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Abstract—This paper introduces a class of discrete-time dis-
tributed online optimization algorithms, with a group of agents
whose communication topology is given by a uniformly strongly
connected sequence of time-varying networks. At each time, a
private locally Lipschitz strongly convex objective function is
revealed to each agent. In the next time step, each agent updates
its state using its own objective function and the information
gathered from its immediate in-neighbors at that time. Under
the assumption that the sequence of communication topologies is
uniformly strongly connected, we design an algorithm, distributed
over the sequence of time-varying topologies, which guarantees
that the individual regret, the difference between the network cost
incurred by the agent’s states estimation and the cost incurred
by the best fixed choice, grows only sublinearly. This algorithm
consists of a subgradient flow along with a push-sum step to adjust
for the directed nature of the network topologies. We implement
the proposed algorithm in a collaborative localization problem,
and the results show the proper performance of the algorithm.

Index Terms—Distributed optimization, on-line learning, time-
varying network topology.

I. INTRODUCTION

MANY scenarios concerning the coordination of multia-
gent systems can be modeled as optimization problems

in which individual agents cooperatively try to minimize a
common cost function. The main feature of any implementable
coordination protocol is that the agents only use the informa-
tion from their neighboring agents, where the neighborhood
structure is cast as a graph, often directed and time varying,
to update their states. One well-studied class of such opti-
mization problems is the so-called consensus-based distributed
optimization problem, where the objective is for the aggregate
states of the agents to converge to the set of minimizers of the
common cost function [2]–[4]. The problem has a variety of
applications including localization and robust estimation [5],
formation control [6], and energy dispatch in power distribution
networks [7], and has been extensively studied in recent years
[2]–[4], [8]–[10].

Many practical scenarios of distributed optimization, how-
ever, are in highly dynamic environments, for example,
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scheduling of renewable energy systems, where uncertainty
plays a central role, and estimation using sensor networks,
where the observations of each sensor change with time due
to noise. Some of these issues can be addressed within the
framework of online optimization, where the functions allo-
cated to each agent possibly change with time, and this change
is seen by the agents only in hindsight. In this sense, this is
inherently different from distributed time-varying optimization,
or dynamic consensus [11]. The objective is to bound the so-
called regret function, which measures the difference between
the accumulated collective cost and the cost obtained by the
best fixed decision, made by a hypothetical decision maker that
knows the objective functions in advance.

There is vast literature on online optimization, all of which
we are unable to review here. This work builds on gradient-
descent methods that have been used extensively for online
convex optimization; see [12]–[14] for a recent survey. In
particular, it is well known that gradient-descent protocols
achieve a regret bound of O(

√
T ) on convex functions, and

O(ln(T )) on twice differentiable strongly convex functions,
where T denotes the time horizon, see, for example, [13]. With
the interest in decentralized architectures and motivated by
the problem of distributed convex optimization, a distributed
version of online optimization is proposed in [15] and [16].
In [17]–[19], consensus-based gradient-descent algorithms for
distributed online optimization are proposed. In this setting,
each agent aims at driving its individual average regret, which
is the average over time of the regret function evaluated at
this agent’s estimation for the choice that the whole network
should make, to zero. Since the agents do not have access
to the local cost functions of other agents, these individual
regrets are not computable. Nevertheless, the agents can use
a consensus-based gradient-descent protocol to collaboratively
achieve their objectives. A consensus-based dual averaging
discrete-time protocol for online optimization on undirected
networks is proposed in [17], and is extended in [20] to
accommodate for time-varying weights, but on a fixed di-
rected graph. In [18] and [19], motivated by the saddle-point
dynamics in [21], a discrete-time distributed online convex
optimization algorithm on weight-balanced network topologies
is introduced; in particular, the suggested protocol in [19]
works on jointly connected weight-balanced digraphs. Other
recent work includes [22], where under the assumption of
doubly stochasticity, a gossip-based protocol is developed for
distributed online convex optimization. In contrast, we develop
an algorithm that achieves a sublinear regret over any sequence
of uniformly strongly connected time-varying directed graphs.
The idea behind our protocol is the push-sum algorithm, which

2325-5870 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



418 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

was originally used for consensus [23], [24] on directed graphs
with unbalanced nodes. In particular, some of our main results
rely on an extension of this class of algorithms to the so-called
perturbed push-sum protocol, which works on any uniformly
strongly connected digraph and has recently been used for
distributed convex optimization [25], [26]. In contrast, here we
are interested in distributed online optimization.

Statement of Contributions: The contributions of this paper
are as follows. We consider a group of agents communicating
over a sequence of time-varying directed graphs. At each time
instance, each agent uses the information about the states of
its neighboring agents and makes a decision about its next
state. After that, the agent receives a locally Lipschitz strongly
convex cost function and incurs a cost for its state estimation.
Following the framework of [17] and [19], the regret for each
individual agent at each time is defined as the difference be-
tween the network cost incurred by the agent’s state estimation
and the cost incurred by the best fixed choice, made by a deci-
sion maker that has access to the objective functions. Assuming
that the individual cost functions are strongly convex on a
compact neighborhood of their minimizers and have bounded
subgradients, we design a distributed discrete-time algorithm
which achieves sublinear regret, logarithmic up to a square, that
is, O((ln(T ))2), on any sequence of time-varying uniformly
strongly connected digraphs. In this sense, and in contrast
to the known consensus-based gradient-descent protocols for
distributed online optimization, our proposed strategy does not
rely on having weight-balanced or doubly stochastic network
topologies, and accommodates time-varying directed graphs.
The proposed algorithm can be thought of as an extension of
the subgradient push-sum strategy, recently used for distributed
convex optimization in [25], to online settings. Our proof
strategy is to provide a sublinear network regret and then a
sublinear bound on the difference between network and agent
regret. For the special class of Ramanujan graphs, we make the
dependency of our upper bound for the regret on the number
of agents explicit and show that for a sufficiently large time,
this upper bound grows linearly with the size of the network.
Finally, we discuss an application of the proposed algorithm to
a collaborative localization problem, where a group of sensors
with independent observations cooperatively, by communicat-
ing over a time-varying graph, estimates a target.

