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1 Introduction

In 1965 Hayashida and Nishi initiated the study of genus 2 curves C whose Jacobian
JC is isomorphic to a product A = E1×E2 of two elliptic curves. In their papers [12],
[14] and [13], they determined the number of curves C with JC ' A for a fixed A
in many cases, thereby exhibiting the existence of such curves. A similar count was
done for supersingular curves by Ibukiyama, Katsura and Oort[16].

Recently there has been renewed interest in such curves, particularly in connection
with moduli problems; cf. Earle[6], Lange[26], and McMullen[28], [29].

The purpose of this article is determine how such curves are distributed in the
moduli space M2 of genus 2 curves over an algebraically closed field K. By a result
of Lange[25] it is known that these lie on infinitely many curves in M2; see also [6].
Here we want to make the nature of these curves precise.

To this end, let us say that a curve C has type d if JC ' E1 × E2, where E1 and
E2 are connected by a cyclic isogeny of degree d. (If E1 has CM or is supersingular,
then this definition has to slightly modified; see §4 below.) Since every curve C with
JC ' E1×E2 has some type d ≥ 1 (cf. Proposition 25), the following result describes
the set of all such curves in M2:

Theorem 1 The set T (d) ⊂ M2 of curves of type d is a closed subset of M2. If
T (d) is non-empty, then T (d) is a finite union of irreducible curves. Moreover, if
char(K) - d, then each such component is birationally isomorphic either to the modular
curve X0(d)+ or to a degree 2 quotient thereof.

Here X0(d)+ = X0(d)/〈wd〉 is (as in [27], p. 145) the quotient of the usual modular
curve X0(d) by the Fricke involution wd.

The key tool for proving this and other related results is the concept of a “gen-
eralized Humbert variety” which is introduced here. This generalizes the Humbert
surfaces of Humbert and is based on a refinement of the usual Humbert invariant
(cf. [35]) that was suggested in [19]. There it was observed that each curve C comes
equipped with a canonically defined positive definite quadratic form qC which can be
used to define the Humbert invariant (and hence Humbert surfaces).

It turns out that the curves C of type d can be characterized by a property of their
associated refined Humbert invariant qC as defined in §2. To formulate this property
in a convenient manner, let us say that a positive definite binary quadratic form q
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has type d if it has discriminant −16d and is either primitive and lies in the principal
genus (but q is not equivalent to the principal (norm) form) or else q = 4q1, where
q1 is primitive (of discriminant −d) and lies in the principal genus. (Such quadratic
forms are studied in detail in §5.) We then have:

Theorem 2 If C is a curve of genus 2, then C has type d if and only if its refined
Humbert invariant qC primitively represents a form of type d.

In view of this, we might expect the various forms q of type d to give us the
components of the curve T (d), and this is indeed the case. To make this precise,
let H(q) denote the set of isomorphism classes of curves C in the moduli space M2

such that qC represents q primitively; we call H(q) the generalized Humbert variety
associated to q; cf. §3. Thus, Theorem 2 can be restated in terms of the H(q)’s; cf.
Theorem 13 (which is a refinement of Theorem 2). If Q̄∗

d denotes the set of GL2(Z)-
equivalence classes of forms of type d, then we prove in §8:

Theorem 3 If char(K) - d, then the H(q), where q ∈ Q̄∗
d, are precisely the irreducible

components of T (d). Thus T (d) has precisely t∗(d) := #Q̄∗
d irreducible components.

The precise birational structure of the curves H(q) depends on whether or not
q is an ambiguous form, i.e. on whether or not q has order 2 in the group Q̄−16d of
equivalence classes of primitive forms of discriminant −16d. (In the case that q′ = 1

4
q

is primitive of discriminant −d, then this means that q′ has order 2 in Q̄−d.)

Theorem 4 Let q ∈ Q̄∗
d. If q is not an ambiguous class, then H(q) ∼ X0(d)+;

otherwise H(q) ∼ X0(d)+/〈αq〉, where αq is a suitable Atkin-Lehner involution.

This result is made more precise in §10, where an explicit recipe for the Atkin-
Lehner involution αq is given; cf. Proposition 53 and Theorem 55. Note that it can
happen in certain cases that αq acts trivially on X0(d)+; these cases are analyzed
there as well.

An interesting but difficult question is to characterize the d′s for which there is
no curve of type d, i.e. to determine the d’s for which T (d) is empty or, equivalently,
for which t∗(d) = 0. Now from its definition one might expect that t∗(d) could
be expressed in terms of suitable class numbers of binary quadratic forms, or more
precisely, in terms of the number h̄(D) = h(D)/g(D) of (proper) equivalence classes
of forms in the principal genus of discriminate D = −16d. This is essentially correct,
but the formula is complicated by the fact that we need to count forms up to GL2(Z)-
equivalence instead of the more usual SL2(Z)-equivalence, and so one also needs to
know the number of spinor genera of discriminant −16d; cf. Remark 35.

Nevertheless, one has that the condition t∗(d) = 0 is essentially equivalent to the
condition that h̄(−16d) = 1 (cf. Corollary 34), and hence the precise determination
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of the exceptional d’s hinges on the solution of a classical problem in number theory
which was first raised by Gauss. Indeed, Gauss[10], Art. 303, conjectured not only
that there are only finitely many d’s with h(−4d) = 1 but also that the same is
true for h̄(−4d) = 1, and this was later proven by Chowla[3] in 1934. Moreover,
Gauss also conjectured that such d’s satisfy d ≤ 1848, but this does not seem to have
been proved unconditionally yet (even though his class-number 1 conjecture has been
settled). Nevertheless, Weinberger[37] has shown that Gauss’s conjecture follows from
the Generalized Riemann Hypothesis (GRH). We thus prove in §7:

Corollary 5 T (d) is empty for the following 21 values of d ≥ 1:

d = 1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462.(1)

If Gauss’s Conjecture is true, then these are all the d’s for which T (d) = ∅. In
particular, there are only finitely many d’s for which T (d) = ∅, and these are all
given by (1) if (GRH) holds.

Note that the above result can also be viewed as an existence theorem, and hence
as a refinement of the work of Hayashida[12]; cf. Remark 42.

Finally, it should be mentioned that there is a close connection between the results
obtained here and the study of elliptic subcovers f : C → E of genus 2 curves, as is
explained in [8], §6.

Acknowledgements. I would like to thank Gerd Frey for the many stimulating discus-
sions which we had about this work. In addition, I would like to gratefully acknowl-
edge receipt of funding from the from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

2 The refined Humbert invariant

Let A be an abelian surface over an algebraically closed field K of arbitrary char-
acteristic, and assume that A has a principal polarization θ ∈ NS(A) = Div(A)/≡,
where ≡ denotes numerical equivalence. Thus, θ = cl(D), where D ∈ Div(A) is an
ample divisor with self-intersection number (D.D) = 2. Put

q(A,θ)(D) = (D.θ)2 − 2(D.D), for D ∈ NS(A),(2)

where (.) denotes the intersection number of divisors. From the Hodge index theorem
it follows easily that q(A,θ) defines a positive definite quadratic form on the quotient
group NS(A, θ) = NS(A)/Zθ; cf. [19], §3. Since NS(A, θ) ' Zρ−1, where ρ = rk(NS)
is the Picard number, we see that q(A,θ) defines an (equivalence class of) integral,
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positive definite quadratic form(s) in ρ− 1 variables, which will be called the refined
Humbert invariant of the principally polarized abelian variety (A, θ).

As was explained in [19], §5, q(A,θ) is closely related to the classical Humbert invari-
ant attached to an abelian surface A/C: indeed, any number ∆ which is primitively
represented by q(A,θ) is a (classical) Humbert invariant of the principally polarized
abelian surface (A, θ). It thus follows that the subset

H∆ = {〈A, θ〉 ∈ A2(K) : q(A,θ) primitively represents ∆}

of the moduli space A2 (which classifies isomorphism classes 〈A, θ〉 of principally
polarized abelian surfaces) is precisely the Humbert surface of discriminant (or in-
variant) ∆ as defined by Humbert[15] or [35], §IX.2. By Humbert, this defines an
irreducible surface in A2(C) whenever ∆ ≡ 0, 1 (mod 4), and is empty otherwise.

As was indicated in the introduction, we are primarily interested in the principally
polarized abelian varieties that arise as Jacobians of (irreducible) genus 2 curves. Now
if M2 denotes the moduli space of smooth, irreducible genus 2 curves, then we have
Jacobi morphism j2 : M2 → A2 which takes a curve C to its principally polarized
Jacobian (JC , θC) in A2(K). (Note that θC is the class of a curve isomorphic to C.)

Over C, it is a classical fact (cf. Humbert[15], §17, or Krazer[23], p. 485) that the
complement A2 \ j2(M2) is the Humbert surface H1 of invariant 1. By a result of
Weil[36], this is true over an arbitrary field, as we now show:

Proposition 6 Let 〈A, θ〉 ∈ A2(K). Then 〈A, θ〉 /∈ j2(M2(K)) if and only if q(A,θ)

represents 1, i.e. q(A,θ)(D) = 1, for some D ∈ NS(A). Thus

A2 \ j2(M2) = H1.

Proof. By Weil[36], Satz 2, we have that 〈A, θ〉 /∈ j2(M2) if and only if (A, θ) '
(E1 × E2, θ1 + θ2) is a product of two elliptic curves and θ = θ1 + θ2 is the product
polarization (where θi = cl(pr∗i (0Ei

)), for i = 1, 2).
Now if (A, θ) ' (E1×E2, θ1 +θ2), then (θ.θi) = 1, (θi.θi) = 0 and so q(A,θ)(θi) = 1.
Conversely, suppose q(A,θ)(D) = 1 for some D. Then D is necessarily primitive,

for if D = mD′ with D′ ∈ NS(A), then 1 = qθ(D) = m2qθ(D
′), and so m = ±1,

i.e. D is primitive. Thus, by [19], Theorem 3.1, there exists an elliptic curve E on
A with (E.θ) = 1. Put θ1 = θ − cl(E). Then θ2

1 = θ2 − 2(θ.E) + E2 = 0, and so
θ1 = cl(mE ′), for some elliptic curve E ′ on A and some m ∈ Z; cf. [19], Prop. 2.3. But
since θ = cl(E + mE ′), we have 2 = θ2 = 2m(E.E ′), so m = 1. Thus θ = cl(E + E ′).
By Weil[36], Satz 2, we have that (A, θ) ' (E1 × E2, θ1 + θ2) with θi = pr∗i (0Ei

),
i = 1, 2, and so the assertion follows.

Remark 7 The above shows that the rule (E1, E2) 7→ 〈E1 × E2, pr
∗
10E1 + pr∗20E2〉

defines a surjection A1 × A1 → H1, where A1 denotes the moduli space of elliptic
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curves. It not difficult to see (by an argument similar to that of the proof of Proposi-
tion 43) that this map is a proper morphism, and so j2(A2) is an open subset of A2.
Since j2 is birational, it thus follows (by Zariski’s Main Theorem) that j2 is an open
immersion. Note that by Oort/Steenbrink[34], the Torelli map jg : Mg → Ag need
not be an immersion if g ≥ 5 and char(K) 6= 0.

3 Generalized Humbert varieties

The definition of a Humbert surface can be generalized as follows. Given any integral
positive definite quadratic form q, let

H(q) = {〈A, θ〉 ∈ A2(K) : q(A,θ) primitively represents q}.

Since clearly H(∆x2) = H∆ and since it can be shown (cf. [21]) that H(q) is always
an algebraic subset of M2, we shall call H(q) a generalized Humbert variety of A2.

The H(q)’s can be used to describe intersections of Humbert surfaces:

Proposition 8 If m and n are distinct positive integers, then

Hm ∩ Hn =
⋃
q

H(q),(3)

where the union runs over all equivalence classes of positive definite binary quadratic
forms q which primitively represent both m and n.

Proof. Let q be such a form, and let 〈A, θ〉 ∈ H(q). Then q(A,θ) primitively represents q.
Since m is primitively represented by q, it follows that m also primitively represented
by q(A,θ), so 〈A, θ〉 ∈ Hm. Thus H(q) ⊂ Hm, and similarly, H(q) ⊂ Hn, so H(q) ⊂
Hn ∩ Hm. This shows that the right side of (3) is contained in the left side.

Conversely, suppose 〈A, θ〉 ∈ Hm ∩Hn. Then there exist primitive vectors v, w ∈
M := NS(A, θ) such that q(A,θ)(v) = m and q(A,θ)(w) = n. If v and w were linearly
dependent, then v = ±w and hence q(A,θ)(v) = q(A,θ)(w), contrary to the hypothesis.
Thus, v and w are linearly independent and hence M0 := Zv + Zw has rank 2.
Let M1 be the saturation of M0 in M . Then the restriction q of q(A,θ) to M1 is a
positive definite, binary quadratic form which is primitively represented by q(A,θ),
and so 〈A, θ〉 ∈ H(q). Moreover, m = q(v) is primitively represented by q (because
v is primitive in M , hence also in M1. Similarly, n = q(w) is primitively represented
by q. Thus q is one of the forms of the right side of (3), so 〈A, θ〉 ∈ ∪H(q).

Remark 9 (a) Note that there are only finitely many equivalence classes of forms q
satisfying the conditions of Proposition 8 because their discriminants are bounded:
|disc(q)| ≤ 4mn.
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(b) The above proposition and Humbert’s results imply that dim H(q) ≤ 1, for all
binary positive-definite quadratic forms q.

(c) The above proposition can be viewed as giving a partial answer to a question
raised by McMullen[28], p. 96.

In the sequel we shall need to work out the refined Humbert invariant in many
cases, and for this it is useful to know its discriminant/determinant. (Here, as usual,
the determinant det(M, β) of a bilinear module (M, β) is the determinant of any Gram
matrix (β(xi, xj)) associated to a basis {xi} of M , and the determinant det(M, q) of a
quadratic module (M, q) is the determinant of the associated bilinear module (M, βq),
where βq is the bilinear form associated to q.) It turns out that it is closely related to
that of the Néron-Severi group, viewed as bilinear module via the intersection pairing:

Proposition 10 Let ρ = rank(NS(A)). Then the determinant of the quadratic mod-
ule (NS(A, θ), q(A,θ)) is related to that of the Néron-Severi group by the formula

det(NS(A, θ), q(A,θ)) = 1
2
(−4)ρ−1 det(NS(A), (.)).

