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Abstract: The main aim of this paper is to determine the number cN,D of genus
2 covers of an elliptic curve E of fixed degree N ≥ 1 and fixed discriminant divisor
D ∈ Div(E). In the case that D is reduced, this formula is due to Dijkgraaf.

The basic technique here for determining cN,D is to exploit the geometry of a
certain compactification C = CE,N of the universal genus 2 curve over the Hurwitz
space HE,N which classifies (normalized) genus 2 covers of degree N of E. Thus,
a secondary aim of this paper is to study the geometry of C. For example, the
structure of its degenerate fibres is determined, and this yields formulae for the
numerical invariants of C which are also of independent interest.

1 Introduction

Let E be an elliptic curve over an algebraically closed field K. The main aim of this
paper is to compute the number cN,D = #CovE,N,D of genus 2 covers of E of fixed
degree N ≥ 1 and fixed discriminant divisor D ∈ Div(E). Since this number is closely
related to the weighted number c̄N,D :=

∑
f∈CovE,N,D

1
|Aut(f)| of such covers and since

the latter leads to simpler formulae, we determine c̄N,D as well.

Theorem 1 If char(K)6 |N ! and D ∈ Div(E) is an effective divisor of degree 2, then

c̄N,D =
N

3µD
(σ3(N)−Nσ1(N))− µD − 1

24
(7σ3(N)− (6N + 1)σ1(N))(1)

where µD = 1 if D is reduced and µD = 2 otherwise, and where σk(n) =
∑

d|n d
k

denotes the sum of the kth powers of the divisors of n. Moreover, if we put σ1(N/2) =
0 if N is odd, then the total number of genus 2 covers is given by

cN,D = c̄N,D +

(
N

µD
− (µD − 1)

)
σ1(N/2).(2)

Corollary 2 If char(K) = 0, then the generating function FD(q) of the c̄N,D’s is a
quasi-modular form, i.e. FD ∈ Q[E2, E4, E6], where the Ek’s are the usual Eisenstein
series: Ek = 1 + ck

∑
n≥1 σk−1(n)qn. More precisely, we have

FD(q) :=
∑
N≥1

c̄N,Dq
N =

1

25920µD
(5E3

2−3E2E4−2E6)−µD − 1

5760
(2E4+5E2

2+10E2−17).
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Note that in the case that µD = 1 (i.e. D is reduced), it follows that FD is pure of
weight 6, and so in this case the above formula for FD reduces to that of Dijkgraaf[Di]
(see also [KZ]), except that his weighted sum is defined as 1

2
c̄N,D.

As will be shown in §2, the calculation of the numbers cN,D and c̄N,D can be
reduced to the calculation of the number of such covers which are minimal, i.e. those
covers which do not factor over a non-trivial isogeny of E.

Theorem 3 The number of minimal genus 2 covers of E of degree N ≥ 2 and
discriminant D is given by

#Cov
(min)
E,N,D =

(
2

3µD
(N − 1)− µD − 1

12N
(7N − 6)

)
sl(N),(3)

where sl(N) = |SL2(Z/NZ)/{±1}|.

The basic technique for proving this theorem is to study the geometry of the Hur-
witz space HE,N which classifies genus 2 covers of degree N of E which are normalized
in the sense of [Ka3]. More precisely, in Corollary 14 below we shall relate the above
number to the degree of a certain “discriminant map” δ = δE,N : HE,N → P

1.
The computation of deg(δ) will be achieved by relating it to the “basic numerical

invariants” (such as the modular height) of a certain relative genus 2 curve C =
CE,N over the modular curve X(N) of level N . This relative curve, which is also of
independent interest, is constructed in §4 as follows.

Since H = HE,N is a fine moduli space (cf. [Ka3]), there exists a universal (normal-
ized) genus 2 cover funiv : Cuniv → EH = E ×H of degree N ; in particular, Cuniv/H
is a smooth relative curve of genus 2. Since H is an open subset of X = X(N), the
minimal model C of Cuniv is a relative genus 2 curve over X which contain Cuniv as
an open subset. Thus, by construction, the curve C has good reduction at all points
of H, and it turns out that the set X \H is the degenerate locus of C/X, i.e. the set
of points of X where C/X has bad reduction.

The precise structure of the degenerate fibres of C/X is given in Theorem 22. To
prove this theorem, we first calculate the modular height hC/X of C/X (cf. Theorem 17)
and then combine the “mass-formula” of [Ka1], [Ka2] with Mumford’s formula [Mu]
(and with Noether’s formula). This also leads to a formula for the self-intersection
number (ω0

C/X)2 of the relative dualizing sheaf ω0
C/X :

Theorem 4 If char(K)6 |N !, then the minimal model C of Cuniv over X = X(N) is
a stable curve of genus 2 which has 1

12N
(5N + 6)sl(N) singular fibres, and each such

singular fibre has a unique singular point. Moreover, the modular height hC/X and the
self-intersection number of the relative dualizing sheaf ω0

C/X are given by

hC/X =
1

12
sl(N) and (ω0

C/X)2 =
1

12N
(7N − 6)sl(N).(4)
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Remark. The above theorem, which is a special case of Theorems 17, 21, 22 and
Corollary 24, is also of independent interest because the above formula (4) shows
that the relative curves C/X(N) are curves of “maximal height”, as is explained in
more detail in Remark 18 below. In this connection one should also mention the
recent preprint of E. Viehweg and K. Zuo[VZ] in which the authors give a remarkable
characterization of abelian varieties (of arbitrary dimension) of “maximal height”.

Now the degree of δ : HE,N → P
1 is related to the invariant (ω0

C/X)2 by the formula

deg(δ) =
N

36
(9(ω0

C/X)2 −W 2
C/X),(5)

in which WC/X denotes the Weierstrass divisor (cf. §6). Since the self-intersection
number W 2

C/X of the Weierstrass divisor can be calculated by the adjunction formula

(cf. (38)), this, together with (4), yields the desired formula for deg(δ).
Finally, the proof of (5) (= equations (35) and (39) below) follows from a study

of the different divisor DC/X := Diff(f̄univ) ∈ Div(C); cf. §5. In particular, we use
the (generalized) Riemann-Hurwitz formula (cf. Corollary 35) and the degeneration
structure of C/X to show that the sheaf L(DC/X) associated to DC/X is the relative
dualizing sheaf ω0

C/X of C/X (cf. Theorem 26). Formula (5) follows from this because

the Weierstrass divisor WC/X is closely related to the tri-canonical sheaf (ω0
C/X)⊗3; cf.

Proposition 29 and Corollary 30.
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2 Normalized Genus 2 Covers

Let E/K be an elliptic curve over an algebraically closed field K of characteristic 6= 2,
and let E[2] = {P0, P1, P2, P3} denote its group of 2-torsion points, where P0 = 0E
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denotes the identity point. Moreover, let πE : E → E/〈[−1]E〉 ' P
1 denote the

quotient map, and put P̄i = πE(Pi), for i = 0, . . . , 3.
If f : C → E is any genus 2 cover of E, then by Riemann-Hurwitz its discriminant

Disc(f) = f∗Diff(f) is an effective divisor of degree 2. As was mentioned in the
introduction, we want to count the number of genus 2 covers f : C → E of fixed
degree N = deg(f) and fixed discriminant D = Disc(f), i.e. we want to determine
the cardinality of the set

CovE,N,D := {f : C → E : gC = 2, deg(f) = N,Disc(f) = D}/'

of isomorphism classes of genus 2 covers of E of degree N and discriminant D. Here,
as usual, two covers fi : Ci → E are called isomorphic (f1 ' f2) if there is an
isomorphism ϕ : C1

∼→ C2 such that f1 = f2 ◦ ϕ.
As we shall see presently, the study of this set can be reduced to the study of

normalized genus 2 covers which were introduced in [Ka3]. To define these, recall
first that f is called minimal if f does not factor over a non-trivial isogeny of E.
Then we say that f is normalized if it minimal and if the norm (or direct image)
f∗WC of the hyperelliptic (Weierstrass) divisor WC has the form

f∗WC = 3P0 + P1 + P2 + P3, respectively f∗WC = 2(P1 + P2 + P3),(6)

if N is odd, respectively, if N is even; cf. [Ka3], §2. Recall from [Ka3], Proposition
2.2, that every minimal cover can be normalized by replacing f by a suitable translate
TP ◦ f (with P ∈ E(K)) and that each normalized cover f satisfies the relation

[−1]E ◦ f = f ◦ σC ,(7)

where σC denotes the hyperelliptic involution on C. Note that this equation shows
in particular that Disc(f) is symmetric, i.e. that [−1]∗Disc(f) = Disc(f). Thus
Disc(f) = DP := P + [−1]∗P , for some P ∈ E(K); note that DP is reduced if and
only if P /∈ E[2].

Example 5 Let E be the elliptic curve defined by the equation y2 = (x−a)(x−b)(x−
c), with abc 6= 0 and let C be the genus 2 curve defined by s2 = (t2−a)(t2−b)(t2−c).
Then map f : C → E, defined by f ∗x = t2 and f ∗y = s, is clearly a normalized genus
2 cover of E of degree 2 with Disc(f) = DP , where P = (0,

√
−abc) ∈ E(K).

It turns out that every normalized cover of degree 2 is of the above form; more
precisely, we have:

Proposition 6 If P ∈ E(K) \ E[2], then there is (up to isomorphism) a unique
normalized genus 2 cover f : C → E of degree 2 with Disc(f) = DP . On the other
hand, if P ∈ E[2], then there is no degree 2 cover f : C → E with Disc(f) = DP .
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Proof. First note that if f : C → E is any degree 2 cover, then each ramified fibre
of f has a unique ramification point of ramification index 2, and hence Disc(f) is
necessarily reduced. This proves the second assertion.

To prove the first, put P̄ = πE(P ), and choose a generator x of the function field
of P1 such that its principal divisor is (x) = P̄−P̄0. Then E is given by an equation as
in Example 5 for suitable a, b, c 6= 0, and P = (0,

√
−abc). Thus, the above example

shows that such a normalized degree 2 cover f : C → E exists.
To prove that f is unique up to isomorphism, suppose that f ′ : C ′ → E is another

cover of this type. Now if πC : C → C/〈σC〉 ' P1 denotes the hyperelliptic cover of
C, then equation (7) shows that πE ◦ f factors over πC , so that πE ◦ f = f̄ ◦ πC , for
a unique double cover f̄ : P1 → P

1. Similarly, we have πE ◦ f ′ = f̄ ′ ◦ πC′ , for another
double cover f̄ ′ : P1 → P

1.
It is easy to see that both f̄ and f̄ ′ are ramified at P̄0 and P̄ , and so it follows

(since K is algebraically closed) that there exists an α ∈ Aut(P1) such that f̄ =
f̄ ′ ◦ α. Now since f̄−1({P̄1, P̄2, P̄3}) = πC(WC), where WC denotes the set of (six)
Weierstrass points on C, and since similarly (f̄ ′)−1({P̄1, P̄2, P̄3}) = πC′(WC′), we
see that α(πC(WC)) = πC′(WC′), and this implies that α lifts to an isomorphism
α̃ : C → C ′ such that α ◦ πC = πC′ ◦ α̃. Thus f̄ ′ ◦ πC′ ◦ α̃ = f̄ ◦ πC , and so
πE ◦ f ′ ◦ α̃ = πE ◦ f .