Organization: Section II contains mathematical prelimi-
naries on linear algebra, convex analysis, and graph theory.
Section III introduces the distributed online convex optimiza-
tion problem under study. In Section IV, we propose our
distributed online discrete-time convex optimization algorithm
which achieves sublinear regret. Section V contains our main
contribution. We demonstrate the results by a simulation on a
collaborative localization problem in Section VI. Section VII
gathers our conclusions and ideas for future work.

II. MATHEMATICAL PRELIMINARIES

We start with some notational conventions that we use
throughout this paper. Let R, R≥0, R>0, Z, and Z>0 denote the
set of real, non-negative real, positive real, integer, and positive
integer numbers, respectively. We denote by ‖.‖2 and ‖.‖1

the Euclidean norm and 1-norm on R
d, d ∈ Z>0, respectively,

and denote by B̄(x, r) = {y ∈ R
d : ‖y − x‖2 ≤ r}, the closed

ball of radius r centered at x ∈ R
d. We use the short-hand

notation 1d = (1, . . . , 1)� ∈ R
d. We let Id denote the identity

matrix in R
d×d. For matrices A ∈ R

d1×d2 and B ∈ R
e1×e2 ,

d1, d2, e1, e2 ∈ Z>0, we let A⊗B denote their Kronecker
product. We say matrix A is column stochastic (respectively,
row stochastic) if 1�

d1
A = 1�

d2
(respectively, A1d2

= 1d1
). We

also let σi(A) denote the ith largest singular value of matrix A.
Convex Analysis: A function f : Rd → R is convex if for all

x, y ∈ R
d and for all λ ∈ [0, 1], we have

λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y) .

Given a convex function f and x ∈ R
d, we call gx ∈ R

d a
subgradient of f at x, if

f(y)− f(x) ≥ g�x (y − x)

for all y ∈ R
d. It is well known that the set of subgradients

of a convex function is a nonempty, convex, compact for all
x ∈ R

d, see [27, Prop. 4.2.1]. We denote by ∂f(x) the set of
subgradients of f at x. We say ∂f(x) is L-bounded if there
exists L ∈ R≥0 such that ‖gx‖1 ≤ L for all gx ∈ ∂f(x) and
x ∈ R

d. The function f : Rd → R is called Lipschitz, if for
all x, y ∈ R

d, |f(x)− f(y)| ≤ C‖x− y‖2 for some C ∈ R≥0.
Note that a function with L-bounded subgradients is Lipschitz.
The function f is μ-strongly convex, for some μ ∈ R>0, if for
each x ∈ R

d and gx ∈ ∂f(x), we have

f(y)− f(x) ≥ g�x (y − x) +
μ

2
‖y − x‖22

for all y ∈ R
d. We let argmin(f) denote the set of minimizers

of a convex function f in its domain. The convex function
f is locally strongly convex if it is strongly convex on a
compact set containing argmin(f). For β ∈ [0, 1], a convex
function f : Rn → R with argmin(f) 
= ∅ is β-central on Z ⊂
R

n \ argmin(f) if for each x ∈ Z , there exists y ∈ argmin(f)
such that

−g�x (y − x) ≥ β‖gx‖2‖y − x‖2

for all gx ∈ ∂f(x).
Graph Theory: A weighted directed graph (or digraph) G =

(V , E ,A) consists of a vertex set V , an edge set E ⊆ V × V , and
an adjacency matrix A ∈ R

n×n
≥0 with aij > 0 iff (vi, vj) ∈ E .

We assume each agent has a self-loop, so aii > 0 for all i ∈ V .
A path is a sequence of distinct vertices connected by edges.
The graph G is strongly connected if there is a path between
any pair of distinct vertices. We define in-neighbors and out-
neighbors of node vi, respectively, as N in

i = {vj |(vj , vi) ∈
E} ∪ {vi} and Nout

i = {vj|(vi, vj) ∈ E} ∪ {vi}. The in- and
out-degree of vi are, respectively, dini = |N in

i | and douti =
|Nout

i |. A regular (undirected) graph is a graph where every
vertex has the same number of neighbors. A regular graph
with vertices of degree d is a d-regular graph. A Ramanujan
graph is a d-regular graph satisfying σ2(A) ≤ 2

√
d− 1, where

A = [aij ] is the unweighted adjacency matrix of the graph, that
is, aij = 1 if (vi, vj) ∈ E and aij = 0; otherwise, see [28].
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III. PROBLEM STATEMENT

We begin by describing the problem of online convex
optimization. Suppose we have a sequence of convex cost
functions {f1, f2, . . . , fT}, where f t : Rd → R for each t ∈
{1, . . . , T } (T ∈ Z>0 is the time horizon). At each time step
t ∈ {1, . . . , T }, a decision maker chooses an action z(t) ∈ R

d

and after committing to this decision, a convex cost function
f t : Rd → R is revealed and the decision maker is faced with
a loss of f t(z(t)). In this scenario, due to lack of access to
the cost functions before the decision is made, the decision
does not necessarily correspond to the minimizers and the
decision maker faces a so-called regret. Regret is defined as
the difference between the accumulated cost over time and the
cost incurred by the best fixed decision, when all functions are
known in advance, see [12], [13]. Formally, the regret is

R(T ) =
T∑

t=1

f t (z(t))−
T∑

t=1

f t(z�)

where

z� ∈ argmin
z∈Rd

T∑
t=1

f t(z).