Proof. Let β = βA denote the intersection pairing on NS(A), and let M0 = {(x.θ)θ −
2x : x ∈ NS(A)}. Clearly, (y.θ) = 0, if y ∈ M0, i.e. M0 ⊥ Zθ. Thus, if we put M =
M0 + Zθ, then det(β|M) = 2 det(β|M0), where β|M = β|M×M (and β|M0 = β|M0×M0).
Moreover, since M ⊃ 2NS(A), we see that M has finite index in NS(A), and so
det(β|M) = n2 det(β), where n = [NS(A) : M ]. Similarly, if we put M̄ = M/Zθ,
then [NS(A, θ) : M̄ ] = [NS(A) : M ] = n, and so det((βq̄)|M̄) = n2 det(βq̄), where
q̄ = qθ. Now for yi ∈ M0 we have βq̄(y1, y1) = −4β(y1, y2), and hence det((βq̄)|M̄) =
(−4)s det(β|M0), where s = rank(M0). (Note that if x1, . . . , xs form a basis of M0,
then their images in M̄ form a basis of M̄ .) Since s = ρ− 1, we thus obtain

det(βq̄) =
1

n2
det((βq̄)|M̄) =

(−4)ρ−1

n2
det(β|M0) =

(−4)ρ−1

2n2
det(β|M) =

(−4)ρ−1

2
det(β).

4 Curves of type d

We now focus our attention to those curves C of genus 2 whose Jacobian JC is
isomorphic to a product of two elliptic curves. As we shall see below (cf. Proposition
25), these can be classified by an integer d called its type, which is defined as follows.

Definition. Let d ≥ 1 be an integer. A curve C is said to have type d if there exist
two elliptic curves E1, E2, a cyclic isogeny h : E1 → E2 of degree d = deg(h) and an
isomorphism α : JC

∼→ E1 × E2 such that

θC ≡ α∗(aθ1 + bθ2 + cΓh), for some a, b, c ∈ Z,(4)

where θi = pr∗i (0Ei
), for i = 1, 2, and Γh ⊂ E1 × E2 denotes the graph of h. We

denote the set of isomorphism classes 〈C〉 of curves C of type d by T (d) ⊂ M2(K).
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Remark 11 Suppose that JC ' E1 × E2. If E1 has no complex multiplication
(i.e. if End(E1) = Z), then its type d is uniquely determined by C by the formula
det(NS(JC)) = 2d, as we shall see below (cf. Corollary 26). In the other cases,
however, C may have several types associated to it.

The first main result is that curves of type d can be characterized by a property
of the refined Humbert invariant qC := q(JC ,θC) associated to C. To formulate this in
a simple manner, we first introduce the following class of binary quadratic forms.

Definition. Let d ≥ 1 be an integer. An integral quadratic form q is said to be of
type d if it is binary, positive-definite of discriminant −16d, and if:

• either q is primitive and in the principal genus (i.e. q ∼ q2
1, for some primitive

form q1 of discriminant −16d) but not principal (i.e q 6∼ x2 + 4dy2),

• or q = 4q1, for some primitive form q1 of discriminant −d ≡ 1 (mod 4) which is
in the principal genus.

Remark 12 Since NS(JC , θC) does not come with an explicit basis, the quadratic
form qC is only defined up to GLn(Z)-equivalence, where n = rk(NS(JC , θC)). How-
ever, when dealing with binary quadratic forms, it is better to use proper (or SL2(Z))-
equivalence since the proper equivalence classes (of fixed discriminant) form a group.
We shall denote proper equivalence throughout by the symbol ∼, and use ≈ for
GLn(Z)-equivalence. Note that for primitive binary quadratic forms we have q1 ≈
q2 ⇔ q1 ∼ q2 or q1 ∼ q−1

2 , and so the above conditions do not depend on the choice
of the representative q of the GL2(Z)-equivalence class.

The following basic result is a restatement of Theorem 2 of the introduction; it
relates curves of type d to forms of type d.

Theorem 13 A curve C has type d if and only 〈C〉 ∈ H(q), for some quadratic form
q of type d. Thus

T (d) =
⋃

q∈Q̄∗
d

H(q),

where Q̄∗
d denotes the set of GL2(Z)-equivalence classes of forms of type d.

The proof of this theorem will be deferred until section 6 since it requires some
basic facts about forms of type d which will be presented in the next section. In
section 7 we shall also prove an existence theorem which shows that H(q) is non-
empty whenever q is a form of type d; cf. Theorem 30.
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5 Quadratic forms of type d

This section is devoted to a detailed study of the (binary) quadratic forms of type
d which were introduced in the previous section. In particular, it will be shown
that each proper equivalence class of such forms can be represented by a “standard
prototype” qs which is associated to a solution s = (n1, n2, k) of the equation

n1n2 − k2d = 1.(5)

To define these prototypes, we first introduce some notation.

Notation. Fix an integer d ≥ 1, and let

P (d) = {(n1, n2, k) ∈ Z3 : n1 > 0, n2 > 0, n1n2 − k2d = 1}

denote the set of solutions of (5) with positive ni’s. It is convenient to split P (d)
into two parts: P (d) = P (d)odd ∪̇P (d)even, where P (d)even = {(n1, n2, k) ∈ P (d) :
2|n1, 2|n2}.

For a given discriminant D ≡ 0, 1 (mod 4) and an integer n, let

Q
(n)
D = {[a, b, c] ∈ Z3 : a > 0, b2 − 4ac = D, gcd(a, b, c)|n}

denote the set of binary quadratic forms of discriminant D whose content gcd(a, b, c)
divides n. Here, as usual, we identify [a, b, c] with the quadratic form ax2 + bxy + cy2.

We first note that the set P (d) of solutions of (5) can be identified with a suitable
set of quadratic forms of discriminant −4d:

Lemma 14 The assignment (n1, n2, k) 7→ [n1d, 2kd, n2] induces a bijection

fd : P (d)
∼→ Q

(2)
−4d(d) := {[a, b, c] ∈ Q

(2)
−4d : d|a, 2d|b}.

Moreover, fd(n1, n2, k) is primitive if and only if gcd(n1, n2, 2) = 1.

Proof. If s = (n1, n2, k) ∈ P (d), then disc(fd(s)) = (2dk)2 − 4(n1d)n2 = 4d(dk2 −
n1n2) = −4d. Furthermore, since gcd(n1n2, k

2d) = 1 by (5), we have gcd(n1d, 2kd, n2) =

gcd(n1, n2, 2)|2, so fd(s) ∈ Q
(2)
−4d(d). (In particular, fd(s) is primitive if and only if

gcd(n1, n2, 2) = 1.) Conversely, if disc([n1d, 2dk, n2]) = −4d, then n1n2 − k2d = 1, so
(n1, n2, k) ∈ P (d).

We now study quadratic forms of the following type. For s = (n1, n2, k) ∈ P (d),
put

qs(x, y) = n2
2x

2 − 2k(t− d)xy + n2
1ty

2, where t = d(n1n2 + 3).(6)

Using (5) and the definition of t, we see that

k2(t− d)2 + 4d = n2
1n

2
2t,(7)
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and so disc(qs) = −16d. As we shall see presently, qs is always a form of type d,
provided that qs is not in the principal class. The converse is also true (up to proper
equivalence), but is harder to prove:

Proposition 15 If s = (n1, n2, k) ∈ P (d), then qs has type d, provided that qs is not
equivalent to the principal form. Conversely, if q is any form of type d, then there
exists s ∈ P (d) such that q is properly equivalent to qs.

The easy direction of this result is contained in the following more precise assertion.

Lemma 16 Let s = (n1, n2, k) ∈ P (d) and put t = d(n1n2 + 3).

(a) If n2 is odd, then q̃s := [n2, 2k(t− d), n2n
2
1t] ∈ Q

(1)
−16d and

qs ∼ q̃s ◦ q̃s and q̃s ◦ 1−4d ∼ fd(s).(8)

Here 1−4d = [1, 0, d] denotes the principal form of discriminant −4d, ◦ denotes the
composition of binary forms, and ∼ denotes proper equivalence.

(b) If n1 and n2 are even, then qs = 4q′(s) with q′s ∈ Q
(1)
−d. Moreover, fd(s) = 2f ′d(s)

with f ′d(s) ∈ Q
(1)
−d and we have

q′s ∼ f ′d(s) ◦ f ′d(s).(9)

Proof. (a) From (7) we see that disc(q̃s) = −16d, and so q̃s ∈ Q
(1)
−16d because gcd(n2,

−16d) = gcd(n2, 2) = 1. By the proof of [7], Lemma 1, it thus follows that q̃s◦ q̃s ∼ qs.
The second formula of (8) follows directly from the composition formula of Arndt
applied to q̃s and [d, 0, 1] ∼ 1−4d; cf. [2], p. 129. (Note that B = 2kd satisfies the
required congruences.)

(b) Here k, d and hence t are odd, so t − d = 2t1 is even; More precisely, t1 =
d(2ab+1), where a = n2

2
and b = n1

2
. Thus qs = 4q′s where q′s = [a2,−kt1, tb

2]. Clearly,
disc(q′s) = 1

16
disc(qs) = −d, so in particular −d ≡ 1 (mod 4). Since gcd(a,−d) = 1, we

see that q′s ∈ Q(1)
−d. Similarly, fd(s) = 2f ′d(s) with f ′d(s) = [bd, kd, a] ∈ Q

(1)
−d (because

gcd(a,−d) = 1).

To prove (9), put q̃′s = [a,−kt1, abt] ∈ Q
(1)
−d. Since gcd(a, d) = 1, we have again by

[7], Lemma 1, that q̃′s ◦ q̃′s ∼ q′s. Now q̃′s ∼ f ′d(s) because if we let y = −kdb, then the
matrix g =

(
1 y
0 1

)
∈ SL2(Z) transforms f ′d(s) into q̃′s; cf. formula (15) below. Thus,

f ′d(s) ◦ f ′d(s) ∼ q̃′s ◦ q̃′s ∼ q′s, which proves (9).

In order to prove the converse, we shall first interpret the relation (8) in terms of
a natural map π′d. To construct this map, recall that for any discriminant D, the set

Q̄D = Q
(1)
D /SL2(Z) of proper equivalence classes of primitive forms of discriminant D

form an abelian group under the composition of forms; cf. e.g. [2], p. 61. In addition,
for any n ≥ 1 we have a natural group homomorphism πD,n : Q̄n2D → Q̄D given by
q 7→ q ◦ 1D; cf. [2], p. 132. We now prove:
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Lemma 17 If d > 1, then there is a unique homomorphism π′d : Q̄−4d → Q̄−16d such
that

π′d(π−4d,2(q)) ∼ q ◦ q, for all q ∈ Q̄−16d.(10)

Furthermore, the image of πd is (Q̄−16d)
2, the principal genus of discriminant −16d.

Proof. First note that πD,n is always surjective. Indeed, by using the well-known
identification of Q̄D with Pic(OD), where OD = Z + 1

2
(1 +

√
D)Z is the order of dis-

criminant D, the map πD,n corresponds to the canonical map Pic(OD) → Pic(On2D)
induced by the inclusion On2D ⊂ OD, which is known to be surjective; cf. Lang[24],
p. 94.

From the explicit formula for h(D) := |Q̄D| = |Pic(OD)| (cf. [24], p. 95), we see
that |Ker(πD,2)| = 2, if D = −4d and d > 1; in fact, we have

Ker(π−4d,2) = {1−16d, qd},(11)

where qd = [4, 0, d], if d ≡ 1 (2), and qd = [4, 4, d + 1], if d ≡ 0 (2), as is easy
to verify. Thus, if S(q) = q ◦ q denotes the squaring homomorphism on Q̄D, then
Ker(πD,2) ≤ Ker(S), and so by the universal property of quotients, there is a unique
homomorphism π′d : Q̄4D → Q̄D such that S = π′d ◦ πD,2. This proves the first
assertion, and the second follows because (Q̄4D)2 is the image of S.

Corollary 18 If s = (n1, n2, k) ∈ P (d)odd, i.e. if gcd(n1, n2, 2) = 1, then qs ∼
π′d(fd(s)), and if s ∈ P (d)even, then q′s ∼ f ′d(s)

2.

Proof. If n2 is odd, then this follows directly from (8) and (10), and if n1 and n2 are
both even, then q′s ∼ f ′d(s)

2 by (9).
There remains the case that n1 is odd (and n2 even). Here we observe that

fd(n1, n2, k) ∼ fd(n2, n1,−k), for all s = (n1, n2, k) ∈ P (d),

because the matrix g =
(

n2 −k
−kd n1

)
∈ SL2(Z) transforms fd(s) into fd(s

′), where s′ =
(n2, n1,−k). Similarly, we have

qs ∼ qs′ ,

because the matrix g′ =
(

n1 y
k n2

)
∈ SL2(Z), where y = (n1n2 + 1)kd, transforms qs into

qs′ . Thus, since n1 is odd, we have by (8) that qs′ ∼ π′d(fd(s
′)), and so qs ∼ qs′ ∼

π′d(fd(s
′)) ∼ π′d(fd(s)), as claimed.

Corollary 19 For d > 1 we have

|Ker(π′d)| = 1
2
g(−16d) = 2ω(d)−1,(12)

where g(D) = |Q̄D/Q̄2
D| denotes the number of genera of discriminant D and ω(d)

the number of distinct prime divisors of d. Thus

q ∈ Ker(π′d) ⇔ q ∼ [d1, 0, d2], where d1d2 = d, d1 ≤ d2, and gcd(d1, d2) = 1.(13)
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Proof. Since π′d ◦ πD,2 = S by (10), and |Ker(πD,2)| = 2 (cf. the proof of Lemma 17),
we see that |Ker(π′d)| = 1

2
|Ker(S)| = 1

2
|Coker(S)| = 1

2
g(4D). This proves the first

equality of (12). To prove the second, recall that Gauss’s genus theory yields

g(D) = 2ω(D)−1+ε(D),(14)

where ε(D) = 1 if D ≡ 0 (mod 32), ε = −1 if D ≡ 4 (mod 16) and ε(D) = 0 otherwise;
cf. [18], p. 170. From this, the formula (12) follows easily.

Let d1, d2 be as indicated. If d1 is odd, then [d1, 0, 4d2] ∈ Ker(S) and so [d1, 0, d2] ∼
[d1, 0, 4d2] ◦ 1D ∼ πD,2([d1, 0, 4d2]) ∈ Ker(π′d). Similarly, if d1 is even, then d2 is odd,
and then [d1, 0, d2] ∼ πD,2([4d1, 0, d2]) ∈ Ker(π′d). Since the forms [d1, 0, d2] are all
reduced, they yield 2ω(d)−1 distinct equivalence classes in Ker(π′d). By (12) we have
thus found all the classes in Ker(π′d) and so (13) follows.

