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1 Introduction

Let A/K be an abelian variety over an algebraically closed field K. The question of
determining the number NA of isomorphism classes of principal polarizations lying
on A has been considered by many authors.

This question was first considered by Hayashida [H1], who determined NA in 1965
in the case that A = E × E ′, where E ∼ E ′ are isogeneous elliptic curves without
complex multiplication, and he also determined NA in 1968 in the case that A = E×E,
where E is an elliptic curve with complex multiplication (CM) by a maximal order;
see Hayashida [H2]. In both cases he also determined the number N∗

A of isomorphism
classes of smooth genus 2 curves lying on A. In 1986, Ibukiyama, Katsura and Oort
[IKO] determined NA and N∗

A in the case that A = E × E ′, where E and E ′ are
supersingular elliptic curves. Moreover, Lange studied the question of determining
NA for certain higher dimensional abelian varieties in several papers; see [L1], [L2].

In the case of an abelian surface A, a new method for determining N∗
A was intro-

duced in [K8]. Here we want to extend this method to compute the number NA of
all principal polarizations on A. This means that we want to compute the difference
N∗∗

A := NA −N∗
A, and for this we may assume that A ' E ×E ′ is a product surface,

for otherwise N∗∗
A = 0.

The key idea of this method is to study the sets P(A, q) and P(A, q) which are
attached to a given integral quadratic form q. Here P(A, q) consists of those principal
polarizations θ ∈ P(A) which are equivalent to the refined Humbert invariant q(A,θ)

(see [K3] and §2 below), and P(A, q) denotes the set of orbits of P(A, θ) under the
action of the automorphism group of A. Thus,

P(A, q) = {θ ∈ P(A) : q(A,θ) ∼ q} and P(A, q) = Aut(A)\P(A, q),

where P(A) ⊂ NS(A) denotes the set of all principal polarizations on A and ∼ denotes
the equivalence of quadratic forms.

The advantage of studying the set P(A, q) is that there is an explicit formula
for its cardinality in terms of the number of double cosets of certain subgroups of
Aut(qA), where qA(D) = 1

2
(D.D) denotes (one half of) the intersection form on A,

which we view as an integral quadratic form on the Néron-Severi group NS(A). More
precisely, if

GA := {α ∈ Aut(qA) : α(P(A)) = P(A)}
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denotes the subgroup of Aut(qA) consisting of those automorphisms of qA which
preserve the set P(A) of principal polarizations on A, then it is easy to see that
GA ≥ HA, where HA is the image of Aut(A) in Aut(NS(A)) via its action on NS(A),
and that P(A, q) = HA\P(A, q). By Theorem 1 of [K8] we have that

(1) |P(A, q)| = |HA\GA/Sθ|, for any θ ∈ P(A, q),

where Sθ = {α ∈ GA : α(θ) = θ} denotes the stabilizer subgroup of θ.
This formula immediately implies a mass-formula for the set P(A, q). Indeed, for

any θ ∈ P(A), let us put a(θ) := |Aut(θ)|, where Aut(θ) := HA ∩ Sθ. Since the
“weight” a(θ) is constant on HA-orbits, we can write a(θ) = a(θ), if θ = HAθ. By
Theorem 2 of [K8] we have the following mass formula:

(2) M(P(A, q)) :=
∑

θ∈P(A,q)

1

a(θ)
=

[GA : HA]

|Aut(q)|
, provided that P(A, q) 6= ∅.

If the quadratic form q does not represent 1, then every θ ∈ P(A, q) is equal
to the theta-divisor θC of some smooth genus 2 curve C on A. In that case a(θ)
only depends q, and a(θ) can be computed explicitly, as was explained in Theorem
3 of [K8]. However, when q does represent 1, then the situation is more complicated
because in that case such a result does not always hold. Here we have:

Theorem 1 If A/K is an abelian surface, and if θ ∈ P(A, q), where q is a binary or
ternary form which represents 1 but which is not equivalent to x2 + 4κ(y2 + yz + z2)
nor to x2 + 4κ(y2 + z2), for any κ > 1, then a(q) := a(θ) only depends on q. More
precisely, if r∗n(q) := |{(x1, . . . , xr) ∈ Zr : q(x1, . . . , xr) = n, gcd(x1, . . . , xr) = 1}|
denotes the number of primitive representations of an integer n by q, then

(3) a(q) = 2 max(1, r∗4(q)),

and hence

(4) |P(A, q)| = [GA : HA]a(q)|Aut(q)|−1.

Note that the assertion of Theorem 1 may not be true for the exceptional cases
when q ∼ x2 + 4κ(y2 + yz + z2) or q ∼ x2 + 4κ(y2 + z2), as Corollary 19 below shows.

By using formula (4) and the results of [K6], it not difficult to compute N∗∗
A :=

NA−N∗
A in most cases. (The exceptional cases can be computed by using (1).) Note

that N∗∗
A equals the number of isomorphism classes of reducible principal polarizations

(see §3), and that N∗∗
A > 0 if and only if A is a product surface, i.e. A ' E × E ′, for

some elliptic curves E and E ′; see Proposition 4. In the non-CM case we have:
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Proposition 2 Let A = E × E ′, where Hom(E, E ′) = Zh with d := deg(h) ≥ 1.
Then N∗∗

A = 1, if d = 1, and N∗∗
A = 2ω(d)−1, if d > 1, where ω(d) denotes the number

of distinct prime divisors of d.

The result for N∗∗
A is more complicated when A is a CM product surface, i.e., when

A ' E×E ′, where E ∼ E ′ are isogeneous elliptic curves with complex multiplication.

Theorem 3 Let A ' E × E ′ be a CM product surface.

(a) If A ' E ′′ ×E ′′, for some elliptic curve E ′′, and if End(E ′′) has discriminant
∆, then

(5) N∗∗
A =

1

2
(h(∆) + g(∆)),

where h(∆) denotes the class number and g(∆) the number of genera of positive
primitive integral binary quadratic forms of discriminant ∆.

(b) If A 6' E ′′×E ′′, for any elliptic curve E ′′, then let ∆ = disc(qE,E′) be the dis-
criminant of the degree form qE,E′ on Hom(E, E ′). Furthermore, let κ = cont(qE,E′)
denote the content of qE,E′ and let u = |Aut+(qE,E′)| denote the number of automor-
phisms of qE,E′ of determinant 1. Then

(6) N∗∗
A =

1

u
(2ω(κ) + u− 2)h(∆).

Note that formula (5) generalizes the formula obtained by Hayashida [H2] in the
case that End(E) is a maximal order and K = C. (Hayashida’s formula is reproved
in [GHR].) Note also that the hypothesis of part (a) is equivalent to the hypothesis
that qE,E′ lies in the principal genus of forms of discriminant ∆; see Corollary 10.