Throughout this paper, we assume that the minimizer set is
nonempty. The objective here is to design a strategy for the
decision maker so that it achieves a regret that is sublinear in
T , that is, lim supT→∞(R(T )/T ) = 0, which guarantees that
the average regret over time goes to zero.

Let us now review the setup for a distributed version of
the online optimization problem [17], [19]. Consider a group
of agents communicating with each other over a time-varying
network, modeled by a directed graph at each time step,
with properties that will be described shortly. At each time
step t ∈ {1, 2, . . . , T }, an agent i ∈ V = {1, . . . , n} chooses
its state zi(t) ∈ R

d. After this, a locally strongly convex cost
function f t

i : Rd → R is revealed, and the agent incurs the cost
f t
i (zi(t)); in fact, agent i will not necessarily see the whole

function, but can see its value and compute its subgradient at
zi(t). In this scenario, at each time t, the whole network aims
to minimize the cost function

f t(z) =

n∑
i=1

f t
i (z)

which is distributed among agents and is revealed when agents
have chosen their states. Therefore, each agent guesses its state
based on what it thinks the whole network would choose.

The regret of agent j ∈ V , see [17], [18], is now defined as

Rj(T ) :=

T∑
t=1

n∑
i=1

f t
i (zj(t))−

T∑
t=1

n∑
i=1

f t
i (z

�) (1)

where

z� ∈ argmin
z∈Rd

T∑
t=1

n∑
i=1

f t
i (z). (2)

Note that, since f t is locally strongly convex, z� is unique. This
individual regret function for agent j computes the difference

between the network cost incurred by the agent’s states estima-
tion and the cost incurred by the best fixed choice, when all
functions are known in advance.

It is essential to note that at each time, each agent has only
access to the value of its own (past) cost functions, and their
subgradients, and has only partial information about the other
agents’ states. Therefore, agents cannot compute their own
regret. However, at each time step, agents have access to a
communication network over which they can share information.
In particular, at time t ∈ {1, 2, . . . , T }, agent i ∈ V receives
information about the states of its in-neighbour via a time-
varying directed graph G(t) = (V , E(t),A(t)). We assume that
the sequence G(t), t ∈ {1, . . . , T } is uniformly strongly con-
nected (or B-strongly-connected), which means it is strongly
connected in a period of time, see [25]; specifically, there exists
B ∈ Z>0 such that for each k ∈ Z≥0, the digraph with vertices
V and edge set EB(k) =

⋃(k+1)B
t=kB+1 E(t) is strongly connected.

Finally, similar to most distributed optimization algorithms, we
assume throughout that every node knows its out-degree.

The main objective of this paper is to design a distributed
algorithm over the prescribed time-varying network topology
which allows the agents to asymptotically drive the average
individual regret over time to zero, even though limited in-
formation is available to the agents. More specifically, the
distributed algorithm must have the property that the individual
regret is upper bounded sublinearly of time T .

IV. DISTRIBUTED ONLINE SUBGRADIENT

PUSH-SUM ALGORITHM

In this section, we introduce a distributed online subgradient
push-sum algorithm motivated by [23], [25], which allows the
agents to have a sublinear average individual regret. To this end,
let us consider a group of agents V = {1, . . . , n} with the com-
munication topology prescribed by a sequence of B-strongly-
connected time-varying digraphG(t)=(V,E(t),A(t)) as before.
The distributed online subgradient push-sum algorithm is a
discrete-time dynamical system, which is described next. We
assume that at each time t ∈ {1, . . . , T }, each agent has
four states: xi(t) ∈ R

d, yi(t) ∈ R, wi(t) ∈ R
d and zi(t) ∈ R

d,
which the agent computes locally. Here, zi(t) is the agent’s
primary state which incurs the cost f t

i (zi(t)). The parameters
xi(t) and wi(t) are used to estimate zi(t) by using other agents’
states and properties of cost function f t

i . Finally, yi(t) is a scalar
used to determine the influence of the agent’s neighbours on its
states over a directed graph.

We are now in a position to introduce our distributed on-
line subgradient push-sum algorithm. At each iteration t ∈ {1,
. . . , T }, the agent i∈V computes its next time state values by

wi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

doutj (t)

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

doutj (t)

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
xi(t+ 1) =wi(t+ 1)− α(t+ 1)gt+1

i (zi(t+ 1))
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where gt+1
i (zi(t+ 1)) is the subgradient of the function f t+1

i at
zi(t+ 1) and α : Z>0 → R>0 is the learning rate. Throughout
the rest of this paper, for simplicity, we write gi(t+ 1) instead
of gt+1

i (zi(t+ 1)). We set the initial value yi(0) = 1 for all
i ∈ V , and xi(0) ∈ R

d where i ∈ V . Note that f t
i is available

only after agent i selects the state zi(t).
We now briefly describe how each agent computes its state

values. At each time t, all in-neighbor agents j ∈ N in
i (t) of

agent i share (xj(t)/d
out
j (t)) and (yj(t)/d

out
j (t)) with this

agent; hence i can compute wi(t+ 1), yi(t+ 1), zi(t+ 1),
xi(t+ 1) using this information.