We now show that this implies that either f = f ′ ◦ α̃ or that f = f ′ ◦ α̃ ◦ σC . For
this, let τ and τ ′ be the nontrivial involutions associated to f and f ′, respectively.
Then τ1 := α̃−1τ ′α̃ ∈ Gal(πE ◦ f) = {1, σC , τ, σCτ}. Thus τ1 = τ or τ1 = σCτ and
hence either f ◦α̃−1 or f ◦σC ◦α̃−1 is τ ′-invariant, and so there exists an automorphism
ρ ∈ Aut(E) such that ρ◦f ′ = f ◦ α̃−1 (or = f ◦σC ◦ α̃−1). Since πE ◦f ′◦ α̃ = πE ◦f , we
see that πE ◦ρ = πE, and so ρ = idE or ρ = [−1]E. Thus, using (7), we see that either
f = f ′ ◦ α̃ or f = f ′ ◦ α̃ ◦ σC . Thus f ′ ' f , and so f is unique up to isomorphism.

Notation. Let Cov
(norm)
E,N,D (respectively, Cov

(min)
E,N,D) denote the subset of isomorphism

classes cl(f) ∈ CovE,N,D for which f is normalized (respectively, for which f is mini-
mal).

The connection between minimal and normalized covers is clarified by the following
result.

Proposition 7 (a) For any P ∈ E(K), the map f 7→ TP ◦ f induces a bijection

τP : CovE,N,T ∗PD
∼−→ CovE,N,D

which maps Cov
(min)
E,N,T ∗PD

onto Cov
(min)
E,N,D.

(b) For any effective divisor D ∈ Div(2)(E) of degree 2, there is a point P ∈ E(K)
such that T ∗PD is symmetric.
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(c) If D ∈ Div(2)(E) is symmetric, then

Cov
(min)
E,N,D =

⋃̇
Pi∈E[2]

τPi(Cov
(norm)
E,N,T ∗Pi

D).

Proof. (a) Since T ∗P (Disc(TP ◦ f)) = Disc(f), this is immediate.
(b) Write D = P ′+P ′′ with P ′, P ′′ ∈ E(K). Since K is algebraically closed, there

is a point P ∈ E(K) such that 2P ∼ P ′ + P ′′. Then T ∗P (P ′′) ∼ (P ′′ − P ) + P0 ∼
P − P ′ + P0 ∼ 2P0 − T ∗P (P ′) ∼ [−1]∗ET

∗
P (P ′), and so T ∗P (P ′′) = [−1]∗ET

∗
P (P ′). Thus

T ∗PD = T ∗P (P ′) + [−1]∗ET
∗
P (P ′) is symmetric.

(c) It is clear by part (a) that the right hand side is contained in the left hand

side. Conversely, suppose cl(f) ∈ Cov
(min)
E,N,D. Then by Proposition 2.2 of [Ka3], there

exists a point P ∈ E(K) such that f ′ = TP ◦ f is normalized, and so we know by (7)
that Disc(f ′) = T ∗P (Disc(f)) = T ∗P (D) is symmetric. But D was also symmetric by
hypothesis, so we must have that [−1]∗EP = P , i.e. that P ∈ E[2]. Thus f = TP ◦ f ′,
with f ′ ∈ Cov

(norm)
E,N,T ∗P (D), and so both sides are equal.

The study of arbitrary covers can be reduced to the study of minimal covers by
means of the following (well-known) fact.

Proposition 8 If f : C → E is any cover and H = Hf := Ker(f ∗ : JE → JC) is the
kernel of the induced homomorphism of the Jacobians, then f factors as f = πH ◦ f ′,
where πH : E ′H → E is the (essentially) unique isogeny such that Ker(π∗H) = H, and
where f ′ : C → E ′H is minimal. Furthermore, if f = πH ◦ f ′′ is another factorization,
then f ′′ = TP ′ ◦ f ′, for some P ′ ∈ Ker(πH).

Proof. By the autoduality property of JC , f : C → E is minimal if and only if f
maximal in the sense of Serre[Se], VI, No. 13 (p. 129ff), and so the first assertion
follows from Lemma 3 of [Se], (p. 130). The second assertion is an easy consequence
of the uniqueness assertion of the autoduality property of JC .

Corollary 9 Let H ≤ JE be a finite subgroup of order n|N and let CovE,N,D,H ⊂
CovE,N,D denote the subset of all isomorphism classes cl(f) ∈ CovE,N,D with Ker(f ∗) =
H. Fix a point Q′1 ∈ π−1

H (Q1), where D = Q1 + Q2. Then the map f ′ 7→ πH ◦ f ′
induces a surjection

τH :
⋃̇

Q′2∈π
−1
H (Q2)

Cov
(min)

E′H ,
N
n
,Q′1+Q′2

−→ CovE,N,D,H

which is a bijection if D is reduced. On the other hand, if D = 2Q1, then for any
P ′ ∈ Ker(πH) we have

τ−1
H (τH(cl(f ′1)) = {cl(f ′1), cl(TP ′ ◦ f ′1)}, for all cl(f ′1) ∈ Cov

(min)

E′H ,
N
n
,Q′1+T ∗

P ′ (Q
′
1)
.

In particular, #τ−1
H (τH(cl(f ′1))) = 2, if P ′ 6= 0, and #τ−1

H (τH(cl(f ′1))) = 1, if P ′ = 0.
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Proof. It is immediate that the rule τH(cl(f ′)) := cl(πH ◦ f ′) defines a map from
the above union to CovE,N,D,H . To see that τH is surjective, let cl(f) ∈ CovE,N,D,H .
Then by Proposition 8 we have f = πH ◦ f ′, for some minimal f ′ : C → E ′H . Since
(πH)∗(Disc(f ′)) = D, we have that Disc(f ′) = T ∗P ′(Q

′
1 + Q′2), for some P ′ ∈ Ker(πN)

and Q′2 ∈ π−1
H (Q2). Put f ′1 = TP ′ ◦ f ′. Then Disc(f ′1) = Q′1 + Q′2, so cl(f ′1) ∈

Cov
(min)

E′H ,N/n,Q
′
1+Q′2

and πH ◦ f ′1 = πH ◦ f ′ = f , and hence τH is surjective.

Assume first that D is reduced. To show that τH is injective, suppose that f ′i :

Ci → E ′H , i = 1, 2 are two covers with cl(f ′i) ∈ Cov
(min)

E′H ,N/n,Di
such that πH◦f ′1 ' πH◦f ′2.

Then there is an isomorphism ϕ : C1
∼→ C2 such that πH ◦ f ′1 = πH ◦ f ′2 ◦ ϕ, and so

by Proposition 8, there is a point P ′ ∈ Ker(πH) such that f ′1 = TP ′ ◦ f ′2 ◦ ϕ. Then
T ∗P ′Disc(f ′1) = Disc(f ′2). Write Di = Disc(f ′i) = Q′1 +Q′2i, where Q′2i ∈ π−1

H (Q2). Now
since Q′1, T

∗
P ′(Q

′
1) ∈ π−1

H (Q1) and Q′22, T
∗
P ′(Q

′
21) ∈ π−1

H (Q2), and since Q1 6= Q2, we
must have T ∗P ′(Q

′
1) = Q′1 (and TP ′(Q

′
21) = Q′22). But this means that P ′ = 0E′H , and

so f ′1 = f ′2 ◦ ϕ, i.e. f ′1 ' f ′2. Thus τH is injective (and hence bijective).

Now suppose that D = 2Q1, and let cl(f ′1) ∈ Cov
(min)

E′H ,N/n,Q
′
1+T ∗

P ′Q
′
1
. Then clearly

{cl(f ′1), cl(TP ′ ◦ f ′1)} ⊂ τ−1
H (τH(cl(f ′1))) because πH ◦ f ′1 = πH ◦ TP ′ ◦ f ′1 and since

Disc(TP ′ ◦ f ′1) = T ∗−P ′(Disc(f ′1) = T ∗−P ′(Q
′
1) +Q′1.

To prove the opposite inclusion, let cl(f ′2) ∈ π−1
H (πH(cl(f ′1))). Then, as in the

reduced case, there exists ϕ : C1
∼→ C2 and P ′′ ∈ Ker(πH) such that f ′1 = TP ′′ ◦ f ′2 ◦ϕ.

Thus T ∗P ′′(Disc(f ′1)) = Disc(f ′2) = Q′1 + T ∗P ′1
(Q′1), for some P ′1 ∈ Ker(πH), and hence

T ∗P ′′(Q
′
1) + T ∗P ′′T

∗
P ′(Q

′
1) = Q′1 + T ∗P ′1

(Q′1). If T ∗P ′′(Q
′
1) = Q′1, then as before P ′′ = 0E′H

and so cl(f ′2) = cl(f ′1). Thus, assume T ∗P ′′(Q
′
1) 6= Q′1; then T ∗P ′′(Q

′
1) = T ∗P ′1

(Q′1) and

T ∗P ′′T
∗
P ′(Q

′
1) = Q′1. This implies that P ′′ = P ′1 and P ′′ = −P ′. Thus TP ′ ◦ f ′1 = f ′2 ◦ ϕ,

i.e. cl(f ′2) = cl(TP ′ ◦ f ′1), and so the opposite inclusion holds.
The last assertion is clear from the previous identity, for cl(TP ′ ◦ f ′1) = cl(f ′1) if

and only if P ′ = 0E′H .

To compare the total number cN,D = #CovE,N,D of covers to the weighted number
c̄N,D, we prove

Lemma 10 If f : C → E is any genus 2 cover of degree N , then |Aut(f)| ≤ 2.
Furthermore, |Aut(f)| = 2 if and only if |Ker(f ∗)| = N

2
. Thus cN,D = c̄N,D, if N is

odd, whereas

cN,D = c̄N,D +
1

2

∑
#H=N

2

#CovE,N,D,H , if N is even.

Proof. Suppose G := Aut(f) 6= {1}, and let f̄ : C → C̄ := G\C denote the quotient
map. Then C̄ is an elliptic curve and f factors as f = f̄ ′ ◦ f̄ . Thus Ker((f̄ ′)∗) ≤ H :=
Ker(f ∗), and so πH factors over f̄ ′, and hence f̄ factors over the minimal map f ′ : C →
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E ′H (cf. Proposition 8). But then f ′ is (generically) Galois, so |Aut(f ′)| = deg(f ′).
By rigidity (cf. [Ka3], Proposition 2.1), this happens if and only if deg(f ′) = 2, or
equivalently, if and only if |H| = N/2.

Proof of Theorem 1 (using Theorem 3): We first note that it follows from Theorem 3
that for any subgroup H ≤ JE with #H = n|N (and n 6= N) we have

#CovE,N,D,H =

(
1

3µD
(N − n)− µD − 1

12N
(7N − 6n)

)
sl(N/n).(8)

To see this, put c(N,D) := #Cov
(min)
E,N,D, which depends only on N and µD by (3).

Suppose first that D is reduced, i.e. µD = 1. Then by Corollary 9 and (3) we have
#CovE,N,D,H = nc(N/n,D′) = 2

3
n(N

n
− 1)sl(N/n), which proves (8) in this case.