2 The refined Humbert invariant

Let A/K be an abelian surface, and let qA : NS(A) → Z be the integral quadratic
form on NS(A) defined by (one-half of) the self-intersection pairing on the Néron-
Severi group NS(A) = Div(A)/≡ of A. Its associated bilinear form βA is therefore
the intersection pairing, i.e.,

(7) βA(D, D′) := qA(D + D′)− qA(D)− qA(D′) = (D.D′).

Let P(A) ⊂ NS(A) denote the set of principal polarizations of A. Thus,

P(A) = {cl(D) : D ∈ Div(A) is ample and qA(cl(D)) = 1},

where cl(D) ∈ NS(A) = Div(A)/ ≡ denotes the class defined by the divisor D ∈
Div(A). In the sequel we will assume tacitly that P(A) 6= ∅.
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If θ ∈ P(A), then put

(8) q̃(A,θ)(D) = βA(D, θ)2 − 4qA(D) = (D.θ)2 − 2(D.D), for D ∈ NS(A).

It is easy to see (see [K1]) that this defines a positive-definite quadratic form q(A,θ) on
the quotient space NS(A, θ) := NS(A)/Zθ, so we have that q̃(A,θ) = q(A,θ) ◦ πθ, where

πθ : NS(A) → NS(A, θ) := NS(A)/Zθ

denotes the quotient map. The quadratic form q(A,θ) or, more correctly, the quadratic
module (NS(A, θ), q(A,θ)), is called the refined Humbert invariant of the principally
polarized abelian surface (A, θ); cf. [K3]. Since NS(A, θ) ' Zρ−1, where ρ = rank(NS)
is the Picard number, we see that q(A,θ) defines an equivalence class of integral, positive
definite quadratic forms in ρ− 1 variables.

In [K8] it was shown that every isomorphism between two such quadratic modules
(NS(A, θi), q(A,θi)) is induced by a suitable element of the automorphism group

Aut(qA) = {α ∈ Aut(NS(A)) : qA ◦ α = qA}

of the quadratic form qA. However, since Aut(qA) does not act on P(A), it is useful
to consider instead the subgroup

GA := {α ∈ Aut(qA) : α(P(A)) = P(A)} ≤ Aut(qA)

which does preserve the set of polarizations. Note that GA has index 2 in Aut(qA)
because Aut(qA) = 〈−1NS(A)〉 ×GA by Corollary 10 of [K8].

Let us now fix an integral quadratic form q in r variables, and consider the subset

P(A, q) := {θ ∈ P(A) : qθ ∼ q}

of P(A). Here qθ = q(A,θ) is the refined Humbert invariant of (A, θ) and the condition
qθ ∼ q means that we have an isomorphism (NS(A), q(A,θ)) ' (Zr, q) of quadratic
modules. In the sequel we will tacitly assume that r = ρ(A)− 1 = rank(NS(A))− 1,
for otherwise P(A, q) is empty.

It is an immediate consequence of Theorem 9 of [K8] that the group GA acts
transitively on the set P(A, q). Thus, if θ ∈ P(A, q), then the map g 7→ g(θ) defines
a bijection of GA-sets

(9) GA/Sθ
∼→ P(A, q),

where Sθ := {α ∈ GA : g(θ) = θ} denotes the GA-stabilizer of θ, and from this
one deduces immediately formula (1) of the introduction; see Corollary 14 of [K8].
Moreover, by using elementary group theory the mass-formula (2) is easily deduced
from (1), as was shown in the proof of Theorem 2 in [K8].
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3 Reducible Polarizations

In order to determine the number N∗∗
A = NA−N∗

A of isomorphism classes of principal
polarizations on an abelian surface A which do not come from a smooth genus 2 curve
on A, we first study the set of such principal polarization. It turns out that this set
is precisely the set of reducible polarizations, which are defined as follows.

Definition. A polarization θ ∈ P(A) is called reducible (or decomposable) if θ =
cl(E1 + E2), for some elliptic curves E1 and E2 on A. Note that we can assume
E1 and E2 to be elliptic subgroups of A. The set of reducible polarizations on A is
denoted by P(A)red.

The reducible polarizations can be classified as follows.

Proposition 4 If θ = cl(E1 + E2) ∈ P(A), where Ei ≤ A, i = 1, 2, are two elliptic
subgroups of an abelian surface A, then there is an isomorphism

f : E1 × E2
∼→ A

such that f(θEi
) = Ei, for i = 1, 2, where θE1 = E1 × {0} and θE2 = {0} × E2, so

in particular f ∗θ = θE1,E2 := cl(θE1 + θE2). Thus P(A)red 6= ∅ if and only if A is
an abelian product surface, i.e., A ' E1 × E2 for some elliptic curves Ei, i = 1, 2.
Furthermore, if θ ∈ P(A) is any principal polarization, then

(10) θ ∈ P(A)red ⇔ qθ(D̄) = 1, for some D̄ ∈ NS(A, θ).

Moreover, if θ ∈ P(A)∗ := P(A) \ P(A)red, then θ = θC, for some smooth genus 2
curve on A.

Proof. The first assertion is a slight refinement of (one part of) Satz 2 of Weil [We];
see the proof of [K6], Proposition 8, for more details. The second assertion clearly
follows from the first. The equivalence (10) is Proposition 6 of [K3], and the last
assertion follows from another part of Satz 2 of Weil [We].

Remark 5 It follows from Proposition 4 that P(A)∗ = {θC : C ∈ C(A)}, where
C(A) = {C ⊂ A : gC = 2} denotes the set of smooth genus 2 curves on A. Thus,
N∗

A = |HA\P(A)∗|, and N∗∗
A = |HA\P(A)red|.

We now relate the set P(A)red to the sets P(A, q), for suitable quadratic forms q.
For this, we may assume that A = E×E ′ is an abelian product surface, for otherwise
P(A)red = ∅ by Proposition 4. For such a surface we have that

(11) qA ∼ xy ⊥ (−qE,E′),
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where qE,E′ denotes the degree form on Hom(E, E ′) which is defined by qE,E′(h) =
deg(h). Note that qE,E′ is a positive quadratic form. To verify (11), recall from
Proposition 23 of [K3] that we have an isomorphism

(12) D : Z× Z× Hom(E, E ′)
∼→ NS(E × E ′)

such that

(13) qA(D(x, y, h)) = xy − deg(h) = xy − qE,E′(h),

and so (11) follows. Note that (11) implies that

(14) det(qA) = (−1)ρ−1 det(qE,E′),

where det(qA) denotes the determinant of a Gram matrix of the associated bilinear
form βqA

= βA with respect to some basis of NS(A), and det(qE,E′) is defined similarly.
It thus follows from Proposition 9 of [K3] that for any θ ∈ P(A) we have that

(15) det(q(A,θ)) = 22ρ−3 det(qE,E′).

Consider the special case that θ = θE,E′ = cl(θE + θE). Since θE,E′ = D(1, 1, 0), it
follows from (13) and (8) that

(16) qθE,E′ ∼ x2 ⊥ 4qE,E′ because q̃(E×E′,θE,E′ )(D(x, y, h)) = (x− y)2 + 4 deg(h).