It is useful to represent the discrete-time dynamical system
described above in matrix form. To this end, let us define the
matrix A(t) = [aij(t)]n×n and A(t) = A(t)⊗ Id, where

aij(t) =

{
1

dout
j (t)

whenever j ∈ N in
i (t)

0 otherwise.

The algorithm described above can now be written as

w(t + 1) =A(t)x(t)

y(t+ 1) =A(t)y(t)

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
, for all i ∈ V

x(t+ 1) =w(t+ 1)− α(t+ 1)g(t+ 1) (3)

where w(t)=(w�
1 (t), . . . , w

�
n (t))

�, x(t)=(x�
1 (t), . . . , x

�
n(t))

�,
y(t) = (y1(t), . . . , yn(t))

�, and g(t) = (g�1 (t), . . . , g
�
n (t))

�.

V. MAIN RESULT

In this section, we show how the distributed online sub-
gradient push-sum algorithm (3) can be used to bound the
individual regret defined in (1). Before stating our main result,
we specify the sequence of cost functions {f t

1, f
t
2, . . . , f

t
n}

T
t=1

that we consider throughout this paper.
Assumption 5.1: {f t

1, f
t
2, . . . , f

t
n}

T
t=1 is a sequence of con-

vex functions with nonempty set of minimizers, where for each
i ∈ {1, . . . , n}, the function f t

i :

(1) has Li-bounded subgradients, where Li ∈ R>0, and
(2) is μ-strongly convex on B̄(0, H(μK1/2L)) for some

μ ∈ R>0, K1 ∈ R>0 independent of T , and L =∑n
i=1 Li, where H(·) is defined in (19) in the Appendix,

and ∪n
i=1 ∪T

t=1 argmin f t
i ⊂ B̄(0,K1/2).

The following theorem is the main result of this paper.
Theorem 5.2—(Sublinear Agent’s Regret Bound): Consider a

group of agents V = {1, . . . , n} over a sequence of B-strongly
connected graphs, where T, n ∈ Z>0. Let {f t

1, f
t
2, . . . , f

t
n}

T
t=1

be a sequence of convex cost functions that satisfies
Assumption 5.1. Suppose that the learning rate is given by
α(t) = 1/μt and that the agents use (3) to generate the se-
quence {z(t) = (z1(t), z2(t), . . . , zn(t))}Tt=1. Then for each
agent j ∈ V , we have

Rj(T ) ≤ C1 + C2 (1 + ln(T )) + C3 (1 + ln(T ))2 (4)

where

C1 =
8L

δ(1− λ)

n∑
i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z�‖22

+
8μn

δ(1− λ)

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
16nLj

δ(1− λ)

n∑
i=1

‖xi(0)‖1

C2 =
8L2

μδ(1− λ)
+

8L

δ(1 − λ)

n∑
i=1

‖xi(0)‖1 +
16nLj

δ(1− λ)

L

μ

+
8n

δ(1− λ)
L ‖x̄(0)− z�‖2 +

L2

2nμ

C3 =
8

δ(1− λ)

L2

μ

z� is defined in (2), δ ∈ R>0 and λ ∈ R>0 depend on the
network topology, c.f. Lemma 5.5,

L =

n∑
i=1

Li, and

x̄(t) =
1

n
(x1(t) + x2(t) + · · ·+ xn(t))

=
1

n
(1n ⊗ Id)

� [
x�
1 (t), x

�
2 (t), . . . , x

�
n(t)

]�
. (5)

Before we prove this result, we make a few remarks on the
comparison of our results with previous works. The distributed
online subgradient push-sum algorithm (3) and the result pre-
sented by Theorem 5.2 do not rely on fixed graph topologies, or
on the fact that the underlying network is weight-balanced. In
this sense, this result is more general than the existing results in
the literature [17]–[19]. On the other hand, the bound obtained
is of order (ln(T ))2, rather than ln(T ), which is slightly worse
than the known regret bounds in the centralized scenarios, or
the known cases on weight-balanced directed graphs. This may
be due to the estimates that we have used for some of our upper
bounds, or can be due to the nature of the distributed online
subgradient push-sum algorithm.

A. Proof of the Main Result

In order to prove this result, we need to define a so-called
network regret. The network regret of agents (for the sequence
of functions {f t

i }
T
t=1) using {zi(t)}Tt=1, i ∈ V with respect to a

best fixed offline decision z� ∈ R
d is defined as

R(T ) :=
T∑

t=1

n∑
i=1

f t
i (zi(t))−

T∑
t=1

n∑
i=1

f t
i (z

�) (6)

where

z� ∈ argmin
z∈Rd

T∑
t=1

n∑
i=1

f t
i (z).

This regret function captures the difference between the col-
lective accumulated cost over time and the cost resulting from
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the best offline fixed choice, selected by assuming that the
information about the cost functions is available in advance.

