

(i) c(Qq) = 1;

(ii) Qq satisfies condition (20);

(iii) q is a special idoneal-valued form;

(iv) q is equivalent to one of 15 forms whose coefficients (a, b, c) are given by the
following list:

L = {k(1, 1, 1) : k = 1, 2, 4, 6, 10} ∪ {k(1, 0, 1) : k = 1, 2, 6} ∪ {(1, 1, 2), (1, 1, 4)}
∪ {2(1, 1, c) : c = 3, 9} ∪ {2(1, 0, c) : c = 2, 5} ∪ {2(2, 0, 3)}.

This theorem is proved in [36]. The next section explains its relevance to problems
about genus 2 curves and gives a (rough) sketch of its proof.

6 Further connections to genus 2 curves

As was mentioned above, some of the above generalizations of idoneal numbers and
forms were directly inspired by considering certain problems about genus 2 curves.
We now look at these problems and explain their connection to the Problems 44 and
45 formulated in the previous section.

For this, let us return to Question 36 of section 4. In Theorem 37 we saw that
in the non-CM case the non-existence of curves of genus 2 on E1 × E2 is closely
related to whether or not the type n of (E1, E2) is an idoneal number (satisfying
certain congruence conditions). This can be generalized by considering the following
quadratic form qE1,E2 attached to the pair (E1, E2).

Notation. If E1 and E2 are two elliptic curves, let qE1,E2 denote the positive definite
quadratic form on Hom(E1, E2) defined by

qE1,E2(f) = deg(f), if f ∈ Hom(E1, E2).

Thus, by fixing a basis of Hom(E1, E2), we obtain an explicit quadratic form in
r = rank(Hom(E1, E2)) variables, and hence (by considering all bases) a GLr(Z)-
equivalence class of forms.

Note that if (E1, E2) has type n, then r = 1 and qE1,E2(x) = nx2. Conversely, if
qE1,E2(x) = nx2, then (E1, E2) has type n.

It turns out that the answer to Question 36 is completely determined by properties
of the quadratic form qE1,E2 . More precisely, we have the following result which
contains Theorem 37 as a special case:
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Theorem 47 Let E1 ∼ E2 be two isogenous elliptic curves over K, and assume that
E1 is not supersingular. Then the following conditions are equivalent:

(i) there is no genus 2 curve on E1 × E2;

(ii) qE1,E2 is a special idoneal-valued form.

If this is the case, then either qE1,E2(x) = nx2 and 4n is idoneal (non-CM case) or
qE1,E2 is one of the 15 binary forms listed in Theorem 46 (CM case).

Remark 48 Note that if E1 is not isogenous to E2, then it is easy to see that there
is no genus 2 curve on E1×E2, so this case can be excluded from our considerations.
Furthermore, the case that E1 is supersingular was treated in [31].

The first part of the proof of this theorem is very similar to that of Theorem
37. Let qA be the integral quadratic form defined by the intersection pairing on the
Néron-Severi group NS(A), i,e.

qA(D) =
1

2
(D.D), if D ∈ NS(A).

In the case that A = E1 × E2, we can choose a basis of NS(A) such that

qE1×E2 ∼ xy − qE1,E2 ;(23)

cf. [35], Proposition 22. For any θ ∈ NS(A) such that qA(θ) = 1 we have the associated
refined Humbert invariant qA,θ defined by (14). Then by the same reasoning as in the
(first part of the) proof of Theorem 37 we obtain the following result.

Proposition 49 If A = E1 × E2, then condition (i) of Theorem 47 is equivalent to
the condition

(i′) qA,θ → 1, for all θ ∈ NS(A) with qA(θ) = 1.

Note that this reduces the geometric problem of finding curves on the surface A
to a purely arithmetic problem involving the quadratic form qA ∼ xy − qE1,E2 .

Before stating the solution to this problem, let us treat a trivial case:

Lemma 50 If ∆(qE1,E2) 6≡ 1 (mod 4) and there is an integer n ≡ 3 (mod 4) which is
represented by qE1,E2, then there is a θ ∈ NS(A) such that qA,θ is not primitive. In
particular, qA,θ 6→ 1.

Proof. (Sketch) In the non-CM case, this follows immediately from (16). In the CM-
case, a similar argument (using (16)) yields the assertion. �

In view of this lemma and Theorem 37, Theorem 47 follows from the following
result which sharpens Theorem 46:
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Theorem 51 In the situation of Theorem 46, put Q̃(x, y, z, w) = xy−q(z, w). Then
conditions (i) – (iv) of Theorem 46 are equivalent to

(v) Q̃θ → 1, for all θ ∈ Z4 with Q̃(θ) = 1.