Lemma 20 The inclusion Q
(2)
−4d(d) ⊂ Q

(2)
−4d induces a bijection

Q
(2)
−4d(d)/Γ0(d)

∼→ Q
(2)
−4d/SL2(Z),

where Γ0(d) = {g =
(

x y
z w

)
∈ SL2(Z) : d|z}.

Proof. Recall that the action of g =
(

x y
z w

)
∈ SL2(Z) on Q

(n)
D is given by

[a, b, c]g = [ax2 + bxz + cz2, b(xw + yz) + 2(axy + czw), ay2 + byw + cw2];(15)

cf. [2], p. 4. In other words, we have M(qg) = gtM(q)q, where M(q) =
(

a b
b c

)
denotes

the matrix associated to q = [a, 2b, c]. From this we see easily that Γ0(d) acts on

Q
(2)
D (d), where D = −4d, and so we have a map j : Q

(2)
D (d)/Γ0(d) → Q

(2)
D /SL2(Z).

To see that j is injective, suppose that qi = [aid, 2bid, ci] ∈ Q
(2)
D (d), are such

that j(q1) = j(q2). Then there is a g =
(

x y
z w

)
∈ GL2(Z) such that m2 = mg

1 :=
gtm1g. Then a2d = a1dx2 + 2b1dxz + c1z

2 and b2d = b1d(xw + yz) + (a1dxy +
c1zw), so d| gcd(c1z

2, c1zw) = c1z, and hence d|z because gcd(c1, d) = 1. (Recall that
(ai, ci, bi) ∈ P (d); cf. Lemma 14.) Thus, g ∈ Γ0(d), and so j is injective.

We now prove that j is surjective. Let q = [a, 2b, c] ∈ Q
(2)
−4d. We first note that by

replacing q by qg with a suitable g ∈ SL2(Z) we may assume gcd(a, d) = 1. Indeed, if

q ∈ Q
(1)
−4d, then this is well-known; cf. [2], pp. 49-50. In the other case we have q = 2q1,

where q1 ∈ Q
(1)
−d and −d ≡ 1 (mod 4), and so the assertion follows by same argument

applied to q1. Thus, gcd(a, d) = 1 and hence also gcd(a, b) = 1 because ac − b2 = d.
Thus, there exist x, y ∈ Z such that g =

(−b x
a y

)
∈ SL2(Z). Then qg = [ad, 2yd, ∗], and

so we see that q ∈ Im(j). This proves that j is bijective.

Proof of Proposition 15. Let s ∈ P (d). If s ∈ P (d)odd, then fd(s) is primitive of
discriminant −4d and hence by Corollary 18 and Lemma 17 we see that qs ∼ π′d(fd(s))
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is in the principal genus of discriminant −16d (and is primitive). Thus, qs is of type
d, provided that qs is not in the principal class.

On the other hand, if s ∈ P (d)even, then by Lemma 16(b) we know that qs = 4q′s,
where q′s is primitive of discriminant −d. Moreover, (9) shows that q′s is in the
principal genus, so qs has type d also in this case.

Conversely, suppose q is a form of type d. Assume first that q is primitive. Since q
lies in the principal genus, we have by Lemma 17 that q ∼ π′d(q1), for some q1 ∈ Q

(1)
−4d.

By Lemma 20 (and Lemma 14) we have q1 ∼ fd(s), for some s ∈ P (d)odd. Thus,
q ∼ π′d(fd(s)) ∼ qs, the latter by Corollary 18.

Next, suppose that q is not primitive, so by definition q = 4q′, where q′ ∼ q′′ ◦ q′′

for some q′′ ∈ Q
(1)
−d. Then 2q′′ ∈ Q

(2)
−4d, and so by Lemma 20 (and Lemma 14) there

is an s ∈ P (d)even such that 2q′′ ∼ fd(s). Thus, q′′ ∼ f ′d(s) and so by (9) we obtain
q′s ∼ f ′d(s) ◦ fd(s) ∼ q′′ ◦ q′′ ∼ q′. We therefore have qs = 4q′s ∼ 4q′ = q, as claimed.

We now derive some properties of modules endowed with forms of prototype qs,
where s ∈ P (d). These will be used in the next section.

Lemma 21 Let (M, q) be a quadratic module of rank 2, and suppose that M has a
basis {v1, v2} such that for some s = (n1, n2, k) ∈ P (d) we have

q(xv1 + yv2) = qs(x, y), for all x, y ∈ Z.

Put w1 = v1 and w2 = −n2
1v1 − kv2. Then

q(xw1 + yw2) = n2
2x

2 + 2(n1n2 − 2)xy + n2
1y

2.(16)

Moreover, for w3 = n1kdv1 + n2v2 we have q(w3) = 4dn1n2, provided that k 6= 0.

Proof. The relation (16) is a straight-forward computation, using the transformation

law (15) applied to g =
(
1 −n2

1
0 −k

)
and the relation (5).

To compute q(w3), note first that by (5) we have kw3 = −(n1w1 + n2w2). Thus,
by (16) we obtain k2q(w3) = q(n1w1 + n2w2) = 4n1n2(n1n2 − 1) = 4n1n2k

2d, and so
q(w3) = 4n1n2d because k 6= 0.

6 The product surface E1 × E2

The aim of this section is to prove the basic classification Theorem 13. For this, it
is useful to use the following “presentation” of the Néron-Severi group NS(A) of a
product surface A = E1 × E2 of two elliptic curves E1 and E2.

Proposition 22 For a, b ∈ Z and h ∈ Hom(E1, E2) put

D(a, b, h) = (a− deg(h))θ1 + (b− 1)θ2 + Γ−h ∈ Div(A),(17)
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where θi = p∗i (0Ei
), and Γf ∈ Div(A) is the graph of f = −h. Then the rule (a, b, h) 7→

cl(D(a, b, h)) defines a group isomorphism

D = DE1,E2 : Z⊕ Z⊕ Hom(E1, E2)
∼→ NS(E1 × E2),

and we have
(D(a, b, f).D(a′, b′, f ′)) = ab′ + ba′ − βd(f, f ′),(18)

where βd is the bilinear form associated to the degree quadratic form on Hom(E1, E2),
i.e. βd(f, f ′) = deg(f + f ′) − deg(f) − deg(f ′). In addition, the homomorphism
φD : A → Â associated to D = D(a, b, f) is given by

φD(a,b,f) = λ1 ⊗ λ2 ◦
(

[a]E1 f t

f [b]E2

)
,(19)

where λ1 ⊗ λ2 denotes the product polarization associated the canonical polarizations
λi : Ei

∼→ Êi, for i = 1, 2, and f t = λ−1
1 f̂λ2 is the dual map.

Proof. Most of this is well-known; for example, the fact that D is an isomorphism is
a special case of the basic relation between correspondences of curves and homomor-
phisms of their Jacobians; cf. [31], p. 185. In the appendix below we derive this in
Proposition 61 as a special case of a more general construction (based on (19)) which
has the advantage of being more functorial.

Corollary 23 The determinant of the Néron-Severi group of E1×E2 with respect to
the intersection form is given by

det(NS(E1 × E2)) = (−1)ρ−1 det(Hom(E1, E2), βd),(20)

where ρ = rank(NS(E1 × E2)) = rank(Hom(E1, E2)) + 2.

Proof. Put Γ∗f = D(0, 0, f). If f1, . . . , fr is a basis of Hom(E1, E2), then by Proposition
22 we have that θ1, θ2, Γ

∗
f1

, . . . , Γ∗fr
is a basis of NS(E1 × E2) and so by (18) we see

that the Gram matrix G(θ1, θ2, Γ
∗
1, . . . , Γ

∗
fr

) of the intersection form with respect to
this basis is given by the block diagonal matrix

G(θ1, θ2, Γ
∗
f1

, . . . , Γ∗fr
) = diag

((
0 1
1 0

)
,−G(f1, . . . , fr)

)
,

where G(f1, . . . , fr) is the Gram matrix of βd with respect to the basis f1, . . . , fr.
From this, formula (20) follows by taking the determinant of both sides.

In the sequel we shall be particularly interested in the set P(A) consisting of
those divisors D ∈ NS(A) which define principal polarizations on A. These can
characterized by using the set P (d) introduced in the previous section.
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Corollary 24 Let D = D(a, b, h) ∈ NS(A). Then D defines a principal polarization
(i.e. D ∈ P(A)) if and only if a > 0 and ab − deg(h) = 1. Thus, every principal
polarization of A has the form

Ds,h = D(n1, n2, kh) with h ∈ Hom(E1, E2) and s = (n1, n2, k) ∈ P (deg(h)).(21)

Proof. By the Riemann-Roch Theorem (cf. [30], p. 127), D ∈ P(A) if and only if D
is ample and D2 = 2, and this holds if and only if D2 = 2 and (D.θ2) > 0; cf. [19],
Corollary 2.2b). Thus, the first assertion follows in view of (18). The second follows
from this and the fact that deg(kh) = k2 deg(h).

We now turn to the study of curves C of type d. As promised, we first verify that
every curve whose Jacobian is isomorphic to a product of two elliptic curves has a
type d, for some d ≥ 1.

Proposition 25 Let C be a curve such that its Jacobian JC has an isomorphism
α : JC

∼→ E1 × E2 to a product of two elliptic curves. Then there exists a cyclic
isogeny h : E1 → E2 of some degree d ≥ 1 such that

θC ≡ α∗(Ds,h), for some s = (n1, n2, k) ∈ P (d) with k 6= 0.(22)

In particular, E1 is isogenous to E2 and C has type d.

Proof. Put D ≡ (α−1)∗(θC) ∈ P(E1 × E2). By Proposition 22 and Corollary 24,
D = D(n1, n2, h1), for some integers n1, n2 and homomorphism h1 ∈ Hom(E1, E2)
satisfying n1n2−deg(h1) = 1 and n1 > 0. Note that h1 6= 0, for otherwise n1 = n2 = 1
which means D ≡ θ1 + θ2. But then qC(α∗θ1) = 1, which contradicts Proposition 6.

Thus, we can write h1 = kh, where h is a cyclic isogeny and k 6= 0, and so we see
that (22) holds with s = (n1, n2, k) ∈ P (d). Note that this means that C has type d
because D ≡ kD(n1, n2, h) = k(n1 − d)θ1 + k(n2 − 1)θ2 + kΓ−h.

Corollary 26 If JC ' E1 × E2, where End(E1) = Z, then C is a curve of unique
type d = 1

2
det(NS(JC)).

Proof. Since E2 ∼ E1 by Proposition 25, it follows that Hom(E1, E2) = Zh, and
so by (20) we have det(NS(JC)) = (−1)2 det(NS(E1 × E2)) = βd(h, h) = 2d, where
d = deg(h).

Note that h is necessarily cyclic, and that the only cyclic isogenies in Hom(E1, E2)
are ±h. Thus, if α : JC

∼→ E1×E2 is any isomorphism, then θC ≡ α∗(Ds,h), for some
s ∈ P (d), and so C has (unique) type d = 1

2
det(NS(JC)).

Remark 27 (a) Although the type d is uniquely determined by the curve C in the
above situation, the elliptic curves E1 and E2 are not unique (up to isomorphism).
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Indeed, if d has more than one prime factor, then we can have an isomorphism
E1 × E2 ' E ′

1 × E ′
2 with E ′

1 6' E1, E2; cf. Proposition 49 below.

(b) If C is any curve of type d satisfying (22) with (n1, n2, k) ∈ P (d), then 〈C〉 ∈
Hn2

1
∩ Hn2

2
because qC(α∗(θ1)) = n2

2 and qC(α∗(θ1)) = n2
1 by (18) (and (2)). (Note

that since α∗(θi) is an elliptic curve, its image in NS(JC , θC) is primitive by [19],
Theorem 2.8.) Thus, if n1 6= n2, then we see by Proposition 8 that 〈C〉 ∈ H(q), for
some binary quadratic form q.

We now turn to the proof of Theorem 13. One direction is contained in the
following more precise result.

Proposition 28 Let A = E1 ×E2 and θ = Ds,h ∈ P(A), where h is a cyclic isogeny
of degree d and s = (n1, n2, k) ∈ P (d). Let θ̄1, θ̄2 and Γ̄∗h denote the images of θ1, θ2,
and Γ∗h = D(0, 0, h) in NS(A, θ), respectively.

(a) M̄ := 〈θ̄1, θ̄2, Γ̄
∗
h〉 is a primitive submodule of NS(A, θ), and so 〈A, θ〉 ∈ H(qM̄),

where q|M denotes the restriction of qθ = q(A,θ) to M̄ .

(b) Let D̄ = kdθ̄2 + n1Γ̄
∗
h. Then {θ̄1, D̄} is a basis of M̄ , and we have

qθ(xθ̄1 + yD̄) = qs(x, y) ∀x, y,∈ Z, where qs is defined by (6).(23)

Proof. (a) Since h is a cyclic isogeny, it is a primitive element in Hom(E1, E2), and
so we can extend h to a basis h1 = h, h2, . . . , hr of Hom(E1, E2). Then {cl(θ1), cl(θ2),
cl(Γ∗h1

), . . . , cl(Γ∗hr
)} is a basis of NS(E1 × E2); cf. Corollary 23. Thus, M := 〈cl(θ1),

cl(θ2), cl(Γ
∗
h)〉 is a primitive submodule of NS(E1 × E2), and so we see that M̄ =

M/(Zθ) is a primitive submodule of NS(A, θ). This means that qθ primitively repre-
sents qM̄ , and so 〈A, θ〉 ∈ H(qM̄).

(b) Put D = D(0, kd, n1h) ∈ NS(A); thus, D̄ is the image of D in NS(A, θ). Using
(5), we see that cl(θ2) = n1θ − kD − n2

1cl(θ1), and cl(Γ∗h) = n2D − kdθ + n1kdθ1, so
{θ, cl(θ1), D} is a basis of M , and hence {θ̄1, D̄} is a basis of M̄ .

Put D1 = xθ1 + yD. Then by computing intersection numbers we find that
(θ.D1) = n2x− n1kdy and D2

1 = 2(kdxy − n2
1dy2), and so qθ(D1) = (θ.D1)

2 − 2D2
1 =

n2
2x

2 − 2kd(n1n2 + 2)xy + n2
1d(k2d + 4)y2 = qs(x, y); here we used the fact that

k2d + 4 = n1n2 + 3 by (5).

For the other direction we shall use the following elementary fact.