Theorem 5.3—(Sublinear Network Regret Bound): Consider
a group of agentsV = {1, . . . , n} over a sequence of B-strongly
connected graphs, where T, n ∈ Z>0. Let {f t

1, f
t
2, . . . , f

t
n}Tt=1

be a sequence of convex cost functions that satisfies
Assumption 5.1. Then the sequence {z(t) = (z1(t), z2(t), . . . ,
zn(t))}Tt=1 generated by (3) with the learning rate α(t) =
(1/μt) satisfies the network regret bound

R(T ) ≤ C̃1 + C̃2 (1 + ln(T )) + C̃3 (1 + ln(T ))2

where

C̃1 =
8L

δ(1 − λ)

n∑
i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z�‖22

+
8μn

δ(1− λ)

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

C̃2 =
8L2

μδ(1 − λ)
+

8L

δ(1− λ)

n∑
i=1

‖xi(0)‖1

+
8nL

δ(1− λ)
‖x̄(0)− z�‖2 +

L2

2nμ

C̃3 =
8

δ(1 − λ)

L2

μ

z� is defined in (2), δ ∈ R>0 and λ ∈ R>0 depend on the
network topology, and L and x̄(0) are given by (5).

The proof relies on a sequence of results, which we present
next. Throughout the rest of this section, we adopt the notation
introduced in Theorem 5.2.

Lemma 5.4: Let {f t
1, f

t
2, . . . , f

t
n}

T
t=1 be a sequence of convex

cost functions that satisfies Assumption 5.1. Then the sequence
{z(t)}Tt=1 generated by (3) with the learning rate α(t), over a
sequence of B-strongly connected graphs, satisfies

R(T )≤
T∑

t=1

n∑
i=1

Li‖zi(t)−x̄(t−1)‖2+
n

2α(1)
‖x̄(0)− z�‖22

+
n

2

T−1∑
t=1

‖x̄(t)− z�‖22
(

1

α(t+ 1)
− 1

α(t)
− μ

)

−
T∑

t=1

n∑
i=1

μ(zi(t)−x̄(t−1))�(x̄(t−1)−z�)+
L2

2n

T∑
t=1

α(t)

where L and x̄(t) are given by (5).
Proof: Using Theorem A.2 of the Appendix and

Assumption 5.1, for any given initial condition and any agent
i ∈ V , we have that zi(t) stays in B̄(0, H(μK1/2L)) for all
t ∈ {1, 2, . . . , T }, where the modulus of strong convexity of
f is μ. Using (6) and since {{f t

i }
n
i=1}

T

t=1 is a sequence of
μ-strongly convex functions, we have that

R(T ) =
T∑

t=1

n∑
i=1

(
f t
i (zi(t)) − f t

i (z
�)
)

≤
T∑

t=1

n∑
i=1

(
gi(t)

� (zi(t)− z�)− μ

2
‖zi(t)− z�‖22

)
.

By adding and subtracting x̄(t− 1), we obtain

R(T )≤
T∑

t=1

N∑
i=1

(
gi(t)

� (zi(t)− x̄(t− 1) + x̄(t− 1)− z�)

− μ

2
‖zi(t)−x̄(t−1)+x̄(t− 1)− z�‖22

)

=

T∑
t=1

n∑
i=1

(
gi(t)

�(zi(t)−x̄(t−1))+gi(t)
�(x̄(t−1)−z�)

− μ

2

(
‖zi(t)−x̄(t−1)‖22+‖x̄(t−1)−z�‖22

+ 2(zi(t)−x̄(t−1))� (x̄(t−1)−z�)
))

.

(7)

Using (3), we have

x(t) = A(t− 1)x(t− 1)− α(t)g(t)

for all t ∈ {1, . . . , T }. Multiplying the equation by (1/n)(1n ⊗
Id)

� and using the fact that A(t− 1) is column stochastic, we
obtain

x̄(t) = x̄(t− 1)− α(t)

n

n∑
i=1

gi(t) (8)

where x̄(t) is given by (5). Subtracting z� and taking the norm
square, we get

‖x̄(t)− z�‖22 = ‖x̄(t− 1)− z�‖22 +
α2(t)

n2

∥∥∥∥∥
n∑

i=1

gi(t)

∥∥∥∥∥
2

2

− 2α(t)

n

[
n∑

i=1

gi(t)

]�

(x̄(t− 1)− z�) .

As a result, since ‖gi(t)‖2 ≤ Li, we have

[
n∑

i=1

gi(t)

]�

(x̄(t− 1)− z�)

≤ n

2α(t)

(
‖x̄(t− 1)− z�‖22 − ‖x̄(t)− z�‖22

)
+

α(t)

2n
L2

where L =
∑n

i=1 Li. Using this, we have

T∑
t=1

[
n∑

i=1

gi(t)

]�

(x̄(t− 1)− z�)

≤
T∑

t=1

n

2α(t)

(
‖x̄(t−1)−z�‖22−‖x̄(t)−z�‖22

)
+
L2

2n

T∑
t=1

α(t)

≤ n

2α(1)
‖x̄(0)− z�‖22 +

n

2

T−1∑
t=1

‖x̄(t)− z�‖22

×
(

1

α(t+ 1)
− 1

α(t)

)
+
L2

2n

T∑
t=1

α(t). (9)
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The proof then follows immediately using (7) and (9), along
with the fact that gi(·) is Li-bounded over Rd. �

We also recall the following result from [26], without stating
its proof.

Lemma 5.5—([26, Corollary 1]): Consider the sequences
{zi(t)}Tt=1, for all i ∈ V , generated by (3) on a sequence of
B-strongly-connected digraphs. Then we have

‖zi(t+ 1)− x̄(t)‖2

≤ 8

δ

(
λt

n∑
i=1

‖xi(0)‖1 +
t∑

s=1

λt−s
n∑

i=1

‖α(s)gi(s)‖1

)
(10)

where δ and λ ∈ R>0 satisfy

δ ≥ 1

nnB
and λ ≤

(
1− 1

nnB

) 1
(nB)

.