Now suppose that D = 2Q1 is not reduced, i.e. µD = 2. Then by Corollary 9 we
have (with the notation there) that #CovE,N,D,H = c(N/n, 2Q′1) + n−1

2
c(N/n,D′) =

(1
3
n(N

n
− 1)− 1

12N/n
(7N

n
− 6))sl(N/n), which proves (8) in this case as well.

We now verify formula (2). If N is odd, then cN,D = c̄N,D by Lemma 10. Thus,
assume that N is even. Now if n = N

2
, then formula (8) yields #CovE,N,D,H =(

N
3µD
− µD−1

3

)
sl(2) = 2( N

µD
− (µD − 1)). Thus, since JE has precisely σ1(N/2) sub-

groups H of order N/2, we see that formula (2) follows from Lemma 10.
It thus remains to prove formula (1). For this, put sl(N) = #SL2(Z/NZ). Since

sl(N) = 1
2
sl(N), if N ≥ 3, whereas sl(2) = sl(2) = 6, we see from (8) combined with

Lemma 10 that the weighted number of covers in CovE,N,D,H is

c̄N,D,H :=
∑

f∈CovE,N,D,H

1

|Aut(f)|
=

(
1

6µD
(N − n)− µD − 1

24N
(7N − 6n)

)
sl(N/n).(9)

Let c̄N,D,n denote the right hand side of (9). Since this number only depends on n
(and on N,D) and since JE has precisely σ1(n) subgroups H of order n, we see that

c̄N,D =
∑
n|N
n 6= N

∑
H ≤ JE
|H| = n

c̄N,D,H =
∑
n|N
n 6= N

σ1(n)c̄N,D,n =
∑
n|N

σ1(n)c̄N,D,n +
µD − 1

24
σ1(N).

From this, formula (1) follows immediately once we have established the identities∑
n|N

σ1(n)sl(N/n) = σ3(N),(10)

∑
n|N

nσ1(n)sl(N/n) = N2σ1(N).(11)

To verify these identities, let f1(N) and f2(N) denote the left hand sides of (10) and
(11), respectively. Since both sides of these equations are multiplicative, it is enough
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to consider the case that N = pr is a prime power. For r = 1 these identities are
immediate, and for r > 1 they can be verified by induction by using the recursion
relations f1(pr+1) = p3f1(pr) + 1 and f2(pr+1) = p3f2(pr) + p2r+2, which are also
satisfied by σ3(pr) and p2rσ(pr), respectively.

Proof of Corollary 2 (using Theorem 1). Since E2 = 1 − 24
∑

n≥1 σ1(n)qn and E4 =

1 + 240
∑

n≥1 σ3(n)qn, it follows from (1) that FD(q) = 1
3µD

(
1

240
θ(E4) + 1

24
θ2(E2)

)
−

µD−1
24

(
7

240
E4 + 6

24
θ(E2)− 1

24
E2 − 17

240
)
)
, where θ = q d

dq
. Thus, since θ(E2) = 1

12
(E2

2 −
E4) and θ(E4) = 1

3
(E2E4−E6) (cf. [La], p. 161), we have θ2(E2) = θ( 1

12
(E2

2 −E4)) =
1
72

(E3
2 − 3E2E4 + 2E6), and so the given formula for FD(q) follows.

3 The discriminant map

The main reason for working with normalized genus 2 covers in place of arbitrary
covers is that normalized covers can be parameterized by a nice algebraic curve.

To explain this in more detail, consider for any extension field L/K the set

HE/K,N(L) = Cov
(norm)
EL,N

=
⋃
D Cov

(norm)
EL,N,D

of all isomorphism classes of normalized
genus 2 covers of degree N of EL/L. Then the assignment L 7→ HE/K,N(L) extends
in a natural way to a Hurwitz functor

HE/K,N : Sch/K → Sets;

cf. [Ka3], §3. Moreover, if N ≥ 3 is invertible in K (which we assume tacitly hence-
forth), then by Theorem 1.1 of [Ka3] we know that HE/K,N is representable by an
open subset of the (projective) modular curve X(N):

Theorem 11 If N ≥ 3, then the functor HE/K,N is finely represented by an open
subset HE,N of the modular curve X(N)/K of level N .

It is interesting to note that this representability result was obtained by purely
algebraic techniques; in particular, it did not use (not even implicitly) the Riemann
Existence Theorem.

We next observe that the sets Cov
(norm)
E,N,D ⊂ HE/K,N(K) of normalized genus 2

covers of fixed discriminant D can be identified as the fibres of the discriminant map
δE,N : HE,N → Div(2)(E)sym ' P1.

Proposition 12 (a) The rule cl(f) 7→ Disc(f) defines a morphism

δE,N : HE,N → Div(2)(E)sym ' P1

such that Cov
(norm)
E,N,D ' δ−1

E,N(D), for all D ∈ Div(2)(E)sym.

9



Proof. Let Div
(2)
E/K : Sch/K → Sets denote the functor which associates to a scheme

S the set Div
(2)
E/K(S) = Div(2)(ES/S) of relative effective Cartier divisors of degree 2

of ES/S (cf. [BLR], p. 214 and 237). Recall that Div
(2)
E/K is represented by E(2), the

second symmetric power of E (cf. [Gr1], p. 21).
Now if S is any K-scheme and f : C → ES is any normalized genus 2 cover

of ES/S (cf. [Ka3], §3), then Disc(f) = f∗Diff(f) ∈ Div
(2)
E/K(S), so the assignment

cl(f) 7→ Disc(f) defines a map δS : HE/K,N(S) → Div
(2)
E/K(S). We claim that δS

commutes with base-chance. Indeed, the formation of Diff(f) commutes with base-
change by general properties of differents (cf. Corollary 34) and hence Diff(f) =
f∗Diff(f) also commutes with base-change (since f∗ does; cf. [Ka3], Lemma 7.3).

Thus, δ = {δS} : HE/K,N → Div
(2)
E/K defines a natural transformation of functors, and

hence is represented by a morphism δ = δE,N : HE,N → E(2).
By (7) we know that Disc(f) is symmetric with respect to [−1], and so δ maps

into the subset Div(2)(E)sym of symmetric divisors. Now if πE : E → E/〈[−1]〉 ' P1

denotes the quotient map, then the rule P̄ 7→ π∗EP̄ induces an isomorphism P
1(K)

∼→
Div(2)(E)sym.

The last assertion is clear from the construction since by definition Cov
(norm)
E,N,D is

the fibre of δK : HE/K,N(K) → Div
(2)
E/K(K) over D, and hence the set of K-rational

points of the geometric fibre can be identified with Cov
(norm)
E,N,D.

Notation. Let Hsm
E/K,N denote the subfunctor of HE/K,N consisting of covers with

smooth discriminants, i.e. Hsm
E/K,N is defined by the rule

Hsm
E/K,N(S) = {cl(f) ∈ HE/K,N(S) : Disc(f) is smooth over S}, for all K-schemes S.

Theorem 13 (a) The functor Hsm
E/K,N is represented by an open subscheme Hsm

E,N of

HE,N , and the restriction δsmE,N : Hsm
E,N → U := P1 \ πE(E[2]) of δE,N to Hsm

E,N is etale.

(b) If char(K)6 |N !, then δsmE,N is also finite, and hence #Cov
(norm)
E,N,DP

= deg(δE,N),
for all P ∈ E(K) \ E[2].

Proof. (a) Let funiv : Cuniv → EH denote the universal normalized genus 2 cover of
degree N over H = HE,N (which exists by Theorem 11). Since D := Disc(funiv) ∈
Div(EH/H) is an effective relative Cartier divisor, the set Hsm ⊂ H where D is
smooth over H is an open subset of H, and it is immediate that Hsm represents the
functor Hsm

E,N .

Since U represents the subfunctor of Div
(2)
E/K

sym
of smooth divisors, the map δsmE,N

is etale if and only if the following deformation property holds (cf. [BLR], p. 288):
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(*) If A a local Artinian K-algebra with residue field A and if D ∈ Div
(2)
E/K(A)sym

is smooth symmetric divisor on EA with image D ∈ Div
(2)
E/K(A), then each

normalized genus 2 cover f : C → EA with Disc(f) = D lifts uniquely to a
normalized genus 2 cover f : C → EA with Disc(f) = D.

To see that this property holds, we apply the deformation result of Fulton[Fu1],
Theorem 4.8 (cf. also Wevers[Wev], Corollary 3.1.3) in the above situation to conclude
that there exists a unique lift f : C → EA of f with Disc(f) = D. It remains to show
that f is normalized.

We first show that f is minimal (in the sense of [Ka3], §7, p. 50). If not, then
Ker(f ∗) is a finite flat group scheme over A of rank d > 1 (because f ∗ : JEA → JC
is a homomorphism of abelian schemes), and so Ker(f

∗
) = Ker(f ∗)s also has rank d,

where {s} = Spec(A). But this contradicts the fact that f is minimal.
Thus, f is minimal. By [Ka3], Theorem 3.2(c) it is thus enough to show that f

is pseudo-normalized, i.e. that (the analogue of) (7) holds. Now since f ◦ σC and
[−1]EA ◦ f both lift f ◦ σC = [−1]A ◦ f and have discriminant D = [−1]∗EAD, there

exists an isomorphism ϕ : C
∼→ C such that ϕ = idC and f ◦ σC = [−1]EA ◦ f ◦ ϕ (cf.

[Fu1], Remark after Theorem 5.8). However, then ϕ = idC by [DM], Theorem (11.1),
and so f ◦ σC = [−1]EA ◦ f , as desired.

(b) It is clear that the second assertion follows from the first together with part
(a) (and Proposition 12). Now the first assertion could be proven by a method similar
to that of the proof of Theorem 7.2 of Fulton[Fu1], but it seems simpler to deduce it
from the results of the next section; cf. Theorem 26(e).

Corollary 14 If N ≥ 3, and D is an effective divisor of degree 2, then

#Cov
(min)
E,N,D ≥

4

µD
deg(δE,N)− (µD − 1)(2gX(N) − 2 + sE,N),(12)

where δE,N : X(N)→ P
1 denotes the unique extension of δE,N to X(N), gX(N) denotes

the genus of X(N), sE,N = #(X(N)\HE,N), and µD = 1 if D is reduced and µD = 2
otherwise. Moreover, equality holds in (12) if and only if µD = 1 or if δE,N is tamely
ramified.

Proof. By Proposition 7(a),(b) we may assume that D is symmetric, so D = DP with
P ∈ E(K). Thus, by Propositions 7(c) and 12 we have

#Cov
(min)
E,N,DP

=
3∑
i=0

#δ−1
E,N(DT ∗Pi

(P )).

If µD = 1, i.e. if P /∈ E[2], then also T ∗Pi(P ) /∈ E[2] and so by Proposition 7 and

Theorem 13(b) we have #Cov
(min)
E,N,DP

= 4 deg(δE,N) = 4 deg(δE,N). This proves that
equality holds in (12) in this case.
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Now suppose that µD = 2, i.e. that P ∈ E[2]. Then by the above formula we have

#Cov
(min)
E,N,DP

=
∑3

i=0 #δ−1
E,N(DPi). To calculate this, we shall apply the Riemann-

Hurwitz formula to δ to obtain

4 deg(δE,N)−
3∑
i=0

#δ
−1

E,N(DPi) ≤ deg(Diff(δE,N)) = (2gX(N) − 2)− deg(δE,N)(−2).