Lemma 29 Let cl : NS(A) → NS(A, θ) = NS(A)/Zθ denote the quotient map, and
let D̄ ∈ NS(A, θ). If n ∈ Z, then there exists D ∈ NS(A) with

(D.θ) = n and cl(D) = D̄(24)

if and only if n ≡ q(A,θ)(D̄) (mod 2).
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Proof. If D exists, then qθ(D̄) = qθ(D) = n2 − 2D2 ≡ n2 ≡ n (mod 2). Conversely,
suppose that n ≡ qC(D̄) (mod 2), and let D0 ∈ NS(A) be any class with cl(D0) = D̄.
Put n0 = (D.θ). Then, by what was just shown, n0 ≡ qC(D̄) ≡ n (mod 2), and so
D = 1

2
(n− n0)θ + D0 satisfies (24).

Proof of Theorem 13. If C is a curve of type d, then (22) holds for some s =
(n1, n2, k) ∈ P (d) by Proposition 25, and so Proposition 28 shows that the form qs is
primitively represented by qC . Note that qs cannot represent 1 by Proposition 6, so
qs cannot be in the principal class. Thus, qs is a form of type d by Proposition 15.

Conversely, suppose that 〈C〉 ∈ H(q), where q is a form of type d. Then by
Proposition 15 we know q ∼ qs for some s = (n1, n2, k) ∈ P (d). (Note that k 6= 0
for otherwise qs represents 1 = n2

2.) Thus, there exist D̄′
1, D̄

′
2 ∈ NS(JC , θC) (which

generate a primitive submodule M̄ of NS(JC , θC)) such that

qC(xD̄′
1 + yD̄′

2) = qs(x, y), for all x, y ∈ Z.

Put D̄1 = D̄′
1 and D̄2 = −n2

1D̄
′
1 − kD̄′

2; note that D̄1 and D̄2 are primitive in M̄ and
hence in NS(JC , θC) because gcd(−n2

1, k) = 1. Applying Lemma 21 to M = M̄ and
vi = D̄′

i, we see from (16) that qC(D̄1) = n2
2 and qC(D̄2) = n2

1. Thus, by Theorem 3.2
of [19] we know that there are unique elliptic subgroups Ei ≤ JC such that cl(Ei) =
D̄i, for i = 1, 2, and that we have (E1.θC) = n2 and (E2.θC) = n1. Furthermore,
since E2

i = 0, we have 4(E1.E2) = 2(E1 + E2)
2 = ((E1 + E2).θC)2 − qC(E1 + E2) =

(n1 +n2)
2−qC(D̄1 + D̄2). By (16) we know that qC(D̄1 + D̄2) = n2

2 +2(n1n2−2)+n2
1,

and so (E1.E2) = 1. Thus, there is an isomorphism α : JC
∼→ E1 × E2 such that

α∗θ1 = E2 and α∗θ2 = E1.
It remains to show that C has type d = − 1

16
disc(q). For this, put D = α∗θC ∈

P(E1 × E2), and write D = D(a, b, ch), where a, b, c ∈ Z and h ∈ Hom(E1, E2) is
cyclic. Then n1 = (θC .E2) = (D.θ2) = a, so a = n1 and similarly b = n2.

To prove that d = deg(h), consider D̄3 := n1kdD̄′
1 +n2D̄

′
2. Since qC(D̄3) = 4dn1n2

by Lemma 21, we know by Lemma 29 that there exists D3 ∈ NS(JC) such that
(D3.θC) = −2kd and cl(D3) = D̄3. We now observe that

θC ≡ n1E1 + n2E2 + kD3.(25)

Indeed, since kD̄3 = −(n1D̄1 + n2D̄2) (cf. the proof of Lemma 21), it follows that
θ′ := n1E1 + n2E2 + kD3 = mθC , for some m ∈ Z. But then 2m = mθ2

C = (θ′.θC) =
n1n2+n2n1+k(−2kd) = 2, so m = 1. Thus (25) holds, and so we obtain kα∗D3 = cΓ∗h.
Since Γ∗h is primitive in NS(E1 × E2), it follows that α∗D3 = c′Γ∗h, where c′ = c

k
∈ Z.

Thus, D3 = c′D′
3, where D′

3 := α∗(Γ∗h), and so D̄′
3 = cl(D′

3) ∈ M̄ = ZD′
1 + ZD′

2

because M̄ is a primitive submodule of NS(JC , θC). Now c′D̄′
3 = D̄3 = n1kdD̄′

1+n2D̄
′
2,

so c′| gcd(n1kd, n2) = gcd(n1, n2). But gcd(c′, n1n2) = 1 because n1n2− c2 deg(h) = 1
(since D ∈ P(E1 × E2)), and so c′ = ±1, i.e. deg(h) = d. Thus C has type d.
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7 The existence theorem

We now show that H(q) is non-empty, whenever q is a form of type d. This follows
from the following more precise assertion:

Theorem 30 Suppose that q is a binary quadratic form of type d. Let E1 be any
elliptic curve with End(E1) = Z, and let E2 = E1/H, where H ≤ E1 is any cyclic
subgroup (scheme) of degree d. Then there exists a curve C with JC ' E1 × E2 such
that qC is equivalent to q, i.e. qC ≈ q; in particular, 〈C〉 ∈ H(q).

To prove this, we shall use the following refinement of Corollary 24.

Proposition 31 Suppose Hom(E1, E2) = Zh, and let d = deg(h). Then the map
s 7→ Ds,h defines a bijection between the set P (d) and the set P(A) of principal
polarizations on A := E1 × E2. Furthermore, θ ∈ P(A) is represented by a smooth
curve C of genus 2 if and only if q(A,θ) is not in the principal class.

Proof. The first assertion follows immediately from Corollary 24 since here every
D ∈ NS(E1×E2) has the form D(a, b, ch), and since deg(ch) = c2 deg(h). The second
follows immediately from Proposition 6 because a binary quadratic form represents
1 if and only if it is in the principal class.

Proof of Theorem 30. By Proposition 15 there exists s ∈ P (d) such that q ∼ qs. Put
θ = Ds,h ∈ NS(E1 × E2), where h : E1 → E2 = E1/H1 denotes the quotient map.
(Note that h is cyclic, and so Hom(E1, E2) = Zh.) By Proposition 31 we see that
θ ∈ P(A), and Proposition 28 shows that q(A,θ) ≈ qs ∼ q. (Note that M̄ = NS(A, θ)
because M̄ is primitive in NS(A, θ) and rk(NS(A, θ)) = 2.) Since q is not in the
principal class by hypothesis, Proposition 31 shows that (A, θ) ' (JC , θC), for some
curve C of genus 2. By construction, qC ≈ q.

We now consider some applications of the Existence Theorem 30. The first is the
following useful fact.

Corollary 32 If qi is a quadratic form of type di, for i = 1, 2, then H(q1) = H(q2)
if and only if q1 ≈ q2.

Proof. If q1 ≈ q2, then H(q1) = H(q2) by definition. Conversely, suppose H(q1) =
H(q2). By Theorem 30 there exists 〈C〉 ∈ H(q1) such that qC ≈ q1. Since 〈C〉 ∈
H(q2), this means that qC primitively represents q2, and so q2 ≈ qC because both
have rank 2. Thus q1 ≈ q2, as asserted.

Remark 33 The above proof also shows that if q1 6≈ q2, then H(q1)∩H(q2) consists
only of CM-points, i.e. of points 〈A, θ〉 such that A ' E1 × E2, where E1 ∼ E2 are
elliptic curves which have complex multiplication (or are supersingular).
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Corollary 34 We have for d ≥ 1 that T (d) = ∅ ⇔ Q̄∗
d = ∅, and hence

T (d) = ∅ ⇔ h̄(−16d) = 1 and d 6≡ 3 (4) ⇔ h̄(−16d) = 1 and d 6= 3, 7, 15.(26)

where h̄(D) = h(D)/g(D) denotes the number of forms in the principal genus of
primitive binary quadratic forms of discriminant D = −16d.

Proof. The first assertion follows directly from Theorems 13 and 30. To prove the
first equivalence of (26), note first that it follows from the definitions that the number
t(d) of SL2(Z)-equivalence classes of forms of type d is given by

t(d) =

{
h̄(−16d)− 1, if d 6≡ 3 (mod 4)
h̄(−16d)− 1 + h̄(−d), if d ≡ 3 (mod 4).

(27)

In view of Remark 12 we see that Q̄∗
d = ∅ ⇔ t(d) = 0, and so the first equivalence

follows. To prove the second, it is enough to show that if d ≡ 3(4), then h̄(−16d) > 1
when d 6= 3, 7, 15. For this we observe that (14) implies that g(−16d) = 2g(−4d),
when d ≡ 3(4) and that hence h̄(−16d) = h̄(−4d) because h(−16d) = 2h(−4d) (cf.
Lemma 17). Now by Hall[11], Theorem I, we have h̄(−4d) > 1 when d ≡ 3(4) and
d 6= 3, 7, 15, and so the second equivalence follows.

Remark 35 It is clear that the above number t(d) is closely connected to the num-
ber t∗(d) = #Q̄∗

d of GL2(Z)-equivalence classes of forms of type d. To make this
connection precise, however, we require another invariant of forms of discriminant D:
the number s̄(D) = |Q̄2

D[2]| of ambiguous classes in the principal genus. This number
is closely related to the number s(D) = [Q̄D : Q̄4

D] of spinor genera of (primitive)
forms of discriminant D as defined by Estes/Pall [7], for we have s̄(D) = s(D)/g(D).
Now by Remark 12 we have

h̄∗(D) := #(Q̄2
D/GL2(Z)) =

1

2
(h̄(D) + s̄(D)),(28)

and so we see that

t∗(d) := #Q̄∗
d =

{
h̄∗(−16d)− 1, if d 6≡ 3 (mod 4)
h̄∗(−16d)− 1 + h̄∗(−d), if d ≡ 3 (mod 4).

(29)

Proof of Corollary 5: From Gauss[10], Art. 303, we know that h̄(−16d) = 1 when d
is one of the values of (1); cf. also Dickson[5], p. 89. Thus, by Corollary 34 we see
that T (d) = ∅ for those values of d. Moreover, if we look at the list of exceptional
discriminants which are of the form −16d with d 6= 3, 7, 15, then we obtain the list
(1). Finally, the finiteness assertion follows from Chowla[3], and the fact that (GRH)
implies Gauss’s Conjecture was proved by Weinberger[37].

For later applications it is useful to refine the above existence theorem by deter-
mining the number of isomorphism classes of curves C on E1 ×E2 such that qC ≈ q.
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Theorem 36 Let A = E1 × E2, where Hom(E1, E2) = Zh, and let q be a quadratic
form of type d := deg(h). Then the number NA(q) of isomorphism classes of smooth
genus 2 curves C on A with qC ≈ q is given by:

NA(q) =

{
2ω(d)−2 if q ∈ Q̄2

−16d[2] \ {qd} or if 1
4
q ∈ Q̄2

−d[2] \ {1−d},
2ω(d)−1 otherwise,

(30)

where qd = 4x2 + dy2, if d ≡ 0(2), and qd = 4x2 + 4xy + (d + 1)y2, if d ≡ 1(2).

Remark 37 Note that qd is not necessarily in Q̄2
−16d[2]. In fact, this is the case if

and only if d ≡ 0, 1, 5 (8), as can be verified by checking the generic characters of qd.

As we shall see presently, the above theorem follows easily from the following fact
which is interesting in itself.

Proposition 38 Let A = E1 × E2, where Hom(E1, E2) = Zh, and let d = deg(h).
If C is a smooth genus 2 curve on A, then C ≡ Ds,h, for some s ∈ P (d) with
fd(s) /∈ Ker(π′d), and the isomorphism class of C is uniquely determined by the
GL2(Z)-equivalence class of the binary quadratic form fd(s). Furthermore, qC ≈ qs.

Before proving this, let us see how Theorem 36 follows from it.

Proof of Theorem 36: Suppose first that q is primitive, so q ≈ q2
1, where q1 ∈ Q̄−16d.

If C is any curve on A, then by Proposition 38 we have that C ≡ Ds,h with s ∈ P (d),
and that qC ≈ qs. We thus see from Corollary 18 and Proposition 38 that

NA(q) = #(π′d
−1

(q) ∪ π′d
−1

(q−1))/GL2(Z).

Now if q 6∼ q−1, then the sets π′d
−1(q) and π′d

−1(q−1) are interchanged under the
GL2(Z)-action, and so NA(q) = #(π′d

−1(q)) = |Ker(π′d)| = 2ω(d)−1 by Corollary 19.
(Note that we can assume d > 1 for otherwise Q̄∗

d is empty by (26).) This proves
(30) in this case. Next, suppose q ∼ q−1, i.e. q ∈ Q̄2

−16d[2]. Now if q ∈ Ker(π−4d,2),

i.e. if q ∼ qd by (11), then π′d
−1(q) ⊂ Q̄−4d[2] (cf. Lemma 17), and so NA(q) =

#(π′d
−1(q)) = |Ker(π′d)| = 2ω(d)−1 again. On the other hand, if q ∈ Q̄2

−16d[2] \ {qd},
then π′d

−1(q)∩ Q̄−4d[2] = ∅, and so the GL2(Z)-action has no fixed points on π′d
−1(q),

and hence NA(q) = 1
2
#(π′d

−1(q)) = 1
2
|Ker(π′d)| = 2ω(d)−2 by Corollary 19.

Finally, suppose that q is not primitive. Then q ≈ 4q1 with q1 ∈ Q̄2
−d and d ≡

3 (mod 4). In this case we have by the same reasoning as above that

NA(q) = #(Sd
−1(q1) ∪ Sd

−1(q−1
1 ))/GL2(Z),

where Sd : Q̄−d → Q̄2
−d is the squaring map. Since |Ker(Sd)| = g(−d) = 2ω(d)−1 (cf.

(14)), a similar analysis as above yields (30).

We now turn to the proof of Proposition 38. For this, we require the following
information about the functorial behaviour of the divisor Ds,f .
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Proposition 39 If g =
(

a b
cd e

)
∈ Γ±0 (d) := Γ0(d)∪

(−1 0
0 1

)
Γ0(d), and if f ∈ Hom(E1, E2)

has degree d, then

αg,f =

(
[a]E1 bf t

cf [e]E2

)
∈ Aut(E1 × E2),

and we have
α∗g,f (Ds,f ) := Dsg,f , for all s ∈ P (d),(31)

where sg ∈ P (d) is defined by the rule fd(sg) = fd(s)g.