Additionally, if each of the graphsG(t) is regular, then δ=1 and

λ ≤ min

{(
1− 1

4n3

) 1
(B)

, max
t∈{1,...,T }

σ2 (A(t))

}
.

The constant δ measures the imbalance of the network and λ is
a measure of connectivity, see [25] for more details. We state a
corollary of this result, which plays a key role in the proof of
our main result.

Corollary 5.6: Under the assumption of Theorem 5.3, where
the learning rate is chosen as α(t) = 1/μt, we have

T∑
t=1

n∑
i=1

Li ‖zi(t)− x̄(t− 1)‖2

≤ 8L

δ(1− λ)

(
n∑

i=1

‖xi(0)‖1 +
L

μ
(1 + ln(T ))

)
. (11)

The proof follows immediately from the fact that:

n∑
i=1

‖gi(s)‖1 ≤ L and
T∑

t=1

α(t) ≤ 1

μ
(1 + ln(T )) .

The final stepping stone in the proof of Theorem 5.3 is
stated next.

Lemma 5.7: Under the assumption of Theorem 5.3, where
the learning rate is chosen as α(t) = 1/μt, we have

T∑
t=1

n∑
i=1

−μ (zi(t)− x̄(t− 1)) (x̄(t− 1)− z�)

≤ μ
8n

δ(1− λ)

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
8

δ(1− λ)

n∑
i=1

‖xi(0)‖1 L (1 + ln(T ))

+
8n

δ
L ‖x̄(0)−z�‖2

1+ln(T )

1− λ
+

8

δ(1−λ)

L2

μ
(1+ln(T ))2.

Proof: Using the Cauchy-Schwarz inequality, we have

−
T∑

t=1

n∑
i=1

μ (zi(t)− x̄(t− 1))� (x̄(t− 1)− z�)

≤
T∑

t=1

n∑
i=1

μ ‖zi(t)− x̄(t− 1)‖2 ‖x̄(t− 1)− z�‖2 .

Let X =
∑T

t=1

∑n
i=1 μ‖zi(t)− x̄(t− 1)‖2‖x̄(t− 1)− z�‖2.

From equation (8), we can write

‖x̄(t−1)−z�‖2≤‖x̄(0)−z�‖2+
∥∥∥∥∥
t−1∑
s=1

α(s)

n

n∑
i=1

gi(s)

∥∥∥∥∥
2

. (12)

Using (10) and (12), we can write

X ≤
T∑

t=1

n∑
i=1

μ
8

δ

⎛
⎝λt−1

n∑
j=1

‖xj(0)‖1

+

t−1∑
s=1

λt−1−s
n∑

j=1

‖α(s)gj(s)‖1

⎞
⎠

×

⎛
⎝‖x̄(0)− z�‖2 +

∥∥∥∥∥∥
t−1∑
s=1

α(s)

n

n∑
j=1

gj(s)

∥∥∥∥∥∥
2

⎞
⎠

≤
T∑

t=1

n∑
i=1

μ
8

δ

⎛
⎝λt−1

n∑
j=1

‖xj(0)‖1 ‖x̄(0)− z�‖2

+ λt−1
n∑

j=1

‖xj(0)‖1

(
t−1∑
s=1

α(s)

n
L

)

+ L ‖x̄(0)− z�‖2
t−1∑
s=1

λt−1−sα(s)

+
L2

n

t−1∑
s=1

λt−1−sα(s)

t−1∑
s=1

α(s)

⎞
⎠ . (13)

In the last inequality we used the subgradient bound. Letting
α(s) = 1/μs, we have

T∑
t=1

n∑
i=1

μ
8

δ
λt−1

n∑
j=1

‖xj(0)‖1 ‖x̄(0)− z�‖2

= μ
8n

δ

n∑
j=1

‖xj(0)‖1 ‖x̄(0)− z�‖2
T∑

t=1

λt−1

≤ μ
8n

δ(1− λ)

n∑
j=1

‖xj(0)‖1 ‖x̄(0)− z�‖2 (14)
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where we used the fact that
∑T

t=1 λ
t−1 ≤ (1/(1− λ)). We also

have that

T∑
t=1

n∑
i=1

μ
8

δn

n∑
j=1

‖xj(0)‖1 Lλ
t−1

t−1∑
s=1

1

μs

=
8

δ

n∑
j=1

‖xj(0)‖1 L
T∑

t=1

λt−1
t−1∑
s=1

1

s

≤ 8

δ

n∑
j=1

‖xj(0)‖1 L
T∑

t=1

λt−1 (1 + ln(t))

≤ 8

δ(1− λ)

n∑
j=1

‖xj(0)‖1 L (1 + ln(T )) (15)

where we used the fact that
∑T

t=1 λ
t−1(1 + ln(t)) ≤ ((1 +

ln(T ))/(1− λ)). Also, we have that

T∑
t=1

n∑
i=1

μ
8

δ
L ‖x̄(0)− z�‖2

t−1∑
s=1

λt−1−s 1

μs

= n
8

δ
L ‖x̄(0)− z�‖2

T∑
t=1

t−1∑
s=1

λt−1−s

s

≤ n
8

δ
L ‖x̄(0)− z�‖2

1 + ln(T )

1− λ
. (16)

Finally,

T∑
t=1

n∑
i=1

μ
8

δ

L2

n

t−1∑
s=1

(
λt−1−s

μs

) t−1∑
s=1

1

μs

≤ 8

δ

L2

μ

T∑
t=1

(1 + ln(t))

t−1∑
s=1

λt−1−s

s

≤ 8

δ(1 − λ)