Here Q̃θ is defined by the analogue of formula (14), i.e. by

Q̃θ(x) = βQ̃(x, θ)2 − 4Q̃(x),

where βQ̃(x, y) = Q̃(x+ y)− Q̃(x)− Q̃(y) is the bilinear from associated to Q̃.

Proof. (Sketch) Here we give the main steps of the proof; cf. [36] for the details.
(i) ⇒ (ii): trivial.
(ii) ⇒ (v): Here one shows (using the conditions that ∆(q) ≡ 1 (mod 4) or that

q 6→ n ≡ 3 (mod 4)) that we have the following partial analogue of (16):

{Q̃θ : θ ∈ Z4 with Q̃(θ) = 1} ⊂ gen(Qq).

From this, the implication (ii) ⇒ (v) follows immediately.
(v) ⇒ (iii): Let S denote the set of idoneal numbers satisfying condition (iii)

(and/or (ii)) of Theorem 37, i.e.

S = {n ≥ 1 : n 6≡ 3 (mod 4) and 4n is idoneal}.

If q → n, and if n /∈ S, then Propositions 15 and 39 of [35] show that there exists
θ with Q̃(θ) = 1 and a binary quadratic form q′ of discriminant −16n such that
q′ 6→ 1 and Q̃θ → q′. (The latter condition means that there exists an injective linear
transformation T : Z2 → Z3 with Z3/Im(T ) torsionfree such that q′(x) = Q̃θ(T (x)),
for all x ∈ Z2.) If we have in addition that n ≤ |∆(q)| (respectively, n < |∆(q)| when
n ≡ 3 (mod 4)), then one can show that it follows that Q̃θ 6→ 1, which is contrary to
the assumption (v). It thus follows that n ∈ S, and so q is a special idoneal-valued
form.

(iii) ⇒ (iv): Let q be a special idoneal-valued form, i.e. we have that q → n,
n ≤ |∆(q)| ⇒ n ∈ S (with the proviso that if n ≡ 3 (mod 4), then n 6= |∆(q)|).

The key observation here is that by using Weinberger’s “at most one-more” the-
orem (Theorem 22(a)) we can replace the (unknown) set S by the explicit set

S∗ = {n ∈ S : n ≤ 105}
= {1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462},

where the latter equality follows from Euler’s (and/or Gauss’s) computations; cf.
Theorem 1. In other words, subject to the above proviso, we have

q is a special idoneal-valued form ⇔ {n : q → n, n ≤ |∆|} ⊂ S∗.(24)
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To verify this observation, note first that by replacing q be an equivalent form, we
may assume without loss of generality that q is reduced, i.e. that |b| ≤ a ≤ c. Since
q → a, c and B := a+ |b|+ c, and a, c, B ≤ |∆(q)|, we see that a, c, B ∈ S.

Now if there is a d∗ ∈ S \S∗, then by Euler and Grube (Corollaries 10 and 14) we
know that d∗ is square-free, and so from Weinberger’s Theorem 22(a) it follows that
S = S∗ ∪ {d∗}, where d∗ > 108 (by numerical computations). Thus, if c ∈ S \ S∗ =
{d∗}, then B = a + |b| + c > c = d∗, so B /∈ S, contradiction. Thus, a, c ≤ 462, so
|∆(q)| = 4ac− b2 ≤ 4 · 4622 < 106 < d∗, and hence (24) holds.

We therefore have that a, b, c can take on only finitely many explicit values. By
a straightforward but extremely tedious check (but suitable for a computer) one can
show from this that the (reduced) special idoneal-valued q’s are precisely the q ∈ L.
In [36] a more intrinsic argument is given, but it still requires the consideration of
many cases.

(iv) ⇒ (i): Here we shall apply the mass formula of Eisenstein/Smith/Brandt (cf.
Brandt [5]) to the ternary form Qq. This has the form∑

f∈gen(Qq)

1

|Aut(f)|
=
−kd
6 · 2ν

∏
p|δ

(
1− 1

p2

) ∏
p|kd

(
1 +

(
d

p

)
1

p

) (
1 +

(
−4kr

p

)
1

p

)
,(25)

where k = gcd(a, b, c), d = ∆(q)
k2 , δ = gcd(4k2, d) and r is any integer represented

by q′ := 1
k
q with (r, d) = 1. In addition, 2ν = 4g(−16k)g(d), where, as in §2.2, g(·)

denotes the number of genera. Calculating the expression on the right hand side of
(25) we find that for each q ∈ L this expression equals 1

|Aut(q)|
= 1

|Aut(Qq)|
, and so it

follows that c(Qq) = 1, for all q ∈ L. Thus (i) holds. �
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