In the sequel we denote by gen(q) the set of isomorphism classes of integral
quadratic forms q′ which are genus-equivalent to a given integral quadratic form q,
i.e., those forms q′ which are p-adically equivalent to q for all primes p (including the
case p = ∞); cf. Jones [Jo], Chapter V.

Proposition 6 If A = E × E ′ is an abelian product surface, then

(17) P(A)red =
∐

q∈gen(qE,E′ )

P(A, x2 ⊥ 4q).

Proof. If θ ∈ P(A, x2 ⊥ 4q), then qθ ∼ fq := x2 ⊥ 4q. Since fq clearly represents 1, it
follows from (10) that θ ∈ P(A)red, and so the right hand side of (17) is contained in
the left hand side. Note also that the union is disjoint because by (an extension of)
Proposition 54 of [K4] we have that q ∼ q′ ⇔ x2 ⊥ 4q ∼ x2 ⊥ 4q′.

To prove the opposite inclusion, let θ = cl(E1+E2) ∈ P(A)red, where Ei ≤ A is an
elliptic subgroups of A, for i = 1, 2. Then by Proposition 4 we have an isomorphism
of principally polarized abelian surfaces:

(18) f : (E1 × E2, θE1,E2)
∼→ (A, θ).
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Thus, applying (11) to A′ = E1 × E2, we see that qA′ ∼ xy ⊥ (−qE1,E2). Since
A′ ' A, it follows that qA′ ∼ qA, and so xy ⊥ (−qE1,E2) ∼ xy ⊥ (−qE,E′). From
Corollary 26 of [K4] it thus follows that qE1,E2 ∈ gen(qE,E′).

Furthermore, by (18) and (16) we have that qθ ∼ qθE1,E2
∼ x2 ⊥ 4qE1,E2 , and so

θ ∈ P(A, x2 ⊥ 4qE1,E2). This shows that the left hand side of (17) is contained in the
right hand side, and so (17) follows.

In the non-CM case the above result, together with (2) and results from [K6],
yields the following result.

Corollary 7 Let A = E × E ′, where Hom(E, E ′) = Zh with d := deg(h) ≥ 1. Then
P(A)red = P(A, x2 + 4dy2), and hence its mass is M(P(A)red) = 2ω(d)−2.

Proof. Here qE,E′(xh) = dx2, so qE,E′ ∼ dx2 and hence gen(qE,E′) = {dx2}. Thus, the
first assertion follows immediately from (17). Moreover, since |Aut(x2 + 4dy2)| = 4
and P(A, x2 + 4dy2) 6= ∅ because θE,E′ ∈ P(A, x2 + 4dy2) by (16), and since [GA :
HA] = 2ω(d) by Theorem 1 of [K6], the formula for M(P(A)red) follows from the
mass-formula (2).

It is a bit more complicated to derive the mass formula for P(A)red when A is a
CM product surface. As a first step, we observe that all the sets P(A, x2 ⊥ 4q) on
the right hand side of (17) are indeed non-empty.

Lemma 8 If A = E × E ′ is a CM abelian surface, and if q ∈ gen(qE,E′), then
P(A, x2 ⊥ 4q) 6= ∅. More precisely, there exist θ ∈ P(A, x2 ⊥ 4q) and two elliptic
subgroups E1, E2 ≤ A with qE1,E2 ∼ q such that θ = cl(E1 + E2).

Proof. Recall that qA ∼ xy ⊥ (−qE,E′) by (11). Since q ∈ gen(qE,E′), we have by
Remark 27 of [K4] that xy ⊥ (−q) ∼ xy ⊥ (−qE,E′) ∼ qA. This means that there
exist D1, D2 ∈ NS(A) such that (D1.D1) = (D2.D2) = 0, (D1.D2) = 1, and such that
(qA)|M⊥ ∼ −q, where M := ZD1 + ZD2.

Put D = D1 + D2. Then (D.D) = 2, so by [K1], Corollary 2.2(b), either D
or −D is ample. By replacing D1 and D2 by their negatives, if necessary, we may
assume that D is ample, so θ := D ∈ P(A). Now since Di is primitive in NS(A)
(because (D1.D2) = 1), and since (Di.D) = 1, it follows from [K1], Proposition 2.3,
that Di = cl(Ei), for some elliptic subgroups Ei ≤ A, for i = 1, 2.

Thus, θ = cl(E1 + E2) ∈ P(A)red and so by Proposition 4 there exists an isomor-
phism f : A′ := E1 × E2

∼→ A with f(θEi
) = Ei, for i = 1, 2. Then f induces an

isomorphism of the Néron-Severi groups of A′ and A, and hence also an isomorphism

((ZθE1 + ZθE2)
⊥, (qA′)|(ZθE1

+ZθE2
)⊥) ' (M⊥, (qA)|M⊥) = (M⊥,−q),

where θEi
= cl(θEi

), for i = 1, 2. Since (qA′)|(ZθE1
+ZθE2

)⊥ ∼ −qE1,E2 , it follows
that qE1,E2 ∼ q. Furthermore, we have as in (18) that f defines an isomorphism
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(A′, θE1,E2) ' (A, θ) of principally polarized abelian surfaces, and so it follows by
using (16) that qθ ∼ qθE1,E2

∼ x2 ⊥ 4qE1,E2 ∼ x2 ⊥ 4q. Thus θ ∈ P(A, x2 ⊥ 4q), and
hence P(A, x2 ⊥ 4q) 6= ∅, as claimed.

Remark 9 In the above proof we had used a non-trivial fact from the theory of
quadratic forms (which was proved in Remark 27 of [K4]). It is possible to avoid
using this fact, and instead derive the result by using the theory of [K2], particularly
by using Proposition 65 of [K2]. If one does this, then one can obtain an independent
proof of Remark 27 of [K4] for positive binary quadratic forms.

We observe that Lemma 8 implies the following interesting fact.

Corollary 10 If A = E ×E ′ is a CM product surface, then A ' E ′′ ×E ′′, for some
elliptic curve E ′′/K if and only if qE,E′ lies in the principal genus of (primitive) forms
of discriminant ∆ = disc(qE,E′).

Proof. (⇒) Recall from the proof of Proposition 6 that if A ' E ′′×E ′′, then qE′′,E′′ ∈
gen(qE,E′). Thus, disc(qE′′,E′′) = ∆. Now since 1E′′ ∈ End(E ′′) and qE′′,E′′(1E′′) =
deg(1E′′) = 1, it follows that qE′′,E′′ ∼ 1∆ is the principal form of discriminant ∆ (and
that qE′′,E′′ is primitive). Thus, qE,E′ ∈ gen(1∆) lies in the principal genus.