L2

μ
(1 + ln(T ))2 . (17)

In (16) and (17), by rearranging the summation, we have∑T
t=1

∑t−1
s=1(λ

t−1−s/s)≤((1+ln(T ))/(1−λ)). Using (14)–(17)
in (13) then yields the result. �

We are now in a position to prove Theorem 5.3.
Proof of Theorem 5.3: Using Lemma 5.4 and the assump-

tion that the learning rate is chosen asα(t)=(1/μt), we have that

R(T ) ≤
T∑

t=1

n∑
i=1

Li ‖zi(t)−x̄(t− 1)‖2 +
n

2α(1)
‖x̄(0)− z�‖22

−
T∑

t=1

n∑
i=1

μ(zi(t)−x̄(t−1))�(x̄(t−1)−z�)+
L2

2n

T∑
t=1

α(t)

where we have used the fact that

n

2

T−1∑
t=1

‖x̄t − z�‖22
(

1

α(t+ 1)
− 1

α(t)
− μ

)
= 0.

Using Corollary 5.6 and Lemma 5.7, we have

R(T ) ≤ 8L

δ(1 − λ)

(
n∑

i=1

‖xi(0)‖1 +
L

μ
(1 + ln(T ))

)

+
n

2α(1)
‖x̄(0)− z�‖22

+ μ
8n

δ(1− λ)

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
8

δ(1− λ)

n∑
i=1

‖xi(0)‖1 L (1 + ln(T ))

+
8n

δ(1− λ)
L ‖x̄(0)− z�‖2 (1 + ln(T ))

+
8

δ(1− λ)

L2

μ
(1 + ln(T ))2 +

L2

2nμ
(1 + ln(T )) .

The proof then follows from rearranging the right-hand side. �
In order to establish the proof of Theorem 5.2, using the

previous result about the network regret, we provide an upper
bound on the individual regrets.

Proposition 5.8: Let {f t
1, f

t
2, . . . , f

t
n}

T
t=1 be a sequence of

convex cost functions that satisfies Assumption 5.1. Suppose
that the learning rate is chosen as α(t) = 1/μt, and the agents
use (3), over a sequence of B-strongly connected graphs, to
generate their states. Then for agent j ∈ V , we have

Rj(T )− R(T ) ≤ 16nLj

δ(1− λ)

(
n∑

i=1

‖xi(0)‖1+
L

μ
(1 + ln(T ))

)
.

Proof: First, note that

Rj(T )− R(T ) =
T∑

t=1

n∑
i=1

f t
i (zj(t))−

T∑
t=1

n∑
i=1

f t
i (zi(t))

=

T∑
t=1

n∑
i=1

(
f t
i (zj(t))− f t

i (zi(t))
)

≤
T∑

t=1

n∑
i=1

gj(t)
� (zj(t)− zi(t))

≤
T∑

t=1

n∑
i=1

Lj ‖zj(t)− zi(t)‖2 .

the last inequality follows from the convexity of cost functions
and boundedness of subgradients. We also have that

‖zj(t+ 1)− zi(t+ 1)‖22
= ‖zj(t+ 1)− x̄(t)‖22 + ‖zi(t+ 1)− x̄(t)‖22
− 2 (zj(t+ 1)− x̄(t))� (zi(t+ 1)− x̄(t))

≤ ‖zj(t+ 1)− x̄(t)‖22 + ‖zi(t+ 1)− x̄(t)‖22
+ 2 ‖zj(t+ 1)− x̄(t)‖2 ‖zi(t+ 1)− x̄(t)‖2

≤ 4

[
8

δ

(
λt

n∑
i=1

‖xi(0)‖1+
t∑

s=1

λt−s
n∑

i=1

‖α(s)gi(s)‖1

)]2
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where we used Cauchy-Schwarz inequality and the last inequal-
ity follows from Lemma 5.5. As a result

‖zj(t)− zi(t)‖2 ≤ 16

δ

×
(
λt−1

n∑
i=1

‖xi(0)‖1 +
t−1∑
s=1

λt−1−s
n∑

i=1

‖α(s)gi(s)‖1

)

Now by choosing α(t) = 1/μt, we have

T∑
t=1

n∑
i=1

Lj ‖zj(t)− zi(t)‖2

≤
T∑

t=1

nLj

(
16

δ
λt−1

n∑
i=1

‖xi(0)‖1 +
t−1∑
s=1

λt−1−s L

μs

)

≤ 16nLj

δ(1 − λ)

(
n∑

i=1

‖xi(0)‖1 +
L

μ
(1 + ln(T ))

)

which establishes the result. �
Proof of Theorem 5.2: The proof of Theorem 5.2 follows

by using the network regret bound in Theorem 5.3 and the
bound on the difference between the network regret and the
individual regret, obtained in Proposition 5.8. �

It is worth noting that one can proceed with the proof of
Theorem 5.2 if the learning rate is instead given by α(t) = C/t
where C ≥ 1/μ is a constant.

B. Dependency of the Upper Bound on the Number of Agents
for Ramanujan Graphs

It is fruitful to make the dependency on number of agents
of the upper bound provided in Theorem 5.2 explicit, at least
for some special cases. Motivated by the second statement of
Lemma 5.5, let us consider the class of regular (undirected)
graphs and in particular, the subclass of Ramanujan graphs.