From this (12) follows immediately after a short computation because by Theorem

13 we know that ∪iδ−1
E,N(DPi)

.
∪ SE,N = ∪iδ

−1

E,N(DPi), where SE,N = X(N) \HE,N .

Note since δE,N is unramified outside the points πE(E[2]) = {DP0 , . . . , DP3} (cf.
Theorem 13), we see that equality holds in the above equation (and hence in (12)) if
and only if δE,N is tamely ramified.

Remark.We shall see later (cf. Proposition 31) that δE,N is always tamely ramified
(provided that char(K) - N !).

4 Compactification of the universal cover

In the previous section we saw that the number #Cov
(min)
E,N,DP

is (mainly) determined
by the degree of the discriminant map δ : H = HE,N → P

1. As we shall see below
in §5, this degree is closely related to the bi-degree of the discriminant divisor of the
universal cover fH : CH → H. Since we want to use intersection theory to compute
this degree, we first need to compactify the surface CH as well as the cover fH .

For this, recall first that by Theorem 11 we have a “universal cover” fH = funiv :
CH → EH = E × H over H := HE,N ⊂ X(N) with the property that all other
normalized covers of degree N are obtained from this one by base-change. (Recall
that we are always tacitly assuming that N ≥ 3 and that char(K)6 | 2N .)

Let p : C = CX(N) → X(N) denote the minimal model of the genus 2 curve C/FN
which is the generic fibre of CH/H; here FN = κ(X(N)) denotes the function field
of X(N)/K. Thus, C is a projective, smooth surface over K, and p : C → X(N) is
a genus 2 fibration whose fibres do not contain any rational (−1)-curves and whose
generic fibre is C/FN . Note that CH := p−1(H) ' CH because CH/H is smooth and
hence is the minimal model of C over H. Thus, C/X(N) is a natural compactification
of CH/H.

In order to study the geometry of C/X(N), it is useful to generalize the above
situation slightly by allowing base-extensions of X(N). Thus, let:

β : X → X(N) be a finite cover of degree d = deg(β), where
X is a smooth curve with function field F = κ(X), and let
CF = C ⊗FN F be the base-change of the curve C/FN ,
p = pX : C = CX → X be the minimal model of CF over X,
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J = JF the Jacobian variety of CF/F , and
J /X its Néron model.

We first note that the universal cover fH : CH ' CH → EH naturally lifts and
extends to a morphism f : C → EX ; this follows from the following general result.

Proposition 15 Let pi : Yi → X be a two proper morphisms over a smooth curve
X/K, and assume that Y1 is a regular irreducible surface and that Y2/X is either an
abelian scheme or a smooth relative curve of genus g ≥ 1. Then every X-rational
map f : Y1 99K Y2 extends uniquely to an X-morphism f : Y1 → Y2.

Proof. Here we shall use the following fact:

If π : Z → Y1 is a birational proper morphism and if C ⊂ Z is an irreducible
curve such that π(C) is a point, then C is a rational curve.

(13)

[Indeed, if Z is also regular, then π is a sequence of blow-ups at smooth points (cf.
[Ha], Corollary V.5.4), so in fact C ' P1 for any such C. In the general case, we can
find by the resolution of singularities theorem (cf. [Art]) a regular surface Z ′ and a
birational proper morphism π′ : Z ′ → Z. Then there is an irreducible curve C ′ ⊂ Z ′

such that π′(C ′) = C. By what was just said, C ′ is rational, and hence so is C.]
Now let U = def(f) denote the largest open subset on which f is defined. Since

p2 is proper and f is an X-rational map, f is a strictly rational map in the sense
of Iitaka[I], p. 134; cf. [I], Lemma 2.23. Thus, since Y1 is normal, B := Y1 \ U has
codimension ≥ 2 (cf. [I], Theorem 2.19), and hence is a finite set. Let Γf ⊂ Y1×XY2 ⊂
Y1×Y2 denote the graph of the rational map f . Then p = (pr1)|Γf : Γf → Y1 is proper
and birational. Suppose y ∈ B. Then dim(q(p−1(y))) > 0 by Zariski’s Main Theorem
(cf. [I], Theorem 2.22), where q = (pr2)|Γf : Γf → Y2. Now every irreducible curve
C ⊂ p−1(y) is rational by (13). In addition, since C lies in a closed fibre of p1 ◦ p,
we see that q(C) lies in a closed fibre of p2. But the hypotheses on p2 imply that its
fibres cannot contain any rational curves, so q(C) must be a point. Thus p(q−1(y)) is
0-dimensional, contradiction, and hence B = ∅, i.e. def(f) = Y1, which means that f
extends (uniquely) to a morphism f : Y1 → Y2, as claimed.

Corollary 16 Let fU : CU → EU be the base-change of the above universal cover
fH : CH → EH with respect to βU = β|U : U → H, where U = β−1(H). Then fU
extends uniquely to a proper, surjective morphism f = fX : C → EX := E ×X, and
we have

βEX ◦ fX = fX(N) ◦ βC(14)

where βEX = idE × β : EX → EX(N) and βC : CX → CX(N) are the morphisms
induced by base-change. Moreover, if σC ∈ AutX(C) denotes the unique extension of
the hyperelliptic involution σCF to C, then we have

f ◦ σC = [−1]EX ◦ f.(15)
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Proof. The first assertion follows immediately from Proposition 15, for EX = E ×X
is a smooth relative curve of genus 1 over X. The second assertion (14) is clear,
for by construction the two morphisms agree on the dense open set CU = CH ×H U .
(Note that βC = β(C) ◦ ν, where ν : CX → CX(N) ×X(N) X is birational and β(C) :
CX(N) ×X(N) X → CX(N) is the base-change map.)

The existence of σC follows from the universal property of minimal models (cf.
[Li]). Now since fU is normalized by construction, the two morphisms f ◦ σC and
[−1] ◦ f agree on the dense open set p−1(U) (cf. [Ka3], Theorem 3.2(c)) and hence
are equal on C.

We now examine the geometry of C/X more closely. As a first step, let us compute
its modular height hC/X . This important invariant, which was first introduced by
Parshin[Pa1],[Pa2] and Arakelov[Ar], is defined for any (regular) semi-stable curve
C/X of genus g ≥ 1 by

hC/X := degX(∧gp∗(ω0
C/X)) = − degX(∧gR1p∗OC).

where ω0
C/X = ωC/K ⊗ p∗(ωX/K)−1 denotes the relative dualizing sheaf of C/X (cf.

[BPV], p. 98 or [Kl]), and the equality follows from the relative duality isomorphism
p∗ω

0
C/X ' (R1p∗OC)∨; cf. [BPV], p. 99 or [Kl], equation (1.1).

It turns out that the height of C/X is closely related to the modular height of E ′/X,
where E ′ = E ′X is the minimal model of the “universal elliptic curve” E ′F = E ′FN ⊗ F
over X. (More precisely, E ′FN is the generic fibre of the universal elliptic curve E ′X′(N)

over X ′(N) := X(N) \X(N)∞, where X(N)∞ = {cusps} denotes the set of cusps of
X(N); i.e. E ′X′(N) (together with its level-N -structure) is the universal object of the

functor parameterizing elliptic curves with level-N -structure of fixed determinant.)

Theorem 17 The relative curve p : C → X is semi-stable and has modular height

hC/X = hE ′/X =
N

12
d#X(N)∞ =

d

12
sl(N) :=

d

12
# (SL2(Z/NZ)/{±1}) .(16)

Proof. The “basic construction” of [FK] or [Ka3], Corollary 5.19, shows that the
Jacobian JFN of C = CFN is isogenous to EFN×E ′FN , and so we also have JF ∼ EF×E ′F .
Now E ′F has semi-stable (or semi-abelian) reduction over F , i.e. the minimal model
E ′/X of E ′F is semi-stable: this follows either from the work of [DR] or, more simply,
from Raynaud’s criterion (cf. [Gr2], Prop. 4.7) because the N -torsion points of E ′F are
F -rational. Thus, since EF has good reduction over F , we see that EF×E ′F and hence
also J have semi-abelian reduction (use [BLR], 7.4/2 and 7.3/7). Thus, the Néron
model J of J is semi-abelian, and so by [DM], Theorem (2.4), C/X is semi-stable.

To compute hC/X , we shall use the fact (due to Parshin[Pa2], §3, Proposition 1
and/or Arakelov[Ar], Lemma 1.4) that

hC/X = degX(λJ /X), where λJ /X = s∗Ω1
J /X ,
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in which s : X → J denotes the zero-section of the Néron model J /X of the
Jacobian J of CF . Since here J ∼ EF ×E ′F (by an isogeny of degree N2), we see that
λJ /X ' λEX/X⊗λE ′/X ' λE ′/X where the last isomorphism follows from the fact that
EX/X is constant (so λEX/X ' OX).

Thus hC/X = deg(λJ /X) = hE ′/X , which proves the first equality of (16). To
determine hE ′/X , we use the fact that for any (regular) semi-stable elliptic curve
q : E ′ → X we have

hE ′/X = 1
12
δE ′/X = 1

12
deg(jE ′),(17)

where δE ′/X denotes the total number of singular points of all fibres of E ′/X and
jE ′ : X → P

1 denotes the morphism defined by the j-invariant jE ′ ∈ κ(X). [Indeed,
the first equation of (17) follows from Noether’s formula (23) together with the fact
that (ω0

E ′/X)2 = 0 (which in turn follows from the formula ω0
E ′/X = q∗q∗ω

0
E ′/X ; cf. [DR],

Proposition II.1.6(ii)). To prove the second equation, we first note that E ′/X has bad
reduction at x ∈ X if and only if vx(jE ′) < 0, i.e. if and only if x ∈ j−1

E ′ (∞), and
that for such an x the fibre E ′x is a Néron polygon of length −vx(jE ′); cf. [Ta]. Thus
δE ′ = −

∑
x min(0, vx(jE ′)) = deg(jE ′), which proves the second equality of (17).]

Now for E ′/X as above, the map jE ′ is given by jE ′ = pN ◦ β, where pN : X(N)→
X(1) is the standard cover which is Galois with group SL2(Z/NZ)/{±1}. Thus, since
each x ∈ X(N)∞ = p−1

N (∞) is ramified of degree N , we have deg(jE ′) = d · sl(N) =
dN#X(N)∞, which therefore proves the second and third equation of (16).

Remark 18 For d = 1 the genus of X = X(N) is given by 2gX(N)−2 = sl(N)(1
6
− 1
N

),
and hence we can also write the above formula (16) in the form

hC/X(N) = hJ /X(N) =
1

2
(2gX(N) − 2 + #X(N)∞).

Now since J has bad reduction precisely at X(N)∞ (cf. Proposition 19 below), this
means that C and J have “maximal height”, because by a theorem of Faltings[Fa]
the right hand side of this equation is the maximum value that the height of a 2-
dimensional abelian variety A/F can assume in characteristic 0 when A has good
reduction outside of X(N)∞ (and A contains an elliptic curve defined over K).