(⇐) If 1∆ ∈ gen(qE,E′), then by Lemma 8 (applied to q = 1∆) we have that
there exist two elliptic subgroups E1, E2 ≤ A such that qE1,E2 ∼ 1∆ and such that
cl(E1 + E2) ∈ P(A). The first property implies that there exists h ∈ Hom(E1, E2)
such that deg(h) = qE1,E2(h) = 1, so E1 ' E2. The second property implies in view
of Proposition 4 that E1 × E2 ' A, so A ' E1 × E1, as desired.

We also require the following two results from [K8], which are Proposition 16 and
Lemma 33 of [K8], respectively.

Proposition 11 Let A = E×E ′, where qE,E′ is a binary quadratic form of discrim-
inant ∆ and content κ. Put ∆′ = ∆/κ2. If q is a ternary quadratic form such that
P(A, q) 6= ∅, then

(19) M(P(A, q))|Aut+(q)| = 2ω(κ)g(∆′)
h(∆)

h(∆′)
.

Lemma 12 If q is a primitive positive binary quadratic form of discriminant ∆, then

(20)
∑

q′∈gen(q)

1

|Aut(q′)|
=

h(∆)

2u(∆)g(∆)
,

where u(∆) := |Aut+(q)| only depends on ∆.
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We are now ready to derive the mass formula for P(A)red for a CM product surface.

Proposition 13 If A = E × E ′, where qE,E′ is a binary quadratic form of discrimi-
nant ∆ and content κ. Put ∆′ = ∆/κ2. Then the mass of P(A)red is

(21) M(P(A)red) :=
∑

θ∈P(A)red

1

a(θ)
= 2ω(κ)−1 h(∆)

u(∆′)
.

Proof. Write fq := x2 ⊥ 4q, where q ∈ gen(qE,E′). Since here q is a binary form, we
have by [K4], Corollary 55, that

(22) |Aut+(fq)| = |Aut(q)| = |Aut(q/κ)|.

Since the map q 7→ q/κ induces a bijection between gen(qE,E′) and gen(qE,E′/κ), we
obtain from Proposition 6, Lemma 8, equations (19) and (22) that

M(P(A)red) =
∑

q∈gen(qE,E′ )

M(P(A, fq)) = 2ω(κ) h(∆)

h(∆′)

∑
q∈gen(qE,E′ )

g(∆′)

|Aut+(fq)|

= 2ω(κ) h(∆)

h(∆′)

∑
q′∈gen(qE,E′/κ)

g(∆′)

|Aut(q′))|
= 2ω(c) h(∆)

h(∆′)

h(∆′)

2u(∆′)
,

where the last equality follows from Lemma 12. This proves (21).

4 The computation of a(θ)

We now study the weight a(θ) = |Aut(θ)| of a reducible principal polarization
θ ∈ P(A)red. (Note that when θ ∈ P(A)∗ is irreducible, then the weight a(θ) was
determined in [K8].)

For this, recall from the introduction and from [K8] that the group Aut(θ) was
defined as Aut(θ) = Sθ ∩ HA, where Sθ is the GA-stabilizer subgroup of θ, and
where HA = ϕA(Aut(A)) is the image of Aut(A) in GA ≤ Aut(qA) ≤ Aut(NS(A)) via
the homomorphism ϕ : Aut(A) → Aut(NS(A)) induced by the action of Aut(A) on
NS(A). As was mentioned in [K8], this group is closely related to the automorphism
group Aut(A, θ) = {α ∈ Aut(A) : α∗θ = θ} of the principally polarized abelian
surface (A, θ), for we have that

(23) Aut(θ) = ϕA(Aut(A, θ)) ' Aut(A, θ)/ Ker(ϕA).

We first observe that a(θ) is invariant under isomorphisms in the following sense.
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Lemma 14 If f : A
∼→ A′ is an isomorphism of abelian surfaces, then Ker(ϕA) =

f−1 Ker(ϕA′)f , and Aut(A, θ) = f−1 Aut(A′, f∗θ)f , for all θ ∈ P(A). In particular,
a(f∗θ) = a(θ), for all θ ∈ P(A).

Proof. If g ∈ Aut(A), then ϕA′(f ◦ g ◦ f−1) = f∗ ◦ϕA(g) ◦ (f∗)
−1, where f∗ : NS(A)

∼→
NS(A′) is the induced isomorphism of the Néron-Severi groups. From this, the first
two identities follow. In view of (23), these imply that Aut(f∗θ) = f∗ Aut(θ)(f∗)

−1 be-
cause Aut(f∗θ) = ϕA′(Aut(A′, f∗θ)) = ϕA′(f Aut(A, θ)f−1) = f∗ϕA(Aut(A, θ))(f∗)

−1 =
f∗ Aut(θ)(f∗)

−1, and so the last assertion follows.

It follows from this lemma and from Proposition 4 that in order to compute a(θ)
when θ ∈ P(A)red, it suffices to consider the case that θ = θE1,E2 is the product
polarization of A = E1 × E2. As a first step, we relate the group Aut(θE1,E2) to the
group HA ∩ SA(θE1 , θE2), which was studied in [K6].

Proposition 15 Let A = E1 × E2 be an abelian product surface and let θE1,E2 =
cl(θE1 + θE2). Moreover, let α ∈ Aut(A). If E1 6' E2, then α ∈ Aut(A, θE1,E2) if and
only if α = α1 × α2, for some αi ∈ End(Ei), for i = 1, 2. Thus

(24) Aut(θE1,E2) = HA ∩ SA(θE1 , θE2),

where SA(θE1 , θE2) = {g ∈ GA : g(cl(θEi
)) = cl(θEi

), for i = 1, 2}.
On the other hand, if there exists an isomorphism τ : E1

∼→ E2, then α ∈
Aut(A, θE1,E2) if and only if α = α1×α2, or α = α1×α2 ◦ τ̃ , for some αi ∈ End(Ei),
for i = 1, 2, where τ̃ ∈ Aut(A) is defined by τ̃(x, y) = (τ−1(y), τ(x)). Thus

(25) Aut(θE1,E2) = HA ∩ (SA(θE1 , θE2) ∪ SA(θE1 , θE2)τ̃∗).

Proof. By definition, α ∈ Aut(A, θE1,E2) ⇔ α∗(θE1 + θE2) ≡ θE1 + θE2 ⇔ θ :=
θE1 + θE2 ≡ α(θE1) + α(θE2). Since θ and α(θE1) + α(θE2) are effective divisors and θ
is a principal polarization, we see that α ∈ Aut(A, θE1,E2) ⇔ α(θE1)+α(θE2) = Tx(θ),
for some x ∈ A(K). If this is the case, then {Tx(θE1), Tx(θE2)} = {α(θE1), α(θE2)} is
the set of irreducible components of α(θ). But α(θE1)∩α(θE2) = α(θE1 ∩ θE2) = {0},
whereas Tx(θE1)∩Tx(θE2) = Tx(θE1∩θE2) = Tx({0}) = {x}, so x = 0. Thus α(θ) = θ.
We thus have that α ∈ Aut(A, θE1,E2) if and only if

(26) either α(θEi
) = θEi

, for i = 1, 2, or α(θE1) = θE2 and α(θE2) = θE1 .