Proof. We first observe that if [g]E2 ∈ End(E2 × E2) denotes the endomorphism
induced by the matrix g ∈ M2(Z), then we have

αg,f = (f t × 1E2)
−1 ◦ [g]E2 ◦ (f t × 1E2),(32)

and so αg,f ∈ Aut(A) as deg(αg,f ) = deg([g]E2) = (det(g))2 = 1; cf. Corollary 63.
Although we could deduce (31) directly from the pullback formula (70) by a tedious

calculation, it is easier to apply formula (60) to the map Ψf := Φλ1⊗λ2,f t×1 : NS(A) →
End(E2×E2) which is introduced in Proposition 56 of the appendix. In our situation
(60) becomes

Ψf (α
∗
g,fD) = [gt]E2Ψf (D)[g]E2 , for all D ∈ NS(A),(33)

because by (32) and (63) we have

cf t×1(αg,f ) = [g]E2 and rλ2⊗λ2(ch(αg,f )) = [gt]E2 .(34)

Next we observe that by (19) we have

Ψf (D(a, b, cf)) =

(
f 0
0 1

) (
[a] cf t

cf [b]

) (
f t 0
0 1

)
=

(
[ad] [cd]
[cd] [b]

)
, ∀a, b, c ∈ Z,(35)

and so Ψf (Ds,f ) = [M(fd(s))]E2 , where (as before) M(q) =
(

a b
b c

)
∈ M2(Z) denotes

the matrix associated to the quadratic form q = [a, 2b, c].
Since the action of g on quadratic forms is given by the formula M(fd(gs)) :=

M(fd(s)g) = gtM(fd(s))g, we thus obtain from (33) that

Ψf (α
∗
g,fDs,f ) = [gt]E2Ψf (Ds,f )[g]E2 = [gtM(fd(s))g]E2 = [M(fd(sg))]E2 = Ψf (Dsg,f ),

and so (31) follows because Ψf is injective (cf. Corollary 58).

Corollary 40 If A = E1 × E2 and Hom(E1, E2) = Zh, where deg(h) = d, then the
map g 7→ αg,h defines a group isomorphism Γ±0 (d)

∼→ Aut(A), and hence the rule
Ds,f 7→ fd(s) induces bijections

f̄A : P(A)/Aut(A)
∼→ Q

(2)
−4d(d)/Γ±0 (d)

∼→ Q
(2)
−4d/GL2(Z).(36)
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Proof. By Proposition 39 we know that g 7→ αg,h defines an (injective) map Γ±0 (d) →
Aut(A). Now since Hom(E1, E2) = Zh and hence Hom(E2, E1) = Zht, we see that

every α ∈ Aut(A) has the form α =
(

a bht

ch e

)
, for some a, b, c, e ∈ Z. But since

1 = deg(α) = (ae − bcd)2 by (69) (cf. proof of Proposition 39), we see that g :=(
a b
cd e

)
∈ Γ±0 (d) and so α = αg,h. Thus, the map g 7→ αg,h is bijective. Moreover,

since cht×1 is a ring homomorphism, it follows from (34) that this bijection is an
isomorphism of groups.

By combining Proposition 31 with Lemma 14 we see that the map Ds,h 7→ s 7→
fd(s) defines a bijection fA : P(A)

∼→ Q
(2)
−4d(d). By (31) this is Γ±0 (d)-equivariant, and

so the first bijection of (36) follows. The second follows from Lemma 20.

Proof of Proposition 38. If C is a smooth curve of genus 2 on A, then it defines a
principal polarization on A (cf. Weil[36] or [19]), and so C ≡ Ds,h with s ∈ P (d) by
Proposition 31. Moreover, qC ≈ qs by (the proof of) Theorem 30, so fd(s) /∈ Ker(π′d)
by Corollary 18 because qC 6≈ 1−16d by Proposition 31.

If C ′ is another curve on A which is isomorphic to C, then by Torelli’s theorem
there exists an automorphism α ∈ Aut(A) with α(C) = C ′, and so it follows from
by Corollary 40 that the isomorphism class is uniquely determined by the GL2(Z)-
equivalence class of fd(s).

Corollary 41 Let A = E1×E2, where Hom(E1, E2) = Zh, and let d = deg(h). Then
the number NA of isomorphism classes of smooth genus 2 curves on A is

NA = #(Q
(2)
−4d/GL2(Z))− 2ω(d)−1 =


1
2
h(−4d) if d ≡ 0, 1, 5 (mod 8)

1
2
(h(−4d)− 2ω(d)−1) if d ≡ 2, 4, 6 (mod 8)

1
2
(h(−4d) + h(−d)) if d ≡ 3, 7 (mod 8)

,

except when d = 1; in that case NA = 0.

Proof. By Corollary 40 the total number of isomorphism classes of principal polar-
izations on A is #(Q

(2)
−4d/GL2(Z)). By Proposition 38 we know that fd(s) ∈ Q

(2)
−4d

corresponds to a smooth curve if and only if fd(s) /∈ Ker(π′d), and so the first formula
for NA follows from (12). The second formula follows from this and (14) because

#(Q
(1)
D /GL2(Z)) = 1

2
(h(D) + g(D)).

Remark 42 The number NA was also determined by Hayashida [12], §7-8, but his
formula for NA is much more complicated than the one above since he gives the
result in terms of the class number hK of the associated imaginary quadratic field
K = Q(

√
−d). However, by using the well-known relation between h(−16d) and hK

(cf. Lang[24], p. 95), a somewhat tedious calculation shows that the two formulae
give the same result.
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8 The irreducibility of H(q)

The next task is to show that the generalized Humbert variety H(q) is a closed and
irreducible subset of A2 when q is quadratic form of type d. This will be done by
exhibiting H(q) as the image of the modular curve X0(d) by a suitable morphism µs.

To define this morphism, recall that X0(d) classifies cyclic isogenies of degree d
of elliptic curves, i.e. X0(d)(K) can be identified with the set of isomorphism classes
〈f : E → E ′〉, where f is a cyclic isogeny of degree d; cf. [4], p. 283, or [22], p. 100.

Proposition 43 Let s ∈ P (d). Then the rule

〈f : E → E ′〉 7→ 〈E × E ′, Ds,f〉 = 〈E × E ′, φDs,f
〉

defines a proper morphism µs : X0(d) → A2 with image µs(X0(N)) = H(qs), where
qs is the quadratic form defined by (6).

Proof. Recall from Corollary 24 that Ds,f ∈ P(E × E ′), so µs(f) ∈ A2(K), i.e. µs(f)
is a principally polarized abelian variety. Since this formation is compatible with
isomorphisms, we thus see that this rule defines a map µs : X0(d)(K) → A2(K).

To show that µs comes from a morphism of varieties, we shall use the fact that
both X0(d) and A2 are the coarse moduli spaces of functors X0(d) and A2 = A2,1,1

on Sch/K , respectively. It is thus enough to construct a morphism of functors µ̃s =
{µ̃s,S}S : X0(d) → A2 which extends µs (i.e. µ̃s,S = µs for S = Spec(K)).

To construct µ̃s, we can use almost the same definition as for µs. Indeed, given
a K-scheme S, then X0(d)(S) consists of isomorphism classes 〈f : E → E ′〉 in which
f : E → E ′ is an isogeny of elliptic curves /S which is cyclic in the sense of [22], p.
100. Moreover, A2(S) consists of isomorphism classes 〈A, λ〉 of principally polarized
abelian schemes A/S of dimension 2; cf. [32], p. 129. We now define

µ̃s,S(〈f : E → E ′〉) = 〈E ×S E ′, λs,f〉,

where λs,f : A := E ×S E ′ → Â is the principal polarization defined in Lemma 44
below.

It is clear that this definition is compatible with isomorphisms, and so we obtain
a map µ̃s,S : X0(d) → A2(S). Note that for S = Spec(K) we have λs,f = φDs,f

(cf.
proof of Lemma 44 below) and so µ̃s,S = µs agrees with the map µs as defined above.
Moreover, since this construction is compatible with base change, the collection µ̃s =
{µ̃s,S}S defines a morphism of functors, which therefore induces a morphism µs :
X0(d) → A2 between the coarse moduli schemes.

By Proposition 28 we know that µs(X0(d)) ⊂ H(qs). On the other hand, the
proof of Theorem 13 in §6 shows that if 〈A, θ〉 ∈ H(qs), then (A, θ) ' (E × E ′, Ds,f )
for some cyclic isogeny f : E → E ′ of degree d, and so 〈A, θ〉 = µs(〈f〉). Thus
µs(X0(d)) = H(qs), as claimed.
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It remains to show that µs is proper. Since X0(d) and A2 are of finite type over K,
it is enough to check that the functor µ̃s satisfies the valuative criterion of properness.
Thus, let S = Spec(R) be a discrete valuation ring with quotient field F ⊃ K and
let y = 〈A, λ〉 ∈ A2(S) be such that there exists xF = 〈E1

h→ E2〉 ∈ X0(d)(F ) with
µ̃s,F (xF ) = 〈AF , λF 〉, where AF = A ⊗ F and λF = λ ⊗ F . We want to show that
xF extends to x ∈ X0(d)(S) and that µ̃s,S(x) = y. For this we observe that since
AF ' E1 × E2, and AF has good reduction over R by hypothesis, it follows that the
same is true for Ei, and so there exist elliptic curves Ẽi/R with Ẽi ⊗ F = Ei. By
the Néron property we know that A ' Ẽ1 ×S Ẽ2 and that h extends to h̃ : Ẽ1 → Ẽ2.
From [22], p. 162, it follows that h̃ is again cyclic, so x = 〈h̃〉 ∈ X0(d)(S). We then
have µ̃s(x) = y because λs,h̃ and λ agree on the generic fibre, and so µ̃s is proper.

Lemma 44 Let f : E1 → E2 be an isogeny of degree d between two elliptic curves
over a scheme S, and let s = (n1, n2, k) ∈ P (d). If λi : Ei

∼→ Êi denotes the canonical
polarization of Ei, and λ1 ⊗ λ2 the product polarization, then

λs,f = λ1 ⊗ λ2 ◦
(

[n1]E1 kf t

kf [n2]E2

)
is a principal polarization on E1 ×S E2.

Proof. First note that if S = Spec(K), then λs,f = φDs,f
by (19). Thus, since

the formation of λs,f clearly commutes with base-change, it follows that λs,f is a
principal polarization (in the sense of [32], p. 120) once we have shown that λs,f is an
isomorphism. Now since f tf = [d]E1 and ff t = [d]E2 (cf. [22], p. 81), it follows from
(5) that (

[n1]E1 kf t

kf [n2]E2

) (
[n2]E1 −kf t

−kf [n1]E2

)
=

(
1E1 0
0 1E2

)
.

Thus, since the product polarization λ1 ⊗ λ2 (which is defined as in §11) is an iso-
morphism, we see that λs,f is an isomorphism.

Corollary 45 If q is a quadratic form of type d, then H(q) is a closed subvariety of
A2 of dimension 1. Moreover, if char(K) - d, then H(q) is an irreducible curve.

Proof. By Propositions 15 and 43 we have H(q) = µs(X0(d)), for some s ∈ P (d), and
so H(q) is a closed subset since µs is proper. Moreover, dim H(q) = dim X0(d) = 1
because H(q) is infinite by Theorem 30. Finally, if char(K) - d, then X0(d) is
irreducible (by Igusa), and hence so is its image H(q).

Proof of Theorem 3. By Corollary 45 and Theorem 13 we see that the H(q) for
q ∈ Q̄∗

d are the irreducible components of T (d). Since H(q1) 6= H(q2) if q1 6≈ q2 (cf.
Corollary 32), we see that the number of such components is precisely #Q̄∗

d.
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9 The action of Atkin-Lehner involutions

As is well-known, the curve X0(d) comes equipped with a group of automorphisms
called Atkin-Lehner involutions. In order to understand the birational structure of
H(q), it is important to determine how these involutions act on the maps µs which
were constructed in the previous section. Before stating the result, we first observe:

Proposition 46 Let s, s′ ∈ P (d). Then µs = µs′ if and only if fd(s) ≈ fd(s
′).

Proof. Suppose first that fd(s) = fd(s
′)g with g ∈ GL2(Z). Then by the proof of

Lemma 20 we know that g ∈ Γ±0 (d), and so fd(s) = fd(s
′g) in the notation of (31).

Thus, if x = 〈f : E → E ′〉 ∈ X0(d)(K), then αg,f defines by Proposition 39 an
isomorphism (E×E ′, Ds′,f ) ' (E×E ′, Ds,f ), and so µs′(x) = µs(x). This proves that
µs = µs′ provided that X0(d) is reduced. In the general case (i.e. when char(K)|d),
essentially the same argument (by replacing Ds,f by λs,f as in the proof of Proposition
43) shows that we actually have an equality µ̃s′ = µ̃s of morphisms of functors, and
so the induced morphisms µs and µs′ on the coarse moduli spaces are equal.

Conversely, suppose µs = µs′ . Then in particular µs(x) = µs′(x) for any point

x = 〈E f→ E ′〉 ∈ X0(d)(K) which we can take to be a non-CM point, i.e. we have
Hom(E, E ′) = Zf . Then the equality µs(x) = µs′(x) means that there is an α ∈
Aut(E × E ′) such that α∗Ds,f = Ds′,f . Now by Corollary 40 we know that α = αg,f

for some g ∈ Γ±0 (d) and that fd(s)g = fd(s
′). Thus, fd(s) ≈ fd(s

′), as asserted.

We now come to the action on the Atkin-Lehner involutions on the maps µs. For
this, recall that each Atkin-Lehner involution α on X0(d) is uniquely defined by a
divisor d1||d of d, i.e. by a divisor d1|d with the property that gcd(d1, d/d1) = 1. We
can thus write α = αd1 ; this will be explained in more detail below.

Theorem 47 For each d1||d, the Atkin-Lehner involution αd1 permutes the µs’s.
More precisely, if s ∈ P (d), then

µs ◦ αd1 = µs′ , where fd(s
′) ≈ fd(s) ◦ ad1 .(37)

Here ad1 = [d1, 0, d/d1] if s ∈ P (d)odd and ad1 = [d1, d1, (d
2
1+d)/(4d1)], if s ∈ P (d)even.

Moreover, the orbits of the group of Atkin-Lehner automorphisms on {µs} are in one-
to-one correspondence with the images H(qs) = Im(µs); i.e. we have

Im(µs1) = Im(µs2) ⇔ ∃d1||d such that µs1 = µs2 ◦ αd1 .(38)

In order to prove this theorem, we need some auxiliary results concerning Atkin-
Lehner involutions. We begin with their (functorial) definition, i.e. with their action
on the functor X0(d) which was discussed in the previous section.
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Fix d1||d and put d2 = d/d1. Let h : E1 → E2 be a cyclic isogeny of degree d and
for i = 1, 2, consider the quotient maps

hi1 = h
(h)
i1 : E1 → E ′

i := E1/Ker(h)[di], where Ker(h)[di] = Ker(h) ∩ E1[di].

