Explanation of the Basic Invariants

The modular diagonal quotient surface $Z_{N,e}$ is the quotient surface $Z_{N,e} = \Delta_e \setminus Y_N$ in which $Y_N = X(N) \times X(N)$ is the product of the modular curve X(N) with itself and $\Delta_e \leq G \times G$ is a certain "twisted diagonal" subgroup of $G = \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. More precisely, let

$$\begin{split} X(N) &= \Gamma(N) \setminus \mathfrak{H}^* & \text{denote the modular curve of level } N, \\ G &= \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}, & \text{viewed as a subgroup of the automorphism group of } X(N), \\ \pi : X(N) \to X(1) &= G \setminus X(N) & \text{the associated quotient map,} \\ \alpha_e \in \mathrm{Aut}(X(N)) & \text{the automorphism of } G \text{ defined by conjugation with } Q_e; \\ \text{to be precise, } \alpha_e(g) &= Q_e g Q_e^{-1}, \text{ where } Q_e = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \in \mathrm{Gl}_2(\mathbb{Z}/N\mathbb{Z}) \text{ and } e \in (\mathbb{Z}/N\mathbb{Z})^{\times}. \text{ Then let} \\ Y_N &= X(N) \times X(N) & \text{be the product surface of } X \text{ by itself,} \\ \Delta_e &= \{(g, \alpha_e(g)) : g \in G\} & \text{the "twisted diagonal" subgroup defined by } \alpha_e, \\ Z_{N,e} &= \Delta_e \setminus Y & \text{the (twisted) diagonal quotient surface defined by } \alpha_e, \\ \end{split}$$

Thus, the product map $\pi \times \pi : X(N) \times X(N) \to X(1) \times X(1)$ factors over φ :

$$X(N) \times X(N) \xrightarrow{\varphi} Z_{N,e} \xrightarrow{\psi} X(1) \times X(1).$$

the the associated quotient map.

Note that $Z_{N,e}$ has (isolated) singularities (because Δ_e has nontrivial stabilizers); we let

 $\tilde{Z}_{N,e}$ denote its desingularization.

The geometric invariants of $Z_{N,e}$ and $\tilde{Z}_{N,e}$, such as the Betti and Hodge numbers etc., may be computed by simple expressions from the following list of basic invariants:

- $m = |G| = |\Delta_e| = |\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})|/2$, the order of G or of Δ_e
- $g = g_{X(N)}$, the genus of X(N)

 $\varphi: Y_N \to Z_{N,e} = \Delta_e \backslash Y_n$

- $r_0 = \#$ of singularities of $Z_{N,e}$ above $\bar{P}_0 \times \bar{P}_0$
- $r_1 = \#$ of singularities of $Z_{N,e}$ above $\bar{P}_1 \times \bar{P}_1$
- $s_{11} = \#$ of singularities of $Z_{N,e}$ above $\bar{P}_1 \times \bar{P}_1$ of type (3,1)
- $r_{\infty} = \#$ of singularities of $Z_{N,e}$ above $\bar{P}_{\infty} \times \bar{P}_{\infty}$

 $\mathbb{L}_{\infty} = \#$ of irreducible components of the resolution curves of the singularities above $\bar{P}_{\infty} \times \bar{P}_{\infty}$

 \mathbb{S}_{∞} = a certain sum of Dedekind sums (contribution at ∞ only)

 $c_{\infty} = \tilde{C}_{\infty,1}^2 = \tilde{C}_{\infty,2}^2$, the self-intersection numbers of the two curves $\tilde{C}_{\infty,1}, \tilde{C}_{\infty,2}$.

Here, the points $\overline{P}_0, \overline{P}_1$ and $\overline{P}_{\infty} \in X(1)$ are the three ramification points of the quotient map $\pi: X(N) \to X(1) = G \setminus X(N) \simeq \mathbb{P}^1$ (of orders 2, 3, N, respectively).

From the above basic invariants, the other geometric invariants of the surface can be calculated readily, as is explained at the end of the tables.

Note: If $e' = f^2 e$ with (f, N) = 1, then $Z_{N,e'} \simeq Z_{N,e}$. Thus, the tables list only one representative e for each square class mod N.