If E1 6' E2, and if α ∈ Aut(A, θE1,E2), then the second case of (26) cannot occur
because θEi

' Ei for i = 1, 2, so α(θEi
) = θEi

, for i = 1, 2. Since θEi
= ei(Ei), where

ei : Ei ↪→ A is the canonical inclusion, for i = 1, 2, the above condition is equivalent
to the condition that α ◦ ei = ei ◦ αi, for some αi ∈ End(Ei), for i = 1, 2, i.e., that
α = α1 × α2. This proves the first assertion.
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From this, equation (24) follows easily. Indeed, if α∗ = ϕA(α) ∈ Aut(θE1,E2), then
α ∈ Aut(A, θE1,E2), and so by the above we have that α = α1×α2 with αi ∈ Aut(Ei),
for i = 1, 2. It is then clear that α∗ ∈ HA ∩ SA(θE1 , θE2). Conversely, if α∗ ∈
HA ∩ SA(θE1 , θE2), then α ∈ Aut(A) satisfies α∗ cl(θEi

) = cl(θ(Ei)), i.e. α(θEi
) ≡ θEi

,
for i = 1, 2. Since α(θEi

) and θEi
are elliptic subgroups of A, it follows from Theorem

1.1 of [K1] that α(θEi
) = θEi

, for i = 1, 2. Thus, by what was explained above, we
have that α ∈ Aut(A, θE1,E2), and so α∗ ∈ Aut(θE1,E2). This proves (24).

Now suppose that we have an isomorphism τ : E1
∼→ E2, so τ̃ ∈ Aut(A). Clearly

τ̃(θE1) = θE2 and τ̃(θE2) = θE1 , so τ̃ ∈ Aut(A, θE1,E2) by the first part of the proof. It
thus clear that α1×α2 and α1×α2 ◦ τ̃ ∈ Aut(A, θE1,E2), for all αi ∈ Aut(Ei), i = 1, 2.
Conversely, if α ∈ Aut(A, θE1,E2), then (26) holds. If α satisfies the first condition of
(26), then as before we conclude that α = α1×α2 with αi ∈ Aut(Ei), for i = 1, 2. On
the other hand, if α satisfies the second condition of (26), then α′ := α ◦ τ̃−1 satisfies
the first condition of (26), and hence α′ = α1 × α2, for some αi ∈ Aut(Ei), and so
α = (α1 × α2) ◦ τ̃ , as claimed. This proves the assertion about Aut(A, θE1,E2).

The proof of (25) is very similar to that of (24).

Corollary 16 If θ = cl(E1 + E2) ∈ P(A)red is a reducible principal polarization,
where the Ei ≤ A are isogeneous elliptic subgroups, then

(27) a(θ) = ε(E1, E2)|ϕA(Aut(E1)× Aut(E2))|,

where ε(E1, E2) = 2, if E1 ' E2, and ε(E1, E2) = 1 otherwise. Moreover, if E1 is not
supersingular, then

(28) a(θ) = ε(E1, E2) max(|Aut(E1)|, |Aut(E2)|).

Proof. By Proposition 4 we have an isomorphism f : E1×E2
∼→ A such that f∗θE1,E2 =

θ, so a(θ) = a(θE1,E2) by Lemma 14.
It follows from Proposition 15 that a(θE1,E2) = ε(E1, E2)|HA ∩ SA(θE1 , θE2)|.

Indeed, if ε(E1, E2) = 1, then this is clear by (24). If ε(E1, E2) = 2, then this
follows from (25) because |HA ∩ SA(θE1 , θE2)| = |(HA ∩ SA(θE1 , θE2))τ̃∗| = |HA ∩
SA(θE1 , θE2)τ̃∗| as τ̃∗ ∈ HA, and because SA(θE1 , θE2) and SA(θE1 , θE2)τ̃∗ are disjoint
since cl(θE1) 6= cl(θE2). (For the latter, note that (θE1 .θE2) = 1 but (θE1 .θE1) = 0, so
cl(θE1) 6= cl(θE2).)

Thus a(θ) = a(θE1,E2) = ε(E1, E2)|HA ∩ SA(θE1 , θE2)|, as claimed. Since HA ∩
SA(θE1 , θE2) = ϕA(Aut(E1)×Aut(E2)) by [K6], Lemma 17, we see that (27) follows..

To prove (28), suppose first that End(Ei) = Z, for i = 1, 2. Then |Aut(Ei)| =
|Ker(ϕA)| = 2 (see Theorem 1 of [K6]), and so |ϕA(Aut(E1) × Aut(E2))| = 2·2

2
=

max(|Aut(E1)|, |Aut(E2)|). Thus (28) follows from (27) in this case.
Now suppose that E1 and E2 are isogeneous CM elliptic curves. If jEi

/∈ {0, 1728},
for i = 1, 2, then |Aut(Ei)| = 2 and also |Ker(ϕA)| = 2 by Lemma 29 of [K6]. Thus,
we see as before that (28) holds here.
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Finally, suppose that jE1 ∈ {0, 1728} (and that E1 is not supersingular, so E1 is a
CM curve). If jE2 6= jE1 , then |Aut(E2)| = |Ker(ϕA)| = 2 by [K6], Lemma 29 again,
so |ϕA(Aut(E1)× Aut(E2)| = |Aut(E1)| = max(|Aut(E1)|, Aut(E2)|). On the other
hand, if jE2 = jE1 , then |Aut(E2)| = |Ker(ϕA)| = |Aut(E1)| by [K6], Lemma 29, and
so (28) follows.

We now re-interpret the formula (28) for a(θ) in terms of quantities associated
to the refined Humbert invariant qθ. For this, we use the following notation which
extends the notation given in the introduction.

Notation. If q(x1, . . . , xr) is a positive integral quadratic form in r variables, and if
n ≥ 1 is an integer, then let

Rn(q) := {(x1, . . . , xr) ∈ Zr : q(x1, . . . , xr) = n}

denote the set of representations of n by q, and let

R∗
n(q) := {(x1, . . . , xr) ∈ Rn(q) : gcd(x1, . . . , xr) = 1}

denote the subset of primitive representations of n by q. Moreover, put rn(q) = |Rn(q)|
and r∗n(q) = |R∗

n(q)|.

Theorem 17 Let A be an abelian surface. If θ ∈ P(A, q), where q is a binary or
ternary quadratic form with r1(q) 6= 0, then

(29) a(θ) = 2 max(1, r∗4(q)) = r∗1(q) max(1, r∗4(q)),

except when q ∼ x2 +4κ(y2 +yz +z2) or q ∼ x2 +4κ(y2 +z2), for some integer κ > 1.

Proof. Since r1(q) 6= 0, we have by (10) that θ = cl(E1 + E2) ∈ P(A)red, and so
A ' E1 × E2 is an abelian product surface by Proposition 4. Thus, by the proof
of Proposition 6 we know that q ∼ qθ ∼ fq1 = x2 ⊥ 4q1, where q1 = qE1,E2 . Thus,
r1(q) = r∗1(q) = 2, and so the second equality of (29) follows.