In this connection it is interesting to note that in a recent preprint E. Viehweg
and K. Zuo[VZ] give a beautiful structure theorem for abelian varieties (of arbitrary
dimension) for which the Arakelov-Faltings inequality is an equality.

We next examine the singular locus of C/X, i.e. the set S(C/X) ⊂ X of points x ∈
X such that the fibre Cx is singular. Note that S(C/X) contains the set S0(C/X) :=
S̃(J /X) of points x ∈ X where J has bad reduction, i.e. where the fibre Jx of the
Néron model J is not proper (use [BLR], 9.4/4). Thus we can write

S(C/X) = S0(C/X) ∪̇ S1(C/X), with S1(C/X) := S(C/X) \ S0(C/X).
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Proposition 19 (a) The set of points where the Jacobian J has bad reduction is the
set S0(C/X) = S(E ′/X) = X∞ := β−1(X(N)∞). If x ∈ S0(C/X), then Cx contains a
unique component Cx,0 whose normalization has genus 1, and the induced morphism
fCx,0 : Cx,0 → Ex = E is finite of degree N . Furthermore, there is at least one singular
point Px ∈ Cx such that Cx \ {Px} is connected.

(b) The set of points where the curve C has bad reduction (i.e. the singular locus
of C/X) is S(C/X) = X \ U , where U = β−1(H), and so S1(C/X) = X ′ \ U , where
X ′ = X\X∞. If x ∈ S1(C/X), then the fibre Cx of C at x is a chain Cx = Cx,0∪. . .∪Cx,r
of smooth curves Cx,i. Furthermore, Cx,0 = Ex,1 and Cx,r = Ex,2 are elliptic curves
with self-intersection number E2

x,i = −1, whereas all others components are rational
curves with self-intersection number C2

x,j = −2. In addition, the induced maps fx,i :
Ex,i → Ex = E are finite of total degree N , i.e. deg(fx,1) + deg(fx,2) = N .

Proof. Many of these assertions follow from the discussion of [FK], pp. 161–166, at
least when N is odd and the Weierstrass points are F -rational. However, since we do
not make these assumptions here, it seems better to give a direct proof of these facts.

(a) Since J ∼ EF × E ′F , the connected component J 0
x of Jx is isogenous to E ×

(E ′x)0 (cf. [BLR], 7.4/7), and so S0(C/X) = S(E ′/X) (use [BLR], 7.4/2 and 7.3/7).
Furthermore, S(E ′/X) = X∞, as was shown in the proof of Theorem 17.

Now if x ∈ S(E ′/X), then (E ′x)0 ' Gm, and hence J 0
x has a 1-dimensional torus

part and a 1-dimensional abelian part. Thus, since Pic0
Cx/K ' J

0
x (cf. [BLR], 9.5/4),

it follows from [BLR], 9.2/8, that Cx has a unique component whose normalization
has genus 1 and that the graph of components of Cx has a loop, i.e. there exists a
point Px with the asserted property.

To verify the assertion about fCx,0 , we will use the fact that since f is generically
finite of degree N , we have f∗f

∗D = ND, for every divisor D on EX ; cf. Fulton [Fu2],
Example 8.1.7. Now for D = Ex we have f ∗Ex = Cx = Cx,0 + Cx,1 + . . .+ Cx,r, where
the Cx,i are the components of Cx. But since Cx,i is rational for i ≥ 1 and since Ex ' E
is an elliptic curve, we see that f(Cx,i) is a point and so f∗(Cx,i) = 0 for i ≥ 0. Thus
f∗Cx,0 = f∗f

∗Ex = NEx, which means that fCx,0 : Cx,0 → Ex is finite and has degree
N , as asserted.

(b) Since CX(N) has semi-stable reduction, we have S(C/X) = β−1S(CX(N)/X(N)),
and so it is enough to verify the first assertion for X = X(N).

Since CH/H is smooth, we see that S := S(C/X) ⊂ X(N) \ H. To prove the
opposite inclusion, we first recall some facts about the construction of H = HE/K,N

from [Ka3], §5.3:

1) Since K is algebraically closed, we have XE/K,K,−1 ' X ′(N) = X(N) \X(N)∞
(cf. [Ka3], Theorem 4.1). Moreover, there is a principally polarized abelian scheme
(J ′, λ′) over X ′ := X ′(N) whose restriction to H is the Jacobian scheme JCH/H of
the universal genus 2 curve CH/H (use [Ka3], Corollary 5.11, Proposition 5.12 and
Theorem 5.18).
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2) The set H is the open subscheme of points x ∈ X ′(N) such that (J ′x, λ′x) is
theta-smooth (in the sense of [Ka3], §5.3); cf. [Ka3], Proposition 5.17.

Note that 1) shows that J ′/X ′ is the Néron model of JF over X ′ because J ′/X ′
is an abelian scheme with generic fibre JF (use [BLR], 1.2/8). Thus J ′ ' J|X′ and
λ′ is the unique extention of the canonical polarization λ of the Jacobian JCH/H.

Now suppose that x ∈ X(N) \ S. Then Cx is smooth, and so CT/T is a smooth
relative curve over T = Spec(OX,x). Then the principally polarized Jacobian (JCT , λT )
of CT is theta-smooth (cf. [Ka3], Proposition 5.14). But JCT ' J ′|T because both are
Néron models of JF over T , and also λT = λ′|JCT

, and so J ′ is theta-smooth at x, i.e.

x ∈ H. Thus X(N) \ S ⊂ H or S ⊃ X(N) \H, and so S = X(N) \H, as claimed.
Now let x ∈ S1 = S1(C/X), where X is again a general cover of X(N). Then by

definition Cx = Cx,0 ∪ . . . ∪ Cx,r is singular whereas Jx is an abelian variety. Thus,
by [BLR], 9.3/12 (together with [BLR], 9.5/4) it follows that all components of Cx
are smooth and the configuration of components is tree-like. Moreover, since 2 =
dimJx =

∑
i g(Cx,i) by [BLR], 9.2/8, we see that Cx has precisely two components

of genus 1. These have to be in fact the two ends of the graph, for any rational end
component would be a (−1)-curve on Cx, which does not exist since C is minimal.
Thus, Cx is a chain whose ends are the two elliptic curves.

The fact that the self-intersection numbers are as indicated is proved in Ogg[Ogg],
p. 360; note that here we have type 13 in Ogg’s list (and type IV is Parshin’s list[Pa2]).

To prove the last assertion, we first observe that the same argument as in (a)
shows that N = deg(fx,1) + deg(fx,2) (because all other components of Cx map to a
point). Thus, at least one of the maps fx,i is finite, but it seems more difficult to show
that both are finite. To prove this, it is clearly enough to show that f(Ex,i) = Ex,
for i = 1, 2 and to verify this, we may assume (in view of (14) and the fact that βEX
is finite) that F is sufficiently large. In that case this follows immediately from the
following result which is also of independent interest.

Proposition 20 Suppose that either N is odd or that the Weierstrass points of CF
are F -rational. Then there exists a morphism j′ : C ′ := p−1(X ′) → J ′ := p−1

J (X ′) ⊂
J such that

j′ ◦ σC′ = [−1]J ′ ◦ j′ and λEX′ ◦ f|C′ = f∗ ◦ j′,(18)

where f∗ : J ′ → JEX′ = JE×X ′ is the homomorphism on the abelian schemes induced

by f , and λEX′ : EX′
∼→ JEX′ is the canonical polarization. In addition, θ := j′(C ′)

is a theta-divisor of the principally polarized abelian scheme (J ′, λJ ′) over X ′, and
(f∗)|θ : θ → EX′ is finite. In particular, f(Ex,i) = Ex, for all x ∈ S1(C/X) ⊂ X ′.

Proof. By [Ka3], Proposition 2.4, there exists a morphism jF : CF ↪→ JF such that (18)
holds for the generic fibres over F . Since J ′/X ′ is an abelian scheme, it follows from
Proposition 15 that jF extends uniquely to a morphism j′ : C ′ → J ′. Moreover, by
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the universal property of Néron models, (fF )∗ extends uniquely to a homomorphism
f∗ : J ′ → JEX′ , and so (18) holds because it is true on the generic fibres.

Since j′ is proper, θ = j′(C ′) is the closure of jF (CF ) in J ′, and so is an irreducible
divisor on the smooth 3-fold J ′/K. Thus θ cannot contain any component of a fibre
of J ′/X ′ and so is flat over X ′ (since X ′ is a smooth curve). Thus θx = θ|J ′x is an
effective divisor on J ′x, for every x ∈ X ′. Now since its generic fibre θF = θ|JF is the
theta-divisor of JF by [Ka3], Corollary 2.5, we see that θ2

x = θ2
F = 2 for all x ∈ X ′,

and so each θx is the theta-divisor of a principal polarization on J ′x, which means
that λ := λL(θ) : J ′ → Ĵ ′ defines a principal polarization. But since λ agrees with
the canonical polarization λC on the generic fibre, we have λ = λJ ′ , and so θ is a
theta-divisor associated to λJ ′ .

To show that (f∗)|θ is finite, we first observe that we have an exact sequence

0→ E ′X′
h′→ J ′ f∗→ JEX′ → 0,(19)

where h′ : E ′X′ → J ′ denotes the canonical extension (by the universal property of
Néron models) of the map h′F : E ′F → JF constructed in [Ka3], Proposition 2.7. Thus
(19) is exact when restricted to the generic fibres over F . Now since f ∗F : JEF → J
is an injection and (f∗)F ◦ f ∗F = [N ], the hypotheses of [BLR], 7.5/3(a) are satisfied
and so (19) is an exact sequence because J ′/X ′ is an abelian scheme.

Now let x ∈ X ′. If θx is irreducible (hence also reduced), then (f∗)|θx : θx → JE
is a surjective map fx between integral proper curves and hence is finite. (Recall
that fx is surjective and hence also (f∗)|θx .) Thus assume that θx is reducible, i.e.
θx = θx,1 + θx,2, where each θx,i is an elliptic curve on J ′x; cf. [We], Satz 2. Now if
(f∗)|θx is not finite, then f∗(θx,i) is a point for some i, and then a translate of θx,i
lies in E ′x := h′(E ′x) = Ker((f∗)x). Since both are irreducible curves, we must have
equality, and so (θx.E

′
x) = (θx.θx,i) = 1. But (θx.E

′
x) = (θF .E

′
F ) = deg(fF ) = N ,

contradiction. Thus (f∗)|θx is finite for all x, and hence so is (f∗)θ.
Finally, if x ∈ S1, then j′(Cx) = j′(Ex,1)∪ j′(Ex,2) = θx, and neither of the j′(Ex,i)

can be a point for otherwise θx is an elliptic curve, which is impossible since θ2
x = 2.

Thus also f(Ex,i) = f∗(j
′(Ex,i)) cannot be a point, and so f(Ex,i) = E, as claimed.

In the case that X = X(N), the cardinality of the singular locus given by the
following result.

