Explanation of the Geometric Invariants

The modular diagonal quotient surface $Z_{N,e}$ is the quotient surface $Z_{N,e} = \Delta_e \setminus Y_N$ in which $Y_N = X(N) \times X(N)$ is the product of the modular curve X(N) with itself and $\Delta_e \leq G \times G$ is a certain "twisted diagonal" subgroup of $G = \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. More precisely, let

$X(N) = \Gamma(N) \backslash \mathfrak{H}^*$	denote the modular curve of level N ,
$G = \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\},\$	viewed as a subgroup of the automorphism group of $X(N)$,
$\alpha_e \in \operatorname{Aut}(X(N))$	the automorphism of G defined by conjugation with Q_e ;

to be precise, $\alpha_e(g) = Q_e g Q_e^{-1}$, where $Q_e = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \in \operatorname{Gl}_2(\mathbb{Z}/N\mathbb{Z})$ and $e \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Then let

 $\begin{array}{ll} Y_N = X(N) \times X(N) & \text{be the product surface of } X \text{ by itself,} \\ \Delta_e = \{(g, \alpha_e(g)) : g \in G\} & \text{the "twisted diagonal" subgroup defined by } \alpha_e, \\ Z_{N,e} = \Delta_e \backslash Y & \text{the (twisted) diagonal quotient surface defined by } \alpha_e. \end{array}$

Note that $Z_{N,e}$ has (isolated) singularities (because Δ_e has nontrivial stabilizers); we let

 $\tilde{Z}_{N,e}$ denote its desingularization.

The following invariants of $Z_{N,e}$ and $\tilde{Z}_{N,e}$ are given in the tables:

 $m = |G| = |\Delta_e| = |\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})|/2$, the order of G or of Δ_e $= g_{X(N)}$, the genus of X(N)g $= g_{\langle \sigma_0 \rangle \setminus X(N)}$, the genus of $\langle \sigma_0 \rangle \setminus X(N)$ (see Note 1) below) g_0 $= g_{\langle \sigma_1 \rangle \setminus X(N)}$, the genus of $\langle \sigma_1 \rangle \setminus X(N)$ g_1 $g_{\infty} = \langle \sigma_{\infty} \rangle \backslash X(N)$, the genus of $\langle \sigma_{\infty} \rangle \backslash X(N) = X_1(N)$ = # of singularities of $Z_{N,e}$ above $\bar{P}_0 \times \bar{P}_0$ r_0 $r_1 = \#$ of singularities of $Z_{N,e}$ above $P_1 \times P_1$ $r_{\infty} = \# \text{ of singularities of } Z_{N,e} \text{ above } \bar{P}_{\infty} \times \bar{P}_{\infty}$ $r = r_0 + r_1 + r_\infty$, the total # of singularities of $Z_{N,e}$ (not listed in tables) $\mathbb{L} = \#$ of irreducible components of the resolution curve $b_2^s = \dim H^2(Z_{N,e})$, the 2nd Betti number of $Z_{N,e}$ $b_2 = \dim H^2(\tilde{Z}_{N,e})$, the 2nd Betti number of the desingularization $\tilde{Z}_{N,e}$ $h^{1,1} = \dim H^1(\tilde{Z}_{N,e}, \Omega^1_{\tilde{Z}_{N,e}}), \text{ the } (1,1)\text{-Hodge number of } \tilde{Z}_{N,e}$ p_g = the geometric genus of $\tilde{Z}_{N,e}$ c_2 = the 2nd Chern number of $Z_{N,e}$ K^2 = the self-intersection number of the canonical divisor K of $Z_{N,e}$ κ = the Kodaira dimension of $\tilde{Z}_{N,e}$ ($\kappa = -1$ means that $\tilde{Z}_{N,e}$ is rational)

Notes: 1) If $k = 0, 1, \infty$, then $\langle \sigma_k \rangle$ denotes the stabilizer subgroup of G at a point above the three ramification points $\bar{P}_k \in X(1)$ of the quotient map $\pi : X(N) \to X(1) = G \setminus X(N) \simeq \mathbb{P}^1$. Thus $|\langle \sigma_k \rangle| = 2, 3, N$ for for $k = 0, 1, \infty$, respectively.

2) If $e' = f^2 e$ with (f, N) = 1, then $Z_{N,e'} \simeq Z_{N,e}$. Thus, the tables list only one representative e for each square class mod N.