To prove the first equality, we will use the formula (28). This is applicable because
E1 cannot be a supersingular curve since by hypothesis q is either a binary or ternary
form and so rank(Hom(E1, E2)) ≤ 2.

We want to relate the right hand side of (28) to r∗4(q). For this, we observe
that r∗4(fq1) = r1(q1), and r1(q1) = r1(qE1,E2) > 0 if and only if there exists h ∈
Hom(E1, E2) with deg(h) = 1, so r∗4(q) = r∗4(fqE1,E2

) > 0 if and only if E1 ' E2.
Suppose first that End(E1) = Z. Then Hom(E1, E2) = Zh, for some h, and q1 =

qE1,E2 ∼ dx2, where d = deg(h). If d = 1, then E1 ' E2 and r∗4(q) = r1(q1) = 2. Thus,
since |Aut(Ei)| = 2, we see from (28) that a(θ) = 2 · 2 = 2r∗4(q) = 2 max(1, r∗4(q)),
and so (29) holds in this case.
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If d > 1, then E1 6' E2 and so r∗4(q) = 0. Thus, by (28) we have that a(θ) =
1 · 2 = 2 max(1, r∗4(q)), so (29) holds in this case as well.

Now suppose that End(E1) 6= Z, so q1 = qE1,E2 is a binary form by our hy-
pothesis. If E1 ' E2, then Hom(E1, E2) ' End(E1), and so r∗4(q) = r1(q1) =
|{h ∈ Hom(E1, E2) : deg(h) = 1}| = |Aut(E1)|. Thus, by (28) we obtain a(θ) =
2 · |Aut(E1)| = 2r∗4(q) = 2 max(1, r∗4(q)), and so (29) holds in this case.

Finally, suppose that E1 6' E2, so r∗4(q) = r1(q1) = 0. Then the right hand
side of (29) equals 2, so by formula (28) we see that (29) holds if and only if
max(|Aut(E1)|, |Aut(E2)|) = 2.

Suppose that max(|Aut(E1)|, |Aut(E2)|) > 2. Then one of jEi
is in {0, 1728}, say

jE1 ∈ {0, 1728}. Consider first the case that jE1 = 1728, so End(E1) ' Z[i]. Since
E2 6' E1, we have that κ := [Z[i] : End(E2)] > 1 because there is only one curve E
(up to isomorphism) with End(E) ' Z[i]. Thus, by Proposition 40 of [K2] see that
qE1,E2 ∼ κq2, where q2 is a binary form of discriminant −4. Thus q2 ∼ x2 + y2, and
hence q ∼ fqE1,E2

∼ x2 + 4κ(y2 + z2), where κ > 1.

Similarly, if jE1 = 0, then End(E1) ' Z[ζ], where ζ = −1+
√
−3

2
, and by a similar

argument we get that qE1,E2 ∼ κ(x2 + xy + y) with κ := [Z[ζ] : End(E2)], and so
q ∼ x2 + 4κ(y2 + yz + z2). Since the last two cases were excluded, this proves (29).

By using the results of [K8], we can generalize this theorem as follows.

Corollary 18 Let A be an abelian surface. If θ ∈ P(A, q), where q is a binary or
ternary quadratic form, then

(30) a(θ) = a(q) := max(1, r∗1(q)) max(1, r∗4(q), 3r
∗
4(q)− 12),

except when q ∼ x2 +4κ(y2 +yz +z2) or q ∼ x2 +4κ(y2 +z2), for some integer κ > 1.

Proof. Suppose first that r∗1(q) = 0. Then by Proposition 4 we know that (A, θ) '
(JC , θC) is a Jacobian of a curve C/K, and so q ∼ q(A,θ) ∼ qC in the notation of [K8].
Now since r∗1(q) = 0, we have that r∗4(q) = r4(q), and so it follows from equation (33)
of [K8] that a(θ) = max(1, r∗4(q), 3r

∗
4(q)− 12). This proves (30) in this case.

Now suppose that r∗1(q) 6= 0, so we are in the situation of Theorem 17. Then (30)
follows from (29), provided we have that 3r∗4(q)− 12 ≤ r∗4(q) or r∗4(q) ≤ 6.

To verify this, recall from the proof of Theorem 17 that q ∼ x2 ⊥ 4q1, for some q1,
so r∗4(q) = r∗1(q1). If q is a binary form, then q1 ∼ dx2, for some d ≥ 1, so r∗1(q1) ≤ 2.
If q is a ternary form, then q1 is a positive binary form. Thus, if r∗1(q1) > 1, then
q1 ∼ 1∆ is a principal form of some discriminant ∆, and hence r∗1(q1) = 6, 4 and 2,
for ∆ = −3,−4 and ∆ < −4, respectively. Thus, r∗4 ≤ 6 in all cases, and so formula
(30) holds.

We now observe that formula (29) does not hold in general in the exceptional
cases.
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Corollary 19 Suppose that q ∼ x2 + 4κ(y2 + z2) or that q ∼ x2 + 4κ(y2 + yz + z2),
for some κ > 1, and that P(A, q) 6= ∅. Then (29) does not hold for some θ ∈ P(A, q).
More precisely, if ω(κ) = 1, then a(θ) = 1

2
|Aut+(q)| > 2, for every θ ∈ P(A, q), but

if ω(κ) > 1, then this formula holds for some but not all θ ∈ P(A, q).

Proof. Let θ ∈ P(A, q). Since r1(q) > 0, we have as in the proof of Theorem 17 that
θ = cl(E1 +E2), for some elliptic subgroups Ei ≤ A, i = 1, 2, and that q ∼ fq1 , where
q1 = qE1,E2 .

Suppose first that q ∼ x2 +4κ(y2 +z2), so q1 ∼ κ(x2 +y2) by [K4], Proposition 54.
Thus r∗4(q) = r∗1(q1) = 0 because κ > 1. In particular, E1 6' E2 because r1(qE1,E2) = 0.
Since disc(x2+y2) = −4 is a fundamental discriminant, we see from [K2], Proposition
40, that End0(Ei) ' Q(i), and that gcd(f1, f2) = 1, and lcm(f1, f2) = κ, where
fi = [Z[i] : End(Ei)], for i = 1, 2. We claim that

(31) a(θ) =

{
1
2
|Aut+(q)|, if min(f1, f2) = 1,

2, otherwise.

Indeed, if fj > 1, then |Aut(Ej)| = |Z[fji]
×| = 2, so the second line of (31) follows

immediately from (28) because in that case f1 > 1 and f2 > 1. On the other hand, if
either f1 = 1 (and hence f2 = κ) or f2 = 1 (and f1 = κ), then either End(E1) ' Z[i] or
End(E2) ' Z[i], and hence by (28) we see that a(θ) = 1·max(|Aut(E1)|, |Aut(E2)|) =
4 = 1

2
|Aut+(fq1)|, the latter by Corollary 55 of [K4]. This proves (31).