Theorem 21 If X = X(N), then the number of points in S1 = S1(C/X) satisfies
the inequality

#S1 ≤
1

12
(5N − 6)#X(N)∞ =

1

12N
(5N − 6)sl(N).(20)

Thus, the singular locus S = S(C/X) consists of at most 1
12N

(5N + 6)sl(N) points.
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Furthermore, equality holds in (20) if and only if either char(K) = 0 or char(K) >
N , i.e. we have

#S1 =
1

12N
(5N − 6)sl(N) ⇔ char(K)6 |N !.(21)

Proof. By Proposition 19(b) we have S1 = X ′(N)\H = XE/K,N,−1\HE/K,N = DE/K,N

(in the notation of [Ka3], §6). Since #X(N)∞ = 1
N
sl(N) (cf. (16)), we see that the

assertions follow directly from [Ka3], Theorem 6.2 (which is actually a restatement
of the results of [Ka1],[Ka2]).

In the case that char(K)6 |N !, the precise structure of the fibres of C/X can be
determined as follows.

Theorem 22 If char(K)6 |N ! and X = X(N), then C/X is a stable curve which has
precisely one singular point in each singular fibre Cx, and so δC/X = #S(C/X) =

1
12N

(5N + 6)sl(N). Thus, the structure of the singular fibres is as follows:

(a) If x ∈ S1, then Cx = Ex,1 ∪ Ex,2 is the union of two curves of genus 1 which
meet transversely in a unique point Px.

(b) If x ∈ S0 = S∞, then the fibre Cx is an irreducible curve whose normalization
is a curve of genus 1, and Cx has a unique singular point Px ∈ Cx.

Proof. Let δ1 (respectively δ0) denote the number of singular points of the fibres of
C/X which disconnect (respectively, which do not disconnect) the fibre; thus δ :=
δC/X = δ0 + δ1 is the total number of singular points on all fibres of C/X. By
Proposition 19 we have the inequalities

δ0 ≥ #S0 = #X(N)∞ and δ1 ≥ #S1.(22)

There are two important relations which connect the four invariants h = hC/X ,
ω2 = (ω0

C/X)2, δ0, and δ1. The first of these is Noether’s formula

12h = ω2 + δ = ω2 + δ0 + δ1,(23)

which is valid for any semi-stable curve of genus g ≥ 1; cf. e.g. Szpiro[Sz], Lemma 1
(p. 48). For genus 2 curves, however, we have in addition Mumford‘s formula

ω2 =
1

5
δ0 +

7

5
δ1;(24)

cf. [Mu], formula (8.5) on p. 317 (together with the remarks of [Sa] on p. 237), or
Ueno[U], formula (2.4), together with Theorem 2.9 (specialized to the semi-stable
case). (See also Remark 23(b) below.) Combining these two relations yields

12h =
6

5
δ0 +

12

5
δ1.(25)
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In our situation, this identity, together with the inequalities (22), yields

12h ≥ 6

5
#S0 +

12

5
#S1 =

6

5
#S0 +

1

5
(5N − 6)#S0 = N#S0,(26)

where the second last equality follows from (21). (Here we used the hypothesis that
char(K)6 |N !.) But since 12h = N#X(N)∞ = N#S0 by (16), it follows that all the
inequalities in (26) and hence in (22) were equalities, i.e. we have

δ0 = #S0 =
1

N
sl(N) and δ1 = #S1 =

1

12N
(5N − 6)sl(N).(27)

We thus see that each singular fibre contains a unique singular point, as claimed.
From this and Proposition 19, the assertions of parts (a) and (b) follow readily.

Remark 23 (a) Note that (16), (21) and (25) imply that the following converse of
Theorem 22 holds: if each singular fibre Cx of C/X(N) contains a unique singular
point, then char(K)6 |N !.

(b) If we combine Noether’s formula (23) and Mumford’s formula (24) so as to
eliminate δ1, then we obtain the relation

h =
1

7
ω2 +

1

14
δ0,(28)

which, via Noether’s formula, is equivalent to Mumford’s relation (24). Now in [FK],
Corollary 4.2, a weak form of this equality was derived (in the arithmetic case) by
studying the intersection numbers of the components of the Weierstrass divisor W .
In the geometric case, this method can be refined to derive the above equality (28)
directly.

Corollary 24 If char(K)6 |N !, then the self-intersection number of ω0
C/X(N) is given

by

(ω0
C/X(N))

2 =
1

5
#S0 +

7

5
#S1 =

1

12N
(7N − 6)sl(N).(29)

Proof. Substitute the values of δ0, δ1 and h which are given by (27) and (16) in
Noether’s formula (23).

Corollary 25 If char(K)6 |N ! and X = X(N), then f : C → EX is finite and flat
of degree N . Furthermore, we have f(Px) ∈ Ex[2] = E[2], for each singular point
Px ∈ Cx.

Proof. By Proposition 19 and Theorem 22 we know that f does not map any irre-
ducible component of Cx to a point, and so f is quasi-finite. Since f is proper, this
means that f is finite (cf. [Ha], Ex. III.11.2). Moreover, since C and EX are smooth
surfaces over K, it follows that f is also flat; cf. [Ha], Ex. III.9.3(a).

The last assertion is immediate: since Px is the unique singular point in its fibre
Cx, it is fixed by the hyperelliptic involution σC and hence f(Px) is fixed by [−1]EX
by (15).
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5 The different divisor

Let DF = Diff(fF ) denote the different divisor of the generic cover fF : CF → EF , and
let DC/X denote its closure in C. Then there is a close connection between DC/X(N),
the discriminant map δ : HE,N → P

1 (defined in §3), the different divisor Diff(f) (cf.
Appendix) of the compactified morphism f : C → EX(N), and the relative dualizing
sheaf ω0

C/X(N), provided that char(K)6 |N !, which we assume from now on.

Theorem 26 Suppose X = X(N), and write D = DC/X(N).
(a) We have D = Diff(f) and hence ω0

C/X ' L(D).

(b) The divisor D is an irreducible curve on C which meets each singular fibre Cx
precisely at the unique singular point Px, and f|D : D → f(D) ⊂ E ×X is birational.

(c) The morphism πD := pr2 ◦ f|D : D → X is a σD-invariant cover of X of
degree 2, where σD = (σC)|D is the restriction of the hyperelliptic involution to D. In
particular, D/〈σD〉 ' X.

(d) There exists a unique morphism δD : X → P
1 such that

πE ◦ q = δD ◦ πD,(30)

where q := pr2 ◦ f|D : D → E and πE : E → E/〈[−1]〉 = P
1 is the usual double

subcover of E. Furthermore, δD restricts to the discriminant map δE,N : HE,N → P
1

on HE,N ⊂ X, and hence δD = δE,N . In addition, we have

deg(δE,N) = deg(δD) = deg(q) = (ω0
C/X .f

∗(P ×X)).(31)

(e) The restriction δsmE,N : Hsm
E,N → P

1 \ πE(E[2]) of δE,N to Hsm
E,N is finite and

etale.

Proof. (a) Note first that Diff(f) exists by Corollary 35 of the Appendix. Now by
Corollary 25 we know that for each component Γ of a fibre Cx of C/X, the morphism
f|Γ : Γ→ Ex = E is finite of degree deg(f|Γ) ≤ N . Since char(K)6 |N !, it follows that
f|Γ is automatically separable. Thus by Corollary 35(b) we see that B(f) = 0, and
hence Diff(f) = D. Now since E/K is an elliptic curve, we have ωE/K ' OE, and
hence ω0

EX/X
' pr∗1ωE/K ' OEX . Thus by (47) we obtain ω0

C/X ' f ∗ω0
EX/X

⊗L(D) '
L(D), as claimed.

(b) If Γ ⊂ Cx is an irreducible component of Cx, where x ∈ S = S(C/X), then
Γ \ {Px} is a smooth open subset of an elliptic curve, and so Γ \ {Px} → E is etale
(since separable). Thus supp(Diff(fx)) ⊂ {Px}, and so D can meet Cx only in Px; cf.
Corollary 35(b). This proves the second assertion.

The first assertion is a consequence of the second. For if D = D1 + D2 were
reducible, then both components Di must meet Cx in Px. Since Px is a singular point
on Cx, we have (Di.Cx) ≥ 2, so 2 = (D.Cx) = (D1.Cx) + (D2.Cx) ≥ 4, contradiction.
Thus D is is irreducible.
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To see that f|D is birational, we first observe that

f(D)2 ≥ D2 > 0, and hence f(D) 6∼ A×X, for anyA ∈ Div(E).(32)

Indeed, since (A×X)2 = 0, it is clear that the second follows assertion from the first.
To prove the latter, write f∗D = kf(D); note that k = 1 or 2 because (f∗D.E× x) =
(D.Cx) = 2. Since f ∗f(D) = 2D+D′, where D′ is an effective divisor not containing
D, we have k(f(D))2 = (f∗D.f(D)) = (D.(2D+D′)) ≥ 2D2. Since D2 = (ω0

C/X)2 > 0

by (a) and (29), we thus have f(D)2 ≥ 2
k
D2 ≥ D2 > 0, as claimed.

We next observe that σ∗C(D) = Diff(f ◦ σC) = Diff([−1] ◦ f) = Diff(f) = D, i.e. σC
maps D into itself, and hence [−1]f(D) = fσC(D) = f(D).

Suppose now that D → f(D) were not birational. Then k = 2 and (f(D).E×x) =
1, for all x ∈ X, so f(D)F ∈ E(F ). But since [−1]f(D) = f(σC(D)) = f(D), this
forces f(D)F = Pi ∈ E[2]. Thus f(D) = Pi × X, which is impossible by (32), and
hence D → f(D) is birational.

(c) Since π−1
D = D ∩ Cx and (D.Cx) = 2, for all x ∈ X, we see that πD is a double

cover of X. Moreover, since σC maps D into itself (cf. proof of part (b)), σD = (σC)|D
is an involution of D. In addition, we have πD◦σD = pr2◦f ◦(σC)|D = pr2◦[−1]◦f|D =
πD, so πD ◦ σD = πD, i.e. πD is σD-invariant.

We claim that σD 6= idD. Indeed, since f(D) 6= A × X by (32), there exists
a point (P, x) ∈ f(D) with P /∈ E[2]. Then f(π−1

D (x)) = {(P, x), (P ′, x)}, where
P ′ = [−1]P 6= P , and so σD interchanges the two points of π−1(x); in particular,
σD 6= 1. Thus the map D/〈σD〉 → X is birational and hence is an isomorphism as X
is smooth.

(d) Since f(DF ) is a [−1]-invariant effective divisor of degree 2 on EF , there is a
point P ∈ P1

F (F ) such that π∗E(P ) = f(DF ). Thus, if Γ denotes the closure of P in
P

1 × X, then we have (πE × idX)∗(Γ) = f(D). Now since deg(P ) = 1, we see that
(Γ.P1 × x) = 1, for all x ∈ X, and so Γ = Γtδ ⊂ P1 ×X is the transpose of the graph
of a unique morphism δ : X → P

1. Note that the equation (πE × idX)∗Γtδ = f(D)
implies that πE ◦ (pr2)|f(D) = δ ◦ (pr1)|f(D), and from this (30) follows immediately.

Since deg(πD) = deg(πE) = 2, the second equality of (31) follows directly from
(30), and the third is clear because we have by definition that deg(q) = deg(q∗(P )) =
deg((f ∗pr∗1(P )|D) = (D.f ∗(P ×X)).