Note that hi1 is a cyclic isogeny of degree deg(hi1) = di, for i = 1, 2. By the universal
property of quotients, there is a unique morphism h′i2 = (h′i2)

(h) : E ′
i → E2 such that

h = h′i2 ◦ hi1, for i = 1, 2.(39)

Note that h′i2 is cyclic of degree d/di, for i = 1, 2. Put hi2 = (h′i2)
t : E2 → E ′

i; thus,
h′i2 = ht

i2. Finally, put

h′ = (h′)(h) := h21 ◦ ht
11 = (h11 ◦ ht

12)
t : E ′

1 → E ′
2.

Note that h′ is a cyclic isogeny of degree d = d1d2 because h21 and ht
11 are cyclic of

degree d2 and degree d1, respectively, and because gcd(d1, d2) = 1. We observe that

h′ = h21 ◦ ht
11 = h22 ◦ ht

12.(40)

(Indeed, the first equality is just the definition, whereas the second follows from the
fact that h21h

t
11h11 = h21[d1] = [d1]h21 = h22h

t
22h12

(39)
= h22h

t
12h11, because is an isogeny.)

We now put

αd1(〈E1
h→ E2〉) = 〈E ′

1
h′
→ E ′

2〉.
Note that the above construction works for elliptic curves over an arbitrary base
scheme, and that it is compatible with base change. Thus, αd1 defines a morphism
of functors αd1 : X0(d) → X0(d). In fact, αd1 is an automorphism (and even an
involution, i.e. αd1 ◦ αd1 = 1X0(d)) because with the above notation we have

αd1(〈E ′
1

h′
→ E ′

2〉) = 〈E1
h→ E2〉.

(To see this, note that first that by (40) we have Ker(h′)[di] = Ker(ht
1i), and so

h
(h′)
i1 = ht

1i : E ′
i → Ei and (h′i2)

(h′) = h2i. Thus (h′)(h′) = (h
(h′)
11 (h′21)

(h′))t = (ht
11h21)

t =
ht

21h11 = h, and the assertion follows.)
Over C, the Atkin-Lehner involutions on X0(d)C = Γ0(d)\H can be defined by the

Atkin-Lehner matrices of [1]. Although we don’t need this here, we do need these
matrices in order to construct isomorphisms between E1 × E2 and E ′

1 × E ′
2.

Notation. Put Γ±0 (d2)d1 = {g ∈ Γ±0 (d2) : g ≡
(
0 ∗
∗ ∗

)
(mod d1)}. Thus, g ∈ Γ±0 (d2)d1 ⇔

g =

(
a11d1 a12

a21d2 a22

)
where aij ∈ Z and a11a22d1 − a12a21d2 = ±1.(41)

If g ∈ Γ±0 (d2)d1 , then the associated Atkin-Lehner matrix is

g̃ :=

(
1 0
0 d1

)
g =

(
a11d1 a12

a21d a22d1

)
.(42)
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Proposition 48 Let αd1(E1
h→ E2) = (E ′

1
h′
→ E ′

2) and let g ∈ Γ±0 (d2)d1. Put

αg :=

(
a11h11 a12h12

a21h21 a22h22

)
where g =

(
a11d1 a12

a21d2 a22

)
and where the hij = h

(h)
ij are as defined above. Then

(h12 × h22) ◦ [g]E2 = αg ◦ (ht × 1),(43)

and so αg : E1 × E2
∼→ E ′

1 × E ′
2 is an isomorphism. Moreover,

((h′)t × 1) ◦ [g̃]E′
2

= αg ◦ (ht × 1) ◦ (ht
22 × ht

22).(44)

Proof. By (39) we have hi1h
t = hi1(h

t
ii2h11)

t = hi1h
t
i1hi2 = dihi2, and from this (43)

follows immediately. Since det(g) = ±1, we see that deg([g]E2) = (±1)2 = 1; cf.
Corollary 63. Thus, since deg(h12 × h22) = d1d2 = d = deg(ht × 1), it follows from
(43) that deg(αg) = 1, i.e. that αg is an isomorphism.

To prove (44), note first that (40) shows that (h12×h22)◦ (ht
22×ht

22) = (h′)t× [d1]
(because deg(h22) = d/d2 = d1), and so by (43) we obtain αg ◦ (ht× 1) ◦ (ht

22×ht
22) =

(h12×h22)◦ [g]E2 ◦ (ht
22×ht

22) = (h12×h22)◦ (ht
22×ht

22)◦ [g]E′
2

= ((h′)t× [d1])◦ [g]E′
2

=
((h′)t × 1) ◦ [g̃]E′

2
, which is (44).

In passing, we observe the following interesting fact concerning isomorphisms of
product surfaces in the non-CM case; this will be used in the next section.

Proposition 49 Let (E1, E2) and (E ′
1, E

′
2) be two pairs of elliptic curves, and assume

that Hom(E1, E2) = Zh and Hom(E1, E2) = Zh′. If d = deg(h), then

E1 × E2 ' E ′
1 × E ′

2 ⇔ ∃ d1||d such that 〈E ′
1

h′
→E ′

2〉 = αd1(〈E1
h→E2〉).(45)

Proof. The one direction follows from Proposition 48. Conversely, suppose that there
exists an isomorphism f : E1 × E2

∼→ E ′
1 × E ′

2. Then E ′
i ∼ E1 ∼ E2, and so

Hom(Ei, E
′
j) = Zhji, for some (cyclic) hji ∈ Hom(Ei, E

′
j), for all i, j = 1, 2. We can

thus write f = (aijhij) with aij ∈ Z. Similarly, since Hom(E ′
j, Ei) = Zht

ji, we can

write g := f−1 = (bijh
t
ji) with bij ∈ Z. Since 1E′

1×E′
2

= fg =
(
[c11] ∗
∗ [c22]

)
, we obtain the

relations

c11 = a11b11d11 + a12b21d12 = 1 and c22 = a21b12d21 + a22b22d22 = 1,

where dij = deg(hij). From these we see that gcd(d11, d12) = 1 = gcd(d21, d22). Thus,
ht

12h11 ∈ Hom(E1, E2) is a composition of isogenies with cyclic kernels of relatively
prime order, and hence also has cyclic kernel. This means that ht

12h11 is a generator
of Hom(E1, E2) and hence ht

12h11 = ±h. By replacing h11 by −h11 if necessary, we
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thus have h = ht
12h11. Similarly, ht

22h21 = h, (replacing h21 by −h21, if necessary).
Thus (39) holds with h′i2 = ht

i2.
Next, using the fact that gf = 1E1×E2 , we obtain in a similar way the relations

a11b11d11 + a21b12d21 = 1 and a12b21d12 + a22b22d22 = 1,

and hence gcd(d11, d21) = 1 = gcd(d12, d22). Thus, since by (39) we have d12d11 =
d22d21, we see that d11|d22 and d22|d11, and hence d11 = d22 and also d12 = d21. Thus,
if we put di = di1, then d = d1d2 and (d1, d2) = 1, so d1||d and Ker(hi1) = Ker(h)[di],
for i = 1, 2. Now h′(h) = h21◦ht

11 ∈ Hom(E ′
1, E

′
2) has cyclic kernel because h12 = (h′12)

t

and ht
11 both have cyclic kernels of orders d12 = d2, and d11 = d1, respectively, and

(d1, d2) = 1. Thus, h′(h) = ±h′, and so αd1(〈E1
h→ E2〉) = 〈E ′

1
h′
→ E ′

2〉, as claimed.

Remark 50 In terms of the terminology of [20], p. 99, condition (39) means that
(h, h11, h

′
12, h21, h

′
22) is an isogeny factor set representing the diamond configuration

(h, Ker(h)[d1], Ker(h)[d2]). Thus, Proposition 49 gives a (partial) explanation of why
such factor sets arise in the study of product surfaces.

We now want to compute the pullback of divisors with respect the isomorphism
αg defined in Proposition 48. For this, we shall use the embedding Ψh = Φλ1⊗λ2,ht×1

which was defined in the proof of Proposition 39.

Proposition 51 In the situation of Proposition 48 we have

(h22 × h22)Ψh(α
∗
gD

′)(ht
22 × ht

22) = [g̃t]E′
2
Ψh′(D′)[g̃]E′

2
, ∀D′ ∈ NS(E ′

1 × E ′
2).(46)

In particular, if a′, b′, c′ ∈ Z, then

α∗gD(a′, b′, c′h′) = D(a, b, ch),(47)

where a, b, c ∈ Z are given by the matrix equation(
ad cd
cd b

)
= gt

(
a′d2 c′d
c′d b′d1

)
g =

1

d1

g̃t

(
a′d c′d
c′d b′

)
g̃.(48)

Thus, if s′ ∈ P (d), then we have an isomorphism of principally polarized abelian
surfaces

αg : (E1 × E2, Ds′g̃,h)
∼→ (E ′

1 × E ′
2, Ds′,h′),(49)

where s′g̃ ∈ P (d) is defined by the rule M(fd(s
′g̃)) = 1

d1
g̃tM(fd(s

′))g̃.

Proof. Since rλ′
2⊗λ′

2,λ2⊗λ2
(ht

22 × ht
22) = h22 × h22 (cf. (63)), it follows from the def-

initions and formula (55) of the appendix that the left hand side of (46) equals
(ht

22 × ht
22)

[(ht × 1)[Φλ1⊗λ2(α
∗
gD

′) = (ht
22 × ht

22)
[(ht × 1)[(αg)

[Φλ′
1⊗λ′

2
(D′) = (αg(h

t ×
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1)(ht
22× ht

22))
[Φλ′

1⊗λ′
2
(D′) = (((h′)t× 1)[g̃]E′

2
)[Φλ′

1⊗λ′
2
(D′) = ([g̃]E′

2
)[Ψh′(D′), where we

have used (57) and (44) in the last three equalities. Since rλ2⊗λ′
2
([g̃]E′

2
) = [g̃t]E′

2
by

(63), we obtain ([g̃]E′
2
)[Ψh′(D′) = [g̃t]E′

2
Ψh′(D′)[g̃]E′

2
, which proves (46).

To prove (47), first note that the second equality of (48) follows immediately from
the fact that g̃ = diag(1, d1)g. Furthermore, by multiplying out the right hand side
of (48), we see that if g has the form (41), then a = a′d1a

2
11 + 2dc′a11a21 + b′d2a

2
21, b =

a′d2a
2
12 + 2c′da12a22 + b′d1a

2
22, c = a′a11a12 + c′(d2a12a21 + d1a11a22) + b′a21a22, and so

a, b, c ∈ Z. Now by (35) we have Ψh(D(a, b, ch)) = [g1]E2 , where g1 =
(

ad cd
cd b

)
, and

similarly Ψh′(D(a′, b′, c′h′)) = [g′1]E′
2

with g′1 =
(

a′d c′d
c′d b′

)
. Thus, if D′ = D(a′, b′, c′h′),

then by (48) the right hand side of (46) equals [d1g1]E′
2

= (h22×h22)(h
t
22×ht

22)[g1]E′
2

=
(h22 × h22)[g1]E2(h

t
22 × ht

22) = (h22 × h22)Ψh(D)(ht
22 × ht

22), where D = D(a, b, ch).
Comparing this to the left hand side of (46) yields Ψh(α

∗
g(D

′)) = Ψh(D) (because
h22 × h22 and ht

22 × ht
22 are isogenies), and so (47) follows because Ψh is injective; cf.

Corollary 58 of the appendix.
Finally, to prove (49), recall from Proposition 48 that αg : E1 × E2

∼→ E ′
1 × E ′

2 is
an isomorphism. Now by (47) we have α∗gDs′,h′ = Ds′g̃,h, and so (49) follows.

Proof of Theorem 47. Fix s = (n1, n2, k) ∈ P (d) and let g ∈ Γ±0 (d2)d1 . If g̃ is
defined by (42), then a short computation shows that 1

d1
g̃tM(fd(s))g̃ = M(fd(s

′)),

for some s′ ∈ P (d) and that M(fd(s
′)) = gtM(q)g, where q = [n1d2, 2k, n2d1]. Since

g ∈ GL2(Z), this implies that fd(s
′) ≈ q, and so Lemma 52 below shows that fd(s

′) ≈
q ∼ fd(s) ◦ ad1 . Thus, (37) follows once we have shown that µs ◦ αd1 = µs′ .

For this, let x = 〈E1
h→ E2〉 ∈ X0(d) and put x′ = αd1(x) = 〈E ′

1
h′
→ E ′

2〉. Then
µs(αd1(x)) = µs(x

′) = 〈E ′
1 × E ′

2, Ds,h′〉. Now by (49) we have αg : (E1 × E2, Ds′,h)
∼→

(E ′
1×E ′

2, Ds,h), and so µs(αd1(x)) = µs′(x). This proves that µs◦αd1 = µs′ when X0(d)
is reduced. In the general case a similar argument (generalized to elliptic curves over
K-schemes) shows that we have an equality µ̃s ◦ αd1 = µ̃s′ of morphisms of functors,
and so (37) holds in general.

It remains to prove (38). For this, let s1, s2 ∈ P (d) be such that Im(µs1) = Im(µs2).
Then Proposition 43 shows that H(qs1) = H(qs2) and so by Corollary 32 we have
qs1 ≈ qs2 . We now distinguish two cases.

If s1 ∈ P (d)odd, then qs1 is primitive by Lemma 16 and hence so is qs2 . Thus, also
s2 ∈ P (d)odd. By Corollary 18 (and Remark 12) we thus have that fd(s1) ∼ fd(s1)◦a,
where a ∈ Ker(π′d). By Corollary 19 we have a ∼ ad1 , for some d1||d, and so (37)
shows that µs1 ◦ αd1 = µs2 , as desired.

Now suppose that s1 ∈ P (d)even; then also s2 ∈ P (d)even. Here fd(si) = 2f ′d(si),

where f ′d(si) ∈ Q
(1)
−d, and by Corollary 18 we thus have f ′d(s1) ∼ f ′d(s2) ◦ a with

a ∈ Q̄−d[2]. By genus theory, it follows that a ∼ ad1 = [d1, d1, (d1 + d2)/4], for some
d1||d, and so (37) shows again that µs1 ◦αd1 = µs2 . This proves one direction of (38),
and so (38) follows since the other direction is trivial.
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Lemma 52 Let s = [n1, n2, k] ∈ P (d), and put q = [d2n1, 2k, d1n2], where d = d1d2

with gcd(d1, d2) = 1. Then fd(s) ◦ ad1 ∼ q, where ad1 = [d1, 0, d2] if s ∈ P (d)odd, and
ad1 = [d1, d1, (d1 + d2)/4] if s ∈ P (d)even.