From (31) the assertion of the corollary follows immediately (in the case that
q ∼ x2 + 4κ(y2 + z2)). Indeed, if ω(κ) = 1, then only the first case of (31) is possible,
and so a(θ) = 1

2
|Aut+(q)|, for all θ ∈ P(A, q). On the other hand, if ω(κ) > 1, then

the second case also occurs (here we need to use Proposition 40 of [K2] again), and
so both cases occur. Moreover, since 1

2
|Aut+(q)| = 4 > 2 = 2 max(1, r∗4(q)), we see

that for any κ > 1 there exists a θ ∈ P(A, q) such that (29) does not hold.
If q ∼ x2 + 4κ(y2 + yz + z2), then a similar proof shows that (31) also holds. In

this case we have that a(θ) = 6 = 1
2
|Aut+(q)| when min(f1, f2) = 1. Thus, a similar

reasoning as before shows that the assertion of the corollary holds here as well.

We now use the above results to determine N∗∗
A = |P(A)red|. If E does not have

CM, then the result was formulated as Proposition 2 in the introduction.

Proof of Proposition 2. By Corollary 7 we have that P(A)red = P(A, q), where
q = x2 + 4dy2, and by Theorem 17 we have that a(θ) = 2 max(1, r∗4(q)), for all
θ ∈ P(A)red. Thus, N∗∗

A = M(P(A)red)(2 max(1, r∗4(q)) = 2ω(d)−1 max(1, r∗4(q)), the
latter by Corollary 7. Now if d = 1, then E1 ' E2 and r∗4(q) = r∗4(x

2 + 4y2) = 2, so
N∗∗

A = 2ω(1) = 1. If d > 1, then E1 6' E2 and r∗4(q) = r∗4(x
2 + 4dy2) = 0, and thus

|P(A)red| = 2ω(d)−1.

Similarly, part (a) of Theorem 3 is easily deduced from the above results.
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Proof of Theorem 3(a). Since A ' E ′′ × E ′′, we see that q1 := qE′′,E′′ represents 1
and so q1 ∼ 1∆ is equivalent to the principal form 1∆ of discriminant ∆. Thus, if, as
before, fq = x2 ⊥ 4q, then by (17) and by Theorem 17 we obtain that

(32) N∗∗
A =

∑
q∈gen(q1)

|P(A, fq)| =
∑

q∈gen(q1)

M(P(A, fq))2 max(1, r∗4(fq)).

because N∗∗
A = |P(A)red| and because none of the fq’s can be one of the exceptional

forms since every q ∈ gen(q1) is primitive.
Now by (19) and Lemma 8 we have for all q ∈ gen(q1) that M(A, fq)|Aut+(fq)| =

2ω(κ)g(∆)h(∆)
h(∆′ = g(∆) because here κ = 1 and ∆′ = ∆. Thus, since |Aut+(fq)| =

|Aut(q)| by (22), we obtain from (32) that

(33) N∗∗
A =

2g(∆)r∗4(fq)

Aut(q1)
+

∑
q ∈ gen(q1)

q 6∼ q1

2g(∆)

|Aut(q)|
= g(∆) +

∑
q ∈ gen(q1)

q 6∼ q1

2g(∆)

|Aut(q)|

because 2r∗4(fq1) = 2r1(q1) = 2|Aut(E ′′)| = 2u(∆) = |Aut(q1)|.
Suppose first that ∆ ∈ {−3,−4}. Then h(∆) = g(∆) = 1, and the sum in (33) is

empty, so |P(A)red| = g(∆) = 1 = 1
2
(h(∆) + g(∆)). Thus (5) holds in this case.

Now suppose that ∆ /∈ {−3,−4}. Then u(∆) = 2, so |Aut(q1)| = 2u(∆) = 4.

Then the right hand side of (33) becomes g(∆)
2

+
∑

q∈gen(q1)
2g(∆)
|Aut(q)| = g(∆)

2
+ h(∆)

2
by

(20), which proves (5) in all cases.

As we will now see, a similar (but easier) proof works for part (b) of Theorem 3
as long as ∆′ /∈ {−3,−4}.

Proof of Theorem 3(b) when ∆′ /∈ {−3,−4}. Put q1 = qE,E′ . The hypothesis that
A 6' E ′′ × E ′′, for any E ′′, means that r1(q) = 0, for all q ∈ gen(q1). Indeed, if
r1(q) 6= 0, then by Lemma 8 there exists θ = cl(E1 + E2) ∈ P(A)red with qE1,E2 ∼ q,
and then E1 ' E2 because r1(qE1,E2) > 0. But then by Proposition 4 we have that
A ' E1 × E2 ' E1 × E1, contrary to the hypothesis.

Since ∆′ /∈ {−3,−4}, we have that u(∆′) = 2 (see [BV], p. 29) and that if
q ∈ gen(q1), then q 6∼ κ(x2 + xy + y2) and q 6∼ κ(x2 + y2), for any κ ≥ 1. It
therefore follows from Proposition 54 of [K4] that fq 6∼ x2 + c(y2 + yz + z2) and
fq 6∼ x2 + c(y2 + z2), for any q ∈ gen(q1) and any κ ≥ 1. Thus, by Theorem 17 (and
Proposition 6) we have that a(θ) = 2, for all θ ∈ P(A)red, and so we obtain from this
and Proposition 13 that

N∗∗
A = |P(A)red| = 2M(P(A)red) = 2

(
2ω(κ)−1 h(∆)

u(∆′)

)
= 2ω(κ)−1h(∆).

This proves (6) in this case because here u = |Aut+(q1)| = u(∆′) = 2.
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Unfortunately, the above method will not work when ∆′ ∈ {−3,−4} because in
that case a(θ) does not have the same value for all θ ∈ P(A, fq), as Corollary 19
shows (when ω(κ) > 1). Thus, here we need to compute |P(A, fq)| directly by using
formula (1). We will prove:

Proposition 20 Let A = E1 × E2 be a CM product surface and suppose that q :=
qE1,E2 has discriminant ∆ and content κ > 1. Put ∆′ = ∆/κ2. Then

(34) |P(A, fq)| = (2ω(κ) + u(∆′)− 2)
2g(∆′)h(∆)

|Aut(q)|h(∆′)
.

Before proving this, let us see why this result allows us to complete the proof of
Theorem 3.

Proof of Theorem 3 when ∆′ ∈ {−3,−4}. The hypothesis implies that h(∆′) = 1, so
q := qE,E′ ∼ κ(1∆′), i.e., q ∼ κ(x2 + xy + y2) or q ∼ κ(x2 + y2). Moreover, gen(q)
consists only of one class. Recall from above that the hypothesis that A 6' E ′′ × E ′′

implies 1∆ /∈ gen(q), and so we must have that κ > 1. Thus, by Proposition 6 and
Proposition 20 we obtain

N∗∗
A = |P(A, fq)| = (2ω(κ) + u(∆′)− 2)

2g(∆′)h(∆)

2u(∆′)h(∆′)
= (2ω(κ) + u− 2)

h(∆)

u

because |Aut(q)| = 2u(∆′) = 2u and h(∆′) = g(∆′) = 1. This proves (6) in all cases.