It thus remains to show that (δD)|H = δE,N . For this, we first note that by
definition (cf. §3) we have:

δE,N(x) = P ⇔ Disc(fx) = π∗E(P )⇔ supp(Disc(fx)) ⊂ π−1
E (P ),

for all x ∈ HE,N(K) and P ∈ P1(K), where the latter equivalence follows from the
fact that supp(Disc(fx)) is [−1]E-invariant (and π−1

E (P ) contain no proper [−1]E-
invariant subset. On the other hand, for any x ∈ X(K) we have supp(Disc(fx)) =
pr1(f(D)∩ (E × x)) = q(D ∩ Cx) = q(π−1

D ) ⊂ π−1
E (δD(x)), where the inclusion follows

from (30) because πD is surjective. Thus we see that δE,N(x) = δD(x),∀x ∈ H.
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(e) By Theorem 13(a) we know that δsmE,N is etale, hence quasi-finite, so it is
enough to show that δsmE,N is proper. Moreover, since δD : X → P

1 is proper, it

is enough to show (in view of part (d)) that Hsm
E,N = δ−1

D (P1 \ πE(E[2])). Now if

x ∈ δ−1
D (P1 \ πE(E[2])), then Cx is smooth by part (b), and so x ∈ Hsm

E,N by definition

(and (30)). Thus Hsm
E,N = δ−1

D (P1 \ πE(E[2])) since the opposite inclusion is trivial.

Remark 27 From the above theorem we see that the curve f(D) = f∗(Diff(f)) is
the discriminant of f . Moreover, formula (31) shows that (f(D).P × X) = deg(q),
so f(D) ⊂ E ×X has bi-degree (deg(q), 2).

6 The Weierstrass divisor W

In order to compute the degree of q, we shall exploit the properties of the Weierstrass
divisor WC/X on C. By definition, WC/X is the closure in C of the (usual) Weierstrass
divisor WF on CF ; recall that the latter is the locus of fixed points of the hyperelliptic
involution σF on CF , and hence is an effective divisor of degree deg(WF ) = 6.

As in [Pa2] and [FK], the discussion of Weierstrass divisors becomes much easier
when all the Weierstrass points of CF are F -rational. We therefore study WC/X first
in the case that X = X(2N) and then relate it to that of X(N).

Proposition 28 Let X = X(2N). Then we have:
(a) The Weierstrass points of CF are F -rational, and so WC/X = W1 + . . .+W6,

where the Wi’s are disjoint sections of C/X.
(b) For each x ∈ S1(C/X), the base-change map (βC)x : Cx → Cβ(x) is an isomor-

phism.
(c) For each x ∈ S0(C/X) = X∞, the fibre Cx = Cx∪Bx is the union of an elliptic

curve Cx and a rational curve Bx ' P1, and we have C2
x = B2

x = −(Bx.Cx) = −2.
Furthermore, (βC)x(Bx) = Pβ(x), the unique singular point of Cβ(x).

(d) If D ∈ Div(CX(N)) is the closure of an effective divisor DFN on C, and if
D∗ ∈ Div(C) denotes the closure of the divisor (βCF )∗(DFN ) on CF , then we have

β∗C(D) = D∗ +
∑
x∈X∞

nxBx, where nx = 1
2
(D∗.Bx).(33)

In particular, we have β∗C(WC/X(N)) = WC/X +B, where B :=
∑

x∈X∞ Bx.
(e) We have ω0

C/X ' β∗C(ω
0
C/X(N)), and so

(ω0
C/X(N).WC/X(N)) +W 2

C/X(N) = #X(N)∞ =
1

N
sl(N).(34)
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Proof. (a) The first assertion follows from the fact that the 2-torsion points of JF are
F -rational. To verify the latter claim, recall that JF = AF/H, where AF = EF × E ′F
and H ≤ AF [N ] is a suitable subgroup (of order N2); cf. [Ka3], Corollary 5.19.
Since the 2N -torsion points E ′F are F -rational, it follows that the same is true for
AF = EF ×E ′F , and so the 2-torsion points of JF = AF/H are F -rational, as desired.

Thus we see that WC/X = W1 + . . . + W6 is the sum of six sections. Now by the
same argument as in [FK], these meet each fibre in different places (because for each
x ∈ X the kernel of the reduction maps JC → (J )x does not contain any non-trivial
2-torsion points), and so it follows that these sections are disjoint.

(b) This is clear because β : X(2N)→ X(N) is unramified outside of X(N)∞.
(c) Since ex(β) = 2N/N = 2, the singularity Pβ(x) of Cβ(x) (cf. Theorem 22) is

resolved by a line Bx ' P1 which meets the elliptic curve Cx in two distinct points.
Thus we have case II of Parshin’s list[Pa2], and so the intersection numbers are as
indicated.

(d) By parts (b) and (c) we see that β∗C(D) = D∗ +
∑

x∈X∞ nxBx for some in-
tegers nx ∈ Z. Since (βC)∗Bx = 0, we obtain from the projection formula that
0 = (β∗C(D).Bx) = (D∗.Bx) + nxB

2
x, and so nx = 1

2
(D∗.Bx), which proves (33).

By Parshin[Pa2], p. 80, we know that (WC/X .Bx) = 2, for all x ∈ X∞, and so the
formula for β∗C(WC/X(N)) follows from (33).

(e) The first assertion is a general fact about relative dualizing sheaves; cf. [Ar],
Lemma 3.4 or [Sz], Lemma 3(b), p. 50.

To prove (34), write W = WC/X(N), ω = ω0
C/X(N) and W̃ = WC/X(2N), ω̃ =

ω0
C/X(2N). In addition, let d = deg(β) = sl(2N)/sl(N). (Note that d = 8 if N is even

and d = 6 if N is odd.) Then (βC)∗(W̃ ) = dW , and so by the projection formula and
part (d) we have

d((ω +W ).W ) = (β∗C(ω +W ).W̃ ) = ((ω̃ + W̃ +B).W̃ ).

Now by the adjunction formula we have for any section Wi of C/X that (ω̃.Wi) =
−W 2

i , and so by part (a) we have ((ω̃+W̃ ).W̃ ) = 0 because W̃ = W1+. . .+W6 consists
of 6 disjoint sections (so W̃ 2 = W 2

1 + . . . + W 2
6 ). Moreover, since ((W̃ + B).B) =

(β∗C(W ).B) = (W.(βC)∗(B)) = 0, we have (W̃ .B) = −B2 = 2#X∞, the latter by
part (c). Now since X∞ = β−1(X(N)∞), and each x ∈ X∞ is ramified of degree
ex(β) = 2, we see that #X∞ = d

2
#X(N)∞, and so (W̃ .B) = 2#X∞ = d#X(N)∞.

Thus d((ω +W ).W ) = ((ω̃ + W̃ ).W̃ ) + (B.W̃ ) = 0 + d#X(N)∞, which proves (34).

Proposition 29 Suppose that X = X(N) and write D = DC/X and W = WC/X .
Then we have 6D ∼ 2W + p∗A, for some divisor A ∈ Div(X) of degree

deg(A) = #X(N)∞ −
4

3
W 2 =

1

6
(9(ω0

C/X)2 −W 2) =
1

N
(N − 1)sl(N).(35)
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Proof. We first note that

(W.Ex,1) = (W.Ex,2) = 3, for all x ∈ S1.(36)

Indeed, by [Pa2], p. 81, this is true after base-change to X(2N), with W replaced by
WC/X(2N), and so (36) follows from this together with Proposition 28(b),(d).

Now since 6DF and 2WF are both 6-canonical divisors, we have 6DF ∼ 2WF .
Moreover, since the fibres over S1 are the only reducible fibres of C/X (cf. Theorem
22) and since for x ∈ S1, both 6D and 2W meet each component Ex,i of Cx with
multiplicity 6 (by Theorem 26(b) and by (36), respectively), we can conclude that

6D ∼ 2W + p∗(A), for some A ∈ Div(X).(37)

Here we have used the following general fact (which is valid for any regular proper
curve C/X without multiple fibres):

Fact. Suppose that D1, D2 ∈ Div(C) are two divisors such that their restrictions
(Di)F to the generic fibre are linearly equivalent, i.e. (D1)F ∼ (D2)F and which have
the property that (D1.Γ) = (D2.Γ), for all components Γ of reducible fibres Cx of C/X.
Then D1 ∼ D2 + p∗A, for some divisor A ∈ Div(X).

[Indeed, the first hypothesis yields that D1 ∼ D2 + B, for some divisor B consisting
entirely of fibre components, and the second shows that (B.Γ) = 0, for all fibre
components Γ, and so B = p∗A, for some A by Zariski’s Lemma (cf. [BPV], p. 90).]

We now compute the degree of A. For this, recall first from Theorem 26(a) that
ω := ω0

C/X ' L(D). Thus, by (34) and (37) we have #X(N)∞ −W 2 = (ω.W ) =
1
6
((2W + p∗(A)).W ) = 1

3
W 2 + deg(A), and so deg(A) = #X(N)∞ − 4

3
W 2, which

proves the first equality of (35).
Next, by (37) we have 36ω2 = (2W + p∗A)2 = 4W 2 + 4(W.p∗A) + (p∗A)2 =

4W 2 + 24 deg(A) + 0, so deg(A) = 1
6
(9ω2 −W 2), which proves the second equality of

(35).
Thus we have 6 deg(A) = (9ω2 −W 2) = 6#X(N)∞ − 8W 2, and so

W 2 =
6

7
#X(N)∞ −

9

7
ω2 = − 3

4N
(N − 2)sl(N),(38)

the latter by (29). From this, the last equation of (35) is immediate.

Corollary 30 The degree of q is given by

deg(q) =
N

6
deg(A) =

1

6
(N − 1)sl(N).(39)

Proof. Since f is normalized, we have f∗(W ) =
∑3

i=0 ki(Pi × X) with suitable mul-
tiplicities ki ≥ 0 (cf. equation (6)). Now since 2Pi ∼ 2P0, we thus have 2f∗W ∼
12(P0 ×X), and so, since ω := ω0

C/X ∼ D by Theorem 26(a), we obtain

6f∗ω ∼ 6f∗D ∼ 2f∗W + f∗(p
∗A) ∼ 12(P0 ×X) +N(E × A).
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Thus, by (31) and the projection formula we have 6 deg(q) = 6(ω.f∗(P0 × X)) =
((12(P0 ×X) +N(E ×A)).(P0 ×X)) = N deg(A), which proves the first equality of
(39). The second follows immediately from (34).

By the above corollary we have computed the degree deg(δE,N) and hence also the

right hand side of formula (12). Thus, the desired formula for Cov
(min)
E,N,D of Theorem

3 follows once we know that δE,N is tamely ramified.

Proposition 31 If char(K) - N !, then the map δE,N : X(N)→ P
1 is tamely ramified.

Proof. We shall use the criterion given in Corollary 14. For this, fix a point P ∈
E(K). Since deg(δE,N) = deg(q) = 1

6
(N − 1)sl(N) by (31) and (39) and since

(2gX(N) − 2 + sE,N) = N−6
6N

sl(N) + 5N+6
12N

sl(N) = 7N−6
12N

sl(N) by Theorem 21, we see
that (12) reduces to the inequality

#Cov
(min)
E,N,2P ≥

(
N − 1

3
− 7N − 6

12N

)
sl(N) =

(4N − 3)(N − 2)

12N
sl(N),(40)

and that equality holds if and only if δE,N is tamely ramified. In particular, we see
that equality holds if char(K) = 0.