Proof. If s ∈ P (d)odd, then fd(s) = [dn1, 2kd, n2] is primitive of discriminant −4d, and
the composition algorithm of Shanks (cf. [2], p. 64) shows that ad1 ◦fd(s) ∼ q. Indeed,
if 2 - n1, apply [2], Th. 4.12, to f1 = [d1, 2d1, d1 + d2] ∼ [d1, 0, d2] and f2 = fd(s).
Then (with the notation there) m = n = d1, and so we can take x = 1, y = 0 and
z = dn1 − d1, and so f1 ◦ f2 ∼ [d1n1d/d2

1, 2d1 + 2z, ∗] = q. On the other hand, if
2|n1, then fs(s) ∼ [n2d,−2kd, n1], where 2 - n2, and then by the same argument
[d2, 0, d1] ◦ [n2d,−2kd, n1] ∼ [n2d1,−2kd, n1d2] ∼ q. Thus ad1 ◦ fd(s) ∼ q because
ad1 ∼ [d2, 0, d1].

Now suppose s ∈ P (d)even. Then fd(s) = 2f ′d(s) where f ′d(s) = [n′1d, kd, n′2] is
primitive of discriminant −d. Applying [2], Th. 4.12, to f1 = [d1, d1, (d1 + d2)/4] and
f2 = f ′d(s) shows that f1 ◦ f2 ∼ [n′1d2, kd, n′2d1] because here again m = n = d1, and
so we can take x = 1, y = 0, and z = (kd− d1)/2. Thus fd(s) ◦ad1 := 2(f ′d(s) ◦ad1) ∼
2[n′1d2, kd, n′2d1] = q.

10 The birational structure of H(q)

In order to determine the birational structure of H(q), we shall first calculate the
automorphism group Aut(µs) of the morphism µs : X0(d) → H(qs). As we shall see,
the Fricke involution wd = αd on X0(d) always lies in Aut(µs). However, if qs is an
ambiguous form, then there is another Atkin-Lehner involution αs in Aut(µs), as the
following result shows.

Proposition 53 (a) If s ∈ P (d)odd, then qs ∈ Q̄2
−16d[2] (i.e., qs is ambiguous) if

and only if fd(s)
2 ∈ Ker(π′d). If this is the case, then there is a unique d1||d with

d1 ≤ d2 := d/d1 such that [d1, 0, d2] ∼ π−4d,2(qs) ∼ f 2
d (s).

(b) If s ∈ P (d)even, then q′s := 1
4
qs ∈ Q̄2

−d[2] (i.e., qs is ambiguous) if and only if
f ′d(s)

2 ∈ Q̄2
−d[2]. If this is the case, then there is a unique d1||d with d1 ≤ d2 := d/d1

such that [d1, d1, (d1 + d2)/4] ∼ q′s ∼ f ′d(s)
2.

(c) Let s ∈ P (d) and put αs = αd1, where d1 is as above, if qs is ambiguous, and
d1 = 1 otherwise. Then G(qs) := 〈wd, αs〉 ≤ Aut(µs), and hence µs factors over the
quotient map πqs : X0(d) → X0(d)+

qs
:= X0(d)/G(qs).

(d) We have G(qs) = 〈wd〉 if and only if either qs is not ambiguous or if 1
4
qs ∼ 1−d

or if qs ∼ qd, where qd is as in Theorem 36.

Proof. (a) By (8) we have fd(s)
2 ∼ π−4d,2(qs) and by (10) we have π′d(π−4d,2(qs)) ∼ q2

s .
Thus, fd(s)

2 ∈ Ker(π′d) ⇔ q2
s ∼ 1 ⇔ qs ∈ Q̄2

−16d[2]. This proves the first assertion,
and the second follows from (13).
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(b) By (9) we have f ′d(s)
2 ∼ q′s, so the first assertion is trivial. The second follows

immediately from the fact that the forms [d1, d1, (d1 + d2)/2] represent all ambiguous
classes in Q̄−d; cf. proof of Theorem 47.

(c) It is enough to show that µs ◦ α′d = µs for d′ = d and d′ = d1, and this
follows from Theorem 47 once we have shown that fd(s) ≈ fd(s) ◦ ad′ . This is clear
if d′ = d (or d′ = d1 = 1) because then ad′ ∼ 1. (Indeed, if s ∈ P (d)odd, then
ad = [d, 0, 1] ∼ 1−4d = a1, and if s ∈ P (d)even, then ad = [d, d, d+1

4
] ∼ 1−d = a1.) On

the other hand, if d′ = d1 and we are in the situation of (a), then fd(s)
2 ∼ ad1 ∼ a−1

d1

and then fd(s) ≈ fd(s)
−1 ∼ fd(s)◦ad1 . Similarly, if we are in the situation of (b), then

f ′d(s)
2 ∼ ad1 ∼ a−1

d1
and then f ′d(s) ≈ f ′d(s)

−1 ∼ f ′d(s)◦ad1 , so again fd(s) ≈ fd(s)◦ad1 .
(d) Since 〈wd〉 = {α1, αd}, we see that G(s) = 〈wd〉 ⇔ d1 = 1 (because d1 ≤ d/d1).

Thus, if qs is not ambiguous, then the assertion is clear, so assume qs is ambiguous. If
qs is not primitive, then by part (b) we see that d1 = 1 ⇔ ad1 ∼ 1−d ⇔ q′s ∼ 1−d, and
if qs is primitive, then by part (a) we have d1 = 1 ⇔ ad1 ∼ 1−4d ⇔ qs ∈ Ker(π−4d,2) ⇔
qs ∼ qd, the latter by (11).

We now show that Aut(µs) = G(qs) by examining the fibres of µs at non-CM
points.

Proposition 54 Let s ∈ P (d) and let x ∈ X0(d)(K) be a non-CM point. Then

µ−1
s (µs(x)) = G(qs)x = {x, wd(x), αs(x), wdαs(x)},(50)

and so Aut(µs) = G(qs), provided that char(K) - d.

Proof. Write x = 〈E1
h→ E2〉 and let y = 〈E ′

1
h′
→ E ′

2〉 ∈ X0(d)(K). Then we have:

µs(x) = µs(y) ⇔ y = αd1(x), for some d1||d with fd(s) ≈ fd(s) ◦ ad1 .(51)

Indeed, if y = αd1(x) and fd(s) ≈ fd(s)◦ad1 , then µs(y) = µs(αd1(x)) = µs(x) by (37).
Conversely, if µs(x) = µs(y), then ∃α : E1 ×E2

∼→ E ′
2 ×E ′

2 such that α∗Ds,h′ = Ds,h.
Then by Proposition 49 we know that ∃d1||d = deg(h) such that y = αd1(x), and so by
Theorem 47 we have µs(y) = µs′(x), where s′ ∈ P (d) is such that fd(s

′) ∼ fd(s) ◦ ad1 .
Thus, µs(x) = µs′(x), which means that (E1 × E2, Ds,h) ' (E1 × E2, Ds′,h). From
Corollary 40 it follows that fd(s) ≈ fd(s

′) ∼ fd(s) ◦ ad1 , and so (51) holds.
We now analyze the condition that fd(s) ≈ fd(s) ◦ ad1 . For this, assume first that

fd(s) is primitive, i.e. that s ∈ P (d)odd. Then we have

fd(s) ≈ fd(s) ◦ ad1 ⇔ ad1 ∼ 1 or ad1 ∼ fd(s)
2 ∼ π−4d,2(qs).(52)

Indeed, by Remark 12 we see that this condition holds if and only if either fd(s) ∼
fd(s) ◦ ad1 or fd(s)

−1 ∼ fd(s) ◦ ad1 . In the first case this means that ad1 is principal,
and the second case we have ad1 ∼ a−1

d1
∼ fd(s)

2 ∼ π−4d,2(qs), the latter by (8).
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This proves (52). Note that the second condition implies by Proposition 53 that
qs ∈ Q̄2

−16d[2] because ad1 ∈ Ker(π′d) by (13).
Thus, if qs /∈ Q̄2

−16d[2], or if qs ∼ qd, then the right hand side of (52) reduces to the
condition ad1 ∼ 1 (because Ker(π−4d,2) = 〈qd〉 by (11)), and so by reduction theory
we see that this is the case if and only d1 = 1 or d1 = d. Thus, in this case it follows
from (51) and (52) that µs(x) = µs(y) ⇔ y ∈ {x, wd(x)} = G(qs)x.

Next, suppose that qs ∈ Q̄2
−16d[2] but qs 6∼ qd. Then by Proposition 53(a) we have

a = ad1 , for some d1||d with d1 ≤ d2 = d/d1. Since ad2 ∼ ad1 and αd2 = wdαd1 , it thus
follows from (51)and (52) that (50) holds.

Now suppose that fd(s) is not primitive, i.e. s ∈ P (d)even. Then fd(s) = 2f ′d(s)
with f ′d(s) ∈ Q̄−d and qs = 4q′ with q′ ∼ f ′d(s)

2; cf. Lemma 16(b). In this case a
similar argument to the one above shows that

fd(s) ≈ fd(s) ◦ ad1 ⇔ ad1 ∼ 1 or ad1 ∼ f ′d(s)
2 ∼ q′.(53)

Thus, if q′ /∈ Q̄−d[2] or if q′ ∼ 1−d, then the right hand side of (53) reduces to the
condition ad1 ∼ 1 and so as before we see that µ−1

s (µs(x)) = {x, wd(x)} = G(qs)x in
this case. On the other hand, if q′ ∈ Q̄−d[2] \ {1−d}, then one concludes by a similar
argument as above that (50) holds.

To verify the last assertion, assume char(K) - d. Then µs : X0(d) → H(qs)
is finite because it is a proper, surjective morphism between irreducible curves; cf.
EGA (II, 7.4.4) and EGA (III, 4.4.2). Thus, from (50) we see that the separable
degree degs(µ) of µs equals |G(qs)| because there are infinitely many non-CM points
on X0(d). We thus have |G(qs)| ≤ |Aut(µs)| ≤ degs(µs) = |G(qs)|, and so we have
equality throughout. In particular, G(qs) = Aut(µs), as claimed.

Theorem 55 Let q ∈ Q̄∗
d, and suppose that char(K) - d. Then X0(q)

+
q is the nor-

malization of H(q). In particular, X0(q)
+ is the normalization of H(q) if and only if

either q is not ambiguous or if 1
4
q ∼ 1−d or if qs ∼ qd, where qd is as in Theorem 36.

Proof. Since q ∼ qs, for some s ∈ P (d) by Proposition 15, we see that the last assertion
follows from the first assertion together with Proposition 53(d).

To prove the first assertion, recall that by Proposition 53(c) we have that µs =
µ̄s ◦ πq, for some morphism µ̄s : X0(q)

+
q → H(q). Note that X0(q)

+
q is affine and

that hence µ̄s is again finite (use EGA (II, 5.4.3)). Since X0(q)
+
q is normal, we see

that µ̄s = ν ◦ µ̃s factors over the normalization ν : H̃(q) → H(q). By the proof of
Proposition 54 we know that degs(µs) = deg(πq), and so we see that degs(µ̃s) = 1,
i.e. that µs is purely inseparable. Thus, the assertion follows once we have shown
that µ̃s or, equivalently, that µs is separable. Since this is automatic if char(K) = 0,
it remains to verify this assertion if p = char(K) 6= 0.

For this, we shall use a specialization argument. Let R = Z(p) ⊂ Q denote the
discrete valuation ring with residue field Fp, and let X0(d)/R and A2/R be the coarse
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moduli schemes of the functors X0(d) and A2 on Sch/R, respectively. Since p - d,
we know that X0(R)/R is smooth and that hence its fibres are the coarse moduli
schemes of the corresponding fibre functors; cf. [22], p. 510. In addition, one has
that the fibres of A2 are the coarse moduli schemes its fibre functors; cf. Igusa[17],
for M2 in place of A2 (which suffices for our purposes). Now the method of proof of
Proposition 43 extends to construct an R-morphism µs : X0(d) → A2, and the same
proof shows that µs is again proper. Thus, by Fulton [9], Proposition 20.3(a), we
have deg(µ◦s) = deg(µs

s), where µ◦s and µs
s are the restrictions of µs to the generic and

special fibres of X0(d), respectively. Since these can be identified with the previously
constructed morphisms µs (over K = Q and over K = Fp, respectively), we have
by (the proof of) Proposition 54 that degs(µ

◦
s) = |G(qs)| = degs(µ

s
s). But since

degs(µ
◦
s) = deg(µ◦s), it follows that also degs(µ

s
s) = deg(µs

s), and so µs
s is separable.

Proof of Theorems 1 and 4. From the definition of G(qs), it clear that Theorem 4 and
the last part of Theorem 1 are special cases of Theorem 55. Moreover, the fact that
T (d) is a closed subset (and that it is a finite union of curves) follows from Theorem
13 and Proposition 43.

11 Appendix: The Néron-Severi group

The purpose of this appendix is to present some basic facts about the Néron-Severi
groups of abelian varieties which were used throughout the paper.

Let A be an abelian variety over an algebraically closed field K, and let NS(A) =
Pic(A)/Pic0(A) denote the Néron-Severi group of A. If A has a principal polarization
λ = φθ : A

∼→ Â (cf. Milne[30], p. 126), then NS(A) can be interpreted as a subgroup
of End(A). More precisely, if rλ denotes the Rosati involution on End(A) (which
is defined by the rule rλ(α) = λ−1α̂λ), then by Mumford[33], p. 190, 209, the map
D 7→ λ−1φD defines an isomorphism

Φλ : NS(A)
∼→ Endλ(A) := {α ∈ End(A) : rλ(α) = α}.(54)

The isomorphism Φλ satisfies the following functorial property.

Proposition 56 If (Ai, λi), i = 1, 2, are two principally polarized abelian varieties,
and h ∈ Hom(A1, A2),

Φλ1(h
∗D) = rλ1,λ2(h)Φλ2(D)h, ∀D ∈ NS(A2),(55)

where rλ1,λ2(h) = λ−1
1 ĥλ2 ∈ Hom(A2, A1). In other words, Φλ1 ◦ h∗ = h[ ◦ Φλ2, where

h[ : End(A2) → End(A1) is defined by h[(α) = rλ1,λ2(h)αh. Moreover,

rλ1 ◦ h[ = h[ ◦ rλ2 ,(56)

and hence Φλ1 ◦ h∗ defines a homomorphism Φλ1,h : NS(A2) → Endλ1(A1).
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Proof. The first formula follows immediately from the definitions and the fact that
φh∗D = ĥ◦φD ◦h, for D ∈ Pic(A). Similarly, (56) follows from the definitions together
with the fact that rλ1,λ2(h)b ◦ λ1 = λ2 ◦ h.