We now turn to the proof of Proposition 20. This follows easily from the results
proven in [K6] which concern the computation of the (HA, S)-double coset decom-
position of GA, where A = E1 × E2 and S = SA(θE1 , θE2) is is the joint stabilizer
subgroup as in Proposition 15.

Proposition 21 If A = E1 × E2 is a CM abelian product surface, and if q, ∆, ∆′

and κ are as in Proposition 20, then

(35) |HA\GA/SA(θE1 , θE2)| = s(∆, κ)
2g(∆′)h(∆)

|Aut(q)|h(∆′)
,

where s(∆, κ) := 2(2ω(κ) + u(∆/κ2)− 2).

Proof. This follows immediately from Corollary 27 of [K6], together with Proposition
14 of [K6].

To deduce Proposition 20 from Proposition 21 we observe the following.

Lemma 22 Let θ = cl(θE1 + θE2) be the product polarization on A = E1 ×E2. Then
there exists τ ∈ Sθ such that Sθ = SA(θE1 , θE2) ∪̇ τSA(θE1 , θE2).
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Proof. Define τ ∈ End(NS(A)) by τ(D(x, y, h)) = D(y, x, h), where D is the isomor-
phism of (12). From (13) we see that τ ∈ Aut(qA). Moreover, since θ = D(1, 1, 0), it
follows that τ(θ) = θ, so τ ∈ Sθ. Since clearly SA(θE1 , θE2) ≤ Sθ, we thus have that
〈SA(θE1 , θE2), τ〉 ≤ Sθ. Moreover, since τ /∈ SA(θE1 , θE2) (because cl(θE1) 6= cl(θE2)),
this shows that

(36) |Sθ| ≥ |〈SA(θE1 , θE2), τ〉| ≥ 2|SA(θE1 , θE2)| = 2|Aut(qE1,E2)|,

the latter by [K6], Proposition 16. On the other hand, since qθ ∼ fqE1,E2
= x2 ⊥

4qE1,E2 , we have by Corollary 10 of [K8] and equation (46) of [K4] that |Sθ| =
|Aut(qθ)| = |Aut(fqE1,E2

)| = 2|Aut(qE1,E2)|, and so we see from (36) that |Sθ| =
2|SA(θE1 , θE2)|. Thus, the assertion follows.

To analyze the (HA, Sθ)-double cosets of GA, we recall some facts about the
(HA, SθE1

,θE2
)-double cosets of GA which were established in [K6]. For this, recall

the following notation from [K6].
If E is an elliptic curve, then let S(A, E) = {E ′ ≤ A : E ′ ' E} denote the set

of elliptic subgroups of A which are isomorphic to E. Moreover, if E ′
1, E ′

2 are two
elliptic curves, then let

GA(E ′
1, E

′
2) = {g ∈ GA : g(cl(θEi

)) = cl(E ′′
i ), for some E ′′

i ∈ S(A, E ′
i), for i = 1, 2}.

Lemma 23 If g ∈ GA(E ′
1, E

′
2), then GA(E ′

1, E
′
2) = HAgSθE1

,θE2
. Moreover, in this

case we have that GA(E ′
1, E

′
2) = GA(E ′′

1 , E ′′
2 ) if and only if E ′

1 ' E ′′
1 and E ′

2 ' E ′′
2 . In

addition, if g ∈ GA, then there exist elliptic curves E ′
1, E

′
2 such that g ∈ GA(E ′

1, E
′
2).

Proof. The first assertion is Proposition 11 of [K6], and the second and third follow
from Remark 13 of [K6].

Lemma 24 If g ∈ GA(E ′
1, E

′
2), then gτ ∈ GA(E ′

2, E
′
1), where τ is as in Lemma 22.

Thus

(37) HAgSθ = HAgSA(θE1 , θE2) ∪ HAgτSA(θE1 , θE2),

and the union is disjoint if and only if E ′
1 6' E ′

2.

Proof. Since τ(cl(θE1)) = cl(θE2) and τ(cl(θE2)) = cl(θE1), we see that gτ(cl(θE1)) =
g(cl(θE2)) = cl(E ′′

2 ), with E ′′
2 ∈ S(A, E ′

2), and similarly gτ(cl(θE2)) = cl(E ′′
1 ), with

E ′′
1 ∈ S(A, E ′

1). Thus gτ ∈ GA(E ′
2, E

′
1), which proves the first assertion.

The formula (37) clearly follows from Lemma 22. Moreover, from Lemma 23 and
the first assertion we see that the union is disjoint if and only if E ′

1 6' E ′
2 (or E ′

2 6' E ′
1),

and so the last assertion follows.

We can now establish the following relation between the number of (HA, Sθ)-double
cosets of GA and the number of (HA, SθE1

,θE2
)-cosets of GA.
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Proposition 25 Let A = E1 × E2 be a CM abelian product surface and let θ =
cl(θE1 + θE2). If E1 6' E2, then |HA\GA/Sθ| = 1

2
|HA\GA/SA(θE1 , θE2)|.

Proof. By Lemma 23 we know that GA is a disjoint union of sets (double cosets) of
the form GA(E ′

1, E
′
2). Now by Proposition 14 of [K6] we have that

(38) GA(E ′
1, E

′
2) 6= ∅ ⇔ A ' E ′

1 × E ′
2 and qE1,E2 ∼ qE′

1,E′
2
.

Since E1 6' E2, we know that qE1,E2 6∼ 1∆. If GA(E ′
1, E

′
2) 6= ∅, then by (38) we

have that qE′
1,E′

2
6∼ 1∆, and hence E ′

1 6' E ′
2. Thus, by Lemma 24 we see that each

double coset HAgSθ decomposes into exactly two disjoint (HA, SA(θE1 , θE2))-double
cosets, and so |HA\GA/SA(θE1 , θE2)| = 2|HA\GA/Sθ|, which proves the assertion.

Proof of Proposition 20. Let θ = cl(θE1 + θE2). Then qθ ∼ fq := x2 ⊥ 4q, where q =
qE1,E2 , so θ ∈ P(A, fq). Then by formula (1) we have that |P(A, fq)| = |HA\GA/Sθ|.

Since κ > 1, it is clear that qE1,E2 6∼ 1∆, so E1 6' E2. We thus obtain from
Proposition 25 and (35) that

|P(A, fq)| =
1

2
|HA\GA/SA(θE1 , θE2)| =

2(2ω(κ) + u(∆/κ2)− 2)

2

2g(∆′)h(∆)

|Aut(q)|h(∆′)
,

which proves formula (34).
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