We now derive another formula for #Cov
(min)
E,N,2P by using the tame fundamental

group πt1(EP , x), where EP = E \{P}, and x ∈ EP (K) is a fixed base point. For this,
let p = char(K), if char(K) > 0, and otherwise let p be any prime with p > N . Now

the hypothesis char(K) - N ! guarantees that each f ∈ Cov
(min)
E,N,2P is tamely ramified

and that the degree of its Galois closure f̃ : C̃ → E is not divisible by p. Thus, Gal(f̃)
is a quotient of the group πt1(EP , x)(p′), the prime-to-p fundamental group, and so we
have a natural bijection

Cov
(min)
E,N,2P

∼→ Hom′(πt1(EP , x)(p′), SN)/SN(41)

where the symmetric group SN acts by conjugation on Hom′(. . .) and the prime
denotes the subset of those homomorphisms h : πt1(EP , x)(p′) → SN satisfying the
following conditions: 1) Im(h) is a transitive and primitive subgroup of SN ; 2) the
ramification generator t = tP ∈ Hom′(πt1(EP , x)(p′) at P is mapped either to a 3-cycle
or to a (2, 2)-cycle.

Now by a fundamental result of Grothendieck (cf. e.g. [Wev], Theorem 4.3.1),

πt1(EP , x)(p′) ' Γ̂
(p′)
1,1 , the prime-to-p quotient of the group Γ̂1,1 which is the pro-finite

completion of the discrete group Γ1,1 = 〈σ1, σ2, τ : σ1σ2σ1σ2τ = 1〉. Thus, by applying
the above results to an elliptic curve E0/K0 with char(K0) = 0, we see from (41) and
(40) that

#Hom′(Γ
(p′)
1,1 , SN)/SN =

(4N − 3)(N − 2)

12N
sl(N), for any p > N ;
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here we have used the fact that δE0,N is tamely ramified because char(K0) = 0. Thus,
if we substitute this formula in (41), we see that equality holds in (40), and hence
δE,N is tamely ramified.

Proof of Theorem 3. We may assume N ≥ 3 because the case N = 2 is settled by
Proposition 6. Since δE,N is tamely ramified by Proposition 31, we have by Corollary
14 that equality holds in (12). This proves (3) because deg(δE,N) = 1

6
(N − 1)sl(N)

and (2gX(N) − 2 + sE,N) = 7N−6
12N

sl(N); cf. the proof of Proposition 31.

7 Appendix: The Kähler different divisor

In this appendix we gather together some basic facts concerning the Kähler different
divisor which were used above but which are difficult to find explicitly in the literature.

If f : X → Y is any morphism of finite type, then the Kähler different ideal sheaf
Df ⊂ OX is defined as the 0-th Fitting ideal sheaf Df = F0(Ω1

X/Y ) of the sheaf Ω1
X/Y

of relative differentials; cf. Kunz[Ku], p. 159 or [LK], p. 102. If Df is invertible, then
there is a unique effective Cartier divisor Diff(f) such that L(Diff(f)) = D−1

f , which
we call the Kähler different divisor. We observe:

Remark 32 (a) If the Kähler different divisor Diff(f) exists, then by [Ku], Theorem
10.7, its support is the ramification locus of f :

supp(Diff(f)) = Ram(f) := supp(Ω1
X/Y ).(42)

(b) If g : Ỹ → Y is any morphism of schemes such that gX(X̃ ′) * Ram(f), for

all irreducible components X̃ ′ of X̃ := X ×Y Ỹ , then the Kähler different divisor of
f̃ = fỸ : X̃ → Ỹ also exists and is given by

Diff(f̃) = g∗XDiff(f).(43)

[Indeed, the hypothesis on gX implies in view of (42) that the pullback Cartier divisor
g∗XDiff(f) is defined and corresponds to the invertible ideal sheaf g∗XF0(Ω1

X/Y ) =

F0(Ω1
X/Y ) · OX̃ . Since F0(Ω1

X/Y ) · OX̃ = F0(Ω1
X̃/Ỹ

) = Df̃ by [Ku], Rule 10.3a), we see

that Df̃ is invertible, and so Diff(f̃) exists and is given by g∗XDiff(f).]

In general, Diff(f) need not exist, but we do have the following result which suffices
for our purposes (and which generalizes the discussion of [I], p. 202):

Proposition 33 If f : X → Y is a generically etale morphism between smooth
varieties over a field K, then the Kähler different ideal sheaf Df is invertible, and
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hence the Kähler different divisor Diff(f) ∈ Div(X) exists. Moreover, we have the
Riemann-Hurwitz relation

ωX/K ' f ∗ωY/K ⊗ L(Diff(f)),(44)

where ωX/K and ωY/K denote the canonical sheaves of X and Y .

Proof. Since f is generically etale, we see that Ω1
X/Y is a torsion OX-module (use

[Ku], Corollary 10.5). Moreover, since Ω1
Y/K is locally free and f is generically etale,

we have the exact sequence

0→ f ∗Ω1
Y/K

u→ Ω1
X/K → Ω1

X/Y → 0.(45)

(Indeed, to see that u is injective, note that the local freeness of Ω1
Y/K implies that

it is naturally a subsheaf of the sheaf MY (Ω1
Y/K) =MY ⊗OY Ω1

Y/K of meromorphic

differential forms, and that hence we have f ∗Ω1
Y/K ⊂ f ∗MY (Ω1

Y/K)
∼→ MX(Ω1

X/K).

Thus, the map f ∗Ω1
Y/K → Ω1

X/K is induced by the map f ∗MY (Ω1
Y/K)→MX(Ω1

X/K),

which is an isomorphism since f is generically etale.)
Since u : f ∗Ω1

Y/K → Ω1
X/K is an injective map of locally free sheaves of rank n,

the map ∧(u) : f ∗ωY/K ' ∧nf ∗Ω1
Y/K → ωX/K = ∧nΩ1X/K is also injective, and so

f ∗ωY/K ' Im(u) = DfωX/K , where the latter equality follows from the definition of
the Fitting ideal (and that of ∧(u)). Thus Df is invertible and we have (44).

Corollary 34 Let S be an arbitrary scheme, and let X/S and Y/S be two smooth
relative varieties of dimension n over S, i.e. X/S and Y/S are smooth of finite
presentation over S with geometrically integral fibres of dimension n. If f : X → Y
is any S-morphism such that fs : Xs → Ys is generically etale, for all s ∈ S, then
Df is invertible and the Kähler different divisor Diff(f) ∈ Div(X/S) is a relative
Cartier divisor of X/S which satisfies the Riemann-Hurwitz relation, i.e. ωX/S '
f ∗ωY/S ⊗L(Diff(f)). Furthermore, the formation of Diff(f) commutes with arbitrary
base-change in the sense that for any g : S ′ → S we have Diff(f(S′)) = g∗X(Diff(f)).

Proof. We first show that the sequence

0→ f ∗Ω1
Y/S

u→ Ω1
X/S → Ω1

X/Y → 0.(46)

is exact. As usual, this sequence is right-exact. To show that u is injective, we follow
the method of [LK], p. 106. For this we first observe that Ω1

X/S is S-flat because

Ω1
X/S is a locally free OX-module (of rank n) and X/S is flat. Moreover, by the proof

of Proposition 33 we know that us = u ⊗ κ(s) : f ∗sΩ1
Ys/κ(s) → Ω1

Xs/κ(s) is injective,

for all s ∈ S. Thus, by Corollary A.2 of [LK], it follows that u is (universally)
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injective. (Note that this corollary is applicable because we may reduce to case that S
is noetherian by using [EGA] (IV,8.9.1) since X/S and Y/S are of finite presentation.)

From the exact sequence (46) we conclude as before that f ∗ωY/S ' Im(u) =
DfωX/S, and that hence Df is invertible and that the Riemann-Hurwitz relation
holds. Furthermore, Df is then S-flat, and so Diff(f) ∈ Div(X/S).

Finally, the formation of Diff(f) commutes with base-change because the hypoth-
esis of Remark 32(b) is satisfied by [EGA], (IV, 21.15.9).

Corollary 35 Let Y/X and Z/X be two regular relative curves over a smooth base
curve X/K, where K is a perfect field, and let f : Y → Z be a generically etale
X-morphism. In addition, let D denote the closure in Y of the different divisor
Diff(fF ) ∈ Div(YF ) of the generic cover fF : YF → ZF , where F = κ(X). Then there
is an effective Cartier divisor B = B(f) ≥ 0 consisting entirely of components of
fibres of Y/X with following properties:

(a) The divisor Diff(f) := D+B ∈ Div(Y ) is the different divisor of f and hence
satisfies (42). Moreover, we have the relative Riemann-Hurwitz relation:

ω0
Y/X ' f ∗ω0

Z/X ⊗ L(Diff(f)).(47)

(b) Suppose that the fibre Yx of Y at x ∈ X is reduced. Then a component Γ of
Yx does not appear in B if and only if the induced map f|Γ : Γ→ f(Γ) ⊂ Zx is finite
and separable. If this condition holds for all components of Yx, then Dx = D|Yx is the
different divisor of fx : Yx → Zx, i.e. Dx = Diff(fx).

(c) If X is complete, then for any a fibre component Γ of Y/X we have

(B.Γ) = 2pa(Γ)− 2− Γ2 − (D.Γ)− (ω0
Z/X .f∗Γ).(48)

Proof. By hypothesis, Y and Z are smooth irreducible surfaces over K, and so Diff(f)
exists by Proposition 33. We have Diff(f)|YF = Diff(fF ) (apply Remark 32(b) with

Ỹ = YF ), and so Diff(f) = D + B, where B consists entirely of fibre components.
This proves the existence of B.

(a) The first assertion is clear from the construction. Now if we multiply both
sides of (44) by p∗Y ω

−1
X/K = f ∗p∗Zω

−1
X/K , where pY : Y → X and pZ : Z → X denote the

structure maps, then we obtain (47) because ω0
Y/X = ωY/K ⊗ p∗Y ω−1

X/K and f ∗ω0
Z/X =

f ∗(ωZ/K ⊗ p∗Zω−1
X/K) = f ∗ωZ/K ⊗ p∗Y ω−1

X/K .

(b) Since Yx is reduced, we have mY,Γ = mX,xOY,Γ = mZ,f(Γ)OY,Γ, and so Γ ⊂
Ram(f) ⇔ κ(Γ)/κ(f(Γ)) is a finite separable field extension; cf. [BLR], 2.2/2. In
view of (42), this proves the first assertion.

To prove the second, let g : Zx ↪→ Z denote the canonical closed immersion. If
no components Γ of appears in B, then its base-change gY : Yx → Y satisfies the
hypothesis of Remark 32(b) 33, and so the assertion follows.
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(c) Since Γ is a component of a fibre of Y/X, we have (ω0
Y/X .Γ) = (ωY/K .Γ) =

2pa(Γ)−2−Γ2, the latter by the adjunction formula. Now by (47) we have (ω0
Y/X .Γ) =

((D+B).Γ)+(f ∗ω0
Z/X .Γ) = ((D+B).Γ)+(ω0

Z/X .f∗Γ) by the projection formula, and

so (48) follows.
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