Remark 57 For later reference, let us observe here that the assignment h 7→ h[ =
h[

λ1,λ2
is functorial: if (Ai, λi), i = 1, 2, 3, are three principally polarized abelian

varieties, and hi ∈ Hom(Ai, Ai+1) for i = 1, 2, then

(h2 ◦ h1)
[
λ1,λ2

= (h1)
[
λ1,λ2

◦ (h2)
[
λ2,λ3

.(57)

This follows easily from the definitions and the fact that rλ1,λ3(h1 ◦ h2) = rλ1,λ2(h1) ◦
rλ2,λ3(h2).

In the case that h is an isogeny, we can define h[ in another way.

Corollary 58 If h : A1 → A2 is an isogeny, then the rule ch(α) = h−1αh defines a
ring isomorphism ch : End0(A2)

∼→ End0(A1) which is related to h[ by the formula

h[(α) = βch(α), where β = h[(1) = rλ1,λ2(h)h,(58)

and we have
rλ1(ch(α)) = βch(rλ2(α))β−1, ∀α ∈ End0(A2).(59)

Thus Φλ1,h := Φλ1 ◦h∗ = h[ ◦Φλ2 = β(ch ◦Φλ2) : NS(A2) → Endλ1(A1) is an injective
group homomorphism which satisfies

Φλ1,h(α
∗D) = rλ1(ch(α))Φλ1,h(D)ch(α), ∀D ∈ NS(A2), α ∈ End(A2).(60)

Proof. It is clear that ch is a ring isomorphism and that (58) holds. Thus, since
rλ1(β) = rλ1(h

[(1)) = h[(1) = β by (56), we see that rλ1(ch(α))β = rλ1(ch(α))rλ1(β) =

rλ1(βch(α))
(58)
= rλ1(h

[(α))
(56)
= h[(rλ2(α))

(58)
= βch(rλ2(α), and so (59) follows.

Write Φ = Φλ1,h. Then Φ = h[ ◦ Φλ2 by (55) and hence Φ = β(ch ◦ Φλ2) by
(58). From the latter expression it is clear that Φ is an injective group homomor-

phism. Moreover, since ch is multiplicative, we have Φ(α∗D) = βch(Φλ2(α
∗D))

(55)
=

βch(rλ2(α)Φλ2(D)α)
(59)
= rλ1(ch(α))βch(Φλ2(D))ch(α), which proves (60).

Let (Ai, λi) be two principally polarized abelian varieties, and A = A1 × A2 be
the product variety with projections pi : A → Ai and inclusions ei : Ai → A. Then
p := p̂1 + p̂2 : Â1 × Â2

∼→ Â is an isomorphism, and λ1 × λ2 := p ◦ λ1 × λ2 : A
∼→ Â is

a principal polarization of A, called the product polarization. (Note that if λi = φθi
,

then λ1 ⊗ λ2 = φθ, where θ = p∗1θ1 + p∗2θ2.)
If α ∈ End(A1×A2), then we can identify α with the 2×2 matrix (αij) by putting

αij = piαej ∈ Hom(Aj, Ai). Thus

End(A1 × A2) =

{(
α11 α12

α21 α22

)
: αij ∈ Hom(Aj, Ai)

}
.
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Proposition 59 In the above situation we have

Endλ1⊗λ2(A1 × A2) =

{(
α11 α′21
α21 α22

)
: αii ∈ Endλi

(Ai), α21 ∈ Hom(A1, A2)

}
,(61)

where α′21 = rλ1,λ2(α21). Thus, the rule (α1, α2, β) 7→
(

α1 β′

β α2

)
defines an isomorphism

µ = µλ1,λ2 : Endλ1(A1)⊕ Endλ2(A2)⊕ Hom(A1, A2)
∼→ Endλ1⊗λ2(A1 × A2)

which induces an isomorphism

D = Dλ1,λ2 : NS(A1)⊕ NS(A2)⊕ Hom(A1, A2)
∼→ NS(A1 × A2).

Moreover, we have

D(D1, D2, 0) = p∗1D1 + p∗2D2, ∀Di ∈ NS(Ai).(62)

Proof. Since êi(λ1 ⊗ λ2) = λipi and (λ1 ⊗ λ2)ej = p̂jλj, we see that pirλ1⊗λ2(α)ej =
rλi,λj

(pjαei) = rλi,λj
(αji). Thus

rλ1⊗λ2

(
α11 α12

α21 α22

)
=

(
α′11 α′21
α′12 α′22

)
,(63)

where α′ji = rλi,λj
(αji) = λ−1

i α̂jiλj. From (63) we therefore see that α = (αij) ∈
Endλ1⊗λ2(A) ⇔ αij = α′ji,∀i, j = 1, 2 ⇔ α12 = α′21, αii ∈ Endλi

(Ai), i = 1, 2, the
latter because the hypothesis α12 = α′21 implies that α′12 = (α′21)

′ = α12. This proves
(61), and from this the assertion about µ follows immediately. Finally, if we put
Dλ1,λ2 = Φ−1

λ1⊗λ2
◦ µλ1,λ2 ◦ (Φλ1 ⊕ Φλ2 ⊕ id), then it is clear by (54) that D = Dλ1,λ2

yields the desired isomorphism.
To prove (62), we first note that since êi(λ1 ⊗ λ2) = λipi, we have rλ1⊗λ2,λi

(pi) =
ei and hence Φλ1⊗λ2(p

∗
i Di) = eiΦλi

(Di)pi by (55). Thus Φλ1⊗λ2(p
∗
1D1 + p∗2D2) =

µ(Φλ1(D1), Φλ2(D2), 0), and so (62) follows.

Another useful formula is the following.

Proposition 60 Let (A, λ) be a principally polarized abelian variety. If mA : A ×
A → A denotes the addition map and δA : A → A × A the diagonal map, then
rλ⊗λ,λ(mA) = δA and hence

Φλ⊗λ(m
∗
AD) = δAΦλ(D)mA, ∀D ∈ NS(A).(64)

Proof. Since êi(λ ⊗ λ) = λpi and êim̂A = idÂ, we have pirλ⊗λ,λ(mA) = pi(λ ⊗
λ)−1m̂Aλ = λ−1êim̂Aλ = 1A, and so rλ⊗λ,λ(mA) = δA. Thus (64) follows from (55).

We now specialize the above results to the case of products of two elliptic curves.
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Proposition 61 Let A = E1 × E2 be a product of two elliptic curves, and let λi =
φ0Ei

. Then the isomorphism

D = Dλ1,λ2 : Z⊕ Z⊕ Hom(E1, E2)
∼→ NS(A)

is given by the formula

D(a, b, f) = cl((a− deg(f))θ1 + (b− 1)θ2 + Γ−f ).(65)

Here θi = p∗i (0Ei
), Γf ∈ Div(A) is the graph of f , and cl(D) ∈ NS(A) denotes the

class of a divisor D ∈ Div(A). Thus

(D(a, b, f).D(a, b, f)) = 2(ab− deg(f)),(66)

(D(a, b, f).(xθ1 + yθ2)) = bx + ay.(67)

Proof. First note that since NS(Ei) = Zcl(0Ei
) ' Z, the map D yields the indicated

isomorphism. To prove (65), it is in view of (62) enough to verify that

Φλ1⊗λ2(Γ−f ) = µ([deg(f)]E1 , 1E2 , f)(68)

and this follows from the identities Γ−f = (f × 1)∗m∗
E2

(0E2), rλ1⊗λ2,λ2⊗λ2(f × 1E2) =
f ′ × 1E2 and Φλ2(0E2) = 1E2 because by (55) and (64) we obtain Φλ1⊗λ2(Γ−f ) =
(f ′ × 1E2)Φλ2⊗λ2(m

∗
E2

0E2)(f × 1E2) = (f ′ × 1E2)δE2Φλ2(0E2)mE2(f × 1E2) = (f ′ ×
1E2)δE2mE2)(f × 1E2) =

(
f ′ 0
0 1

)(
1 1
1 1

)(
f 0
0 1

)
= µ(f ′f, 1, f) = µ([deg(f)], 1, f).

From (65), the formulae (66) and (67) follow immediately because (θ1.θ2) =
(Γ−f .θ1) = 1, (Γ−f .θ2) = deg(−f) = deg(f) and θ2

1 = θ2
2 = Γ2

−f = 0, the latter
because θ1 = {0} × E2 ' E2 and θ2 ' Γ−f ' E1 are elliptic curves.

Corollary 62 Let A′ = E ′
1 × E ′

2 be another product surface and let α = (αij) ∈
Hom(A′, A)), where αij ∈ Hom(E ′

j, Ei). Then

deg(α) = |(d11 + d21)(d12 + d22)− deg(fα)| ,(69)

where dij = deg(αij) and fα = αt
12α11 + αt

22α21. Moreover, for f ∈ Hom(E1, E2) we
have

α∗D(n1, n2, f) = D(n′1, n
′
2, f

′)(70)

where n′1, n
′
2, and f ′ are determined by the matrix equation(

[n′1]E′
1

(f ′)t

f ′ [n′2]E′
2

)
=

(
αt

11 αt
21

αt
12 αt

22

) (
[n1]E1 f t

f [n2]E2

) (
α11 α12

α21 α22

)
.(71)

In other words, we have explicitly

n′1 = n1d11 + n2d21 + tr(αt
21fα11)

n′2 = n1d12 + n2d22 + tr(αt
12fα22)

f ′ = n1α
t
12α11 + n2α

t
22α21 + αt

12f
tα21 + αt

22fα11

where tr(h) ∈ Z is defined by [tr(h)] = h + ht, for h ∈ End(E ′
i).
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Proof. To prove (69), consider α̃ := rλ1⊗λ2(α)α. Since deg(rλ1⊗λ2(α)) = deg(α̂) =

deg(α), we have deg(α)2 = deg(α̃). Now by (63) we have α̃ =
(

α′
11 α′

21

α′
12 α′

22

)(
α11 α12

α21 α22

)
=

µ([d1], [d2], fα), where d1 = d11 + d21 and d2 = d12 + d22, and so 4 deg(α)2 =
4 deg(µ([d1], [d2], fα) = (D(d1, d2, fα)2)2, where the latter equality follows from the
Riemann-Roch Theorem (cf. [33], p. 150) because µ([a], [b], f) = Φλ1⊗λ1(D(a, b, f)).
From this (69) follows immediately by using (66).

To prove (70) and (71), note first that there exist unique n′1, n
′
2 and f ′ such that

(70) holds. Then Φλ′
1⊗λ′

2
(D(n′1, n

′
2, f

′)) equals the left hand side of (71), where λ′i de-
notes the canonical polarization of E ′

i. On the other hand, by (a slight generalization
of) formula (63), the right hand side of (71) equals rλ′

1⊗λ′
2,λ1⊗λ2

(α)Φλ1⊗λ2(D(n1, n2, f))α.
Since this equals Φλ′

1⊗λ′
2
(α∗D(n1, n2, f)) by (55), we see that (71) holds. The last as-

sertion follows from this by multiplying out the right side of (71).

Corollary 63 Let g ∈ M2(Z) be a 2 × 2 matrix and let [g]E ∈ End(E × E) be the
endomorphism induced by g. Then deg([g]E) = det(g)2.

Proof. Write g = (aij), and apply (69) to α = [g]E = ([aij]E). Here dij = deg([aij]E) =
a2

ij, and deg(fα) = deg([a12a11 + a22a21]) = (a12a11 + a22a21)
2. Thus deg(α) = |(a2

11 +
a2

21)(a
2
12 + a2

22)− (a12a11 + a22a21)
2| = |(a11a22 − a12a21)

2| = det(g)2.
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[15] G. Humbert, Sur les fonctions abéliennes singulières. I. J. de Math. (ser. 5) 5
(1899), 233–350 = Œuvres, Gauthier-Villars er Cie., Paris, 1929, pp. 297–401.

[16] T. Ibukiyama, T. Katsura, F. Oort, Supersingular curves of genus two and class
numbers. Compositio Math. 57 (1986), 127–152.

[17] J.-I. Igusa, Arithmetic variety of moduli for genus 2. Ann. Math. 72 (1960),
612–649.

[18] B. Jones, The Arithmetic Theory of Quadratic Forms. Carus Monographs No.
10, MAA, 1967.

[19] E. Kani, Elliptic curves on abelian surfaces. Manus. math. 84 (1994), 199–223.

[20] E. Kani, The number of curves with elliptic differentials. J. reine angew. Math.
485 (1997), 93-121.

[21] E. Kani, Generalized Humbert Varieties. In preparation.

[22] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves. Princeton University
Press, Princeton, NJ, 1985.

[23] A. Krazer, Lehrbuch der Thetafunktionen. Leipzig, 1903; Chelsea Reprint, New
York, 1970.

[24] S. Lang, Elliptic Functions. Addison-Wesley, Reading, MA, 1972.

[25] H. Lange, Produkte elliptischer Kurven. Nachr. Akad. Wiss. Göttingen Math.-
Phys. Kl. II 1975, no. 8, 95–108.

[26] H. Lange, Principal polarizations on products of elliptic curves. In: The Ge-
ometry of Riemann Surfaces and Abelian Varieties. Contemp. Math. 397, AMS,
Providence, RI, 2006, pp. 153–162.

[27] B. Mazur, Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci.
Publ. Math. 47 (1977), 33 – 186.

[28] C. McMullen, Teichmüller curves in genus 2: discriminant and spin. Math. Ann.
333 (2005), 87–130.

37



[29] C. McMullen, Dynamics of SL2(R) over moduli space in genus two. Ann. Math.
165 (2007), 397–456.

[30] J.S. Milne, Abelian varieties. In: Arithmetic Geometry. (G. Cornell, J. Siverman,
eds.), Springer-Verlag, New York, 1986; pp. 103–150.

[31] J.S. Milne, Jacobian varieties. In: Arithmetic Geometry. (G. Cornell, J. Siver-
man, eds.), Springer-Verlag, New York, 1986; pp. 165–212.

[32] D. Mumford, Geometric Invariant Theory. Springer-Verlag, Berlin, 1965.

[33] D. Mumford, Abelian Varieties. Oxford U Press, Oxford, 1970.

[34] F. Oort, J. Steenbrink, The local Torelli problem for algebraic curves. Journées
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