Proposition 5.9: Suppose that {G(t)}Tt=1 is a B-strongly
connected sequence of Ramanujan d-regular graphs, d ≥ 3, of
order n. Under the conditions of Theorem 5.2, we have

Rj(T ) ≤ c1
dn2

d− 2
√
d− 1

+ c2
dn

d− 2
√
d− 1

(1 + ln(T ))

+ c3
d

d− 2
√
d− 1

(1 + ln(T ))2

for some constants c1, c2, c3 ∈ R≥0.
Proof: Suppose G(t) is a Ramanujan d-regular graph

with the unweighted adjacency matrix A(t). Then, using
[28, Definition 2.2], we have that σ2(A(t)) ≤ 2

√
d− 1. We

hence obtain λ ≤ σ2(A(t)) ≤ (2
√
d− 1)/d, where A(t) =

(1/d)A(t). Consider now the distributed online subgradient
push-sum algorithm (3), with A(t) as described. We also have

δ = 1 for regular graphs. Using Theorem 5.2, in particular (4),
we have that

C1 =
8L

δ(1− λ)

n∑
i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z�‖22

+
8μn

δ(1 − λ)

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
16nLj

δ(1 − λ)

n∑
i=1

‖xi(0)‖1.

Now, using δ = 1, d ≥ 3, and λ ≤ (2
√
d− 1)/d, we have that

C1 ≤ 8Ld

d− 2
√
d− 1

n∑
i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z�‖22

+
8μnd

d− 2
√
d− 1

n∑
i=1

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
16ndLj

d− 2
√
d− 1

n∑
i=1

‖xi(0)‖1.

Finally, using
∑n

i=1 ‖xi(0)‖1 ≤ nmaxi∈V ‖xi(0)‖1, we con-
clude that

C1 ≤ 8Lnd

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z�‖22

+
8μn2d

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1 ‖x̄(0)− z�‖2

+
16n2dLj

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1 ≤ c1
n2d

d− 2
√
d− 1

where

c1=max
i∈V

‖xi(0)‖1
(
8L

n
+8μ‖x̄(0)−z�‖2+16Lj

)
+
‖x̄(0)−z�‖22

2μn
.

Similarly, we have

C2 =
8L2

μδ(1 − λ)
+

8L

δ(1− λ)

n∑
i=1

‖xi(0)‖1 +
16nLj

δ(1− λ)

L

μ

+
8n

δ(1 − λ)
L ‖x̄(0)− z�‖2 +

L2

2nμ
.

Using δ = 1 and λ ≤ (2
√
d− 1)/d, we have that

C2 ≤ 8dL2

μ(d− 2
√
d− 1)

+
8Ld

d− 2
√
d− 1

n∑
i=1

‖xi(0)‖1

+
16ndLj

d− 2
√
d− 1

L

μ
+

8nd

d−2
√
d−1

L ‖x̄(0)−z�‖2+
L2

2nμ
.
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Hence, using
∑n

i=1 ‖xi(0)‖1 ≤ nmaxi∈V ‖xi(0)‖1, we con-
clude that

C2 ≤ 8dL2

μ(d− 2
√
d− 1)

+
8Lnd

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1

+
16ndLj

d− 2
√
d− 1

L

μ
+

8nd

d−2
√
d−1

L ‖x̄(0)− z�‖2 +
L2

2nμ

≤ c2
nd

d− 2
√
d− 1

where

c2=
8L2

μn
+8Lmax

i∈V
‖xi(0)‖1+

16LLj

μ
+8L‖x̄(0)−z�‖2+

L2

2n2μ
.

Finally, we have

C3 =
8

δ(1− λ)

L2

μ
≤ c3

d

d− 2
√
d− 1

where

c3 =
8L2

μ

which yields the result. �
Note that, using this result, for large values of T , the upper

bound grows linearly with the size of the network n.

VI. APPLICATION: COLLABORATIVE LOCALIZATION

We provide an example using our results for localization in
sensor networks, motivated by [20]. Consider a network of n
sensors, which is used to observe a vector s ∈ R

d. Each sensor
i ∈ V , at each time t ∈ {1, . . . , T }, receives an observation
vector qti ∈ R

di , which is time-varying due to, say, observation
noise. Each sensor i is assumed to have a linear model of the
form pi(s) = Pis, where Pi ∈ R

di×d and Piv = 0 if and only
if v = 0. The best estimation for s is the vector ŝ ∈ R

d that
minimizes the cost function

f(ŝ) =

T∑
t=1

n∑
i=1

1

2

∥∥qti − Piŝ
∥∥2

2
.

The observation vector is modeled as qti = Pis+ wt
i where

wt
i is assumed to be white noise. In the offline setting, we have

all the information to compute the optimal estimate, which is
given by

s� =
1

T

T∑
t=1

(
n∑

i=1

P�
i Pi

)−1 ( n∑
i=1

P�
i qti

)
.

As we describe shortly, when the noise characteristics are
not known, or in some cases where some sensors fail to work
properly, we can use a distributed online algorithm to find an
estimate for the state s. Here, we consider a scenario in which
d = 1 and a network of 100 sensors is used to observe. At each
time step t ∈ {1, . . . , T }, a random directed graph is generated,
describing the sensor communication. This random directed
graph, denoted by G(n, p, r), where r is an even number and

is generated as follows: First, we label each vertex a number
from 1 to n and we generate an r-regular directed graph of
order n, which has rn edges by imposing that vertex i and
vertex j are connected by two directed edges if |i− j| ≤ r/2 or
|i− j| ≥ n− r/2. Then we delete each edge, independently of
others, with probability p. Next, among all the vertices that are
incident to the set of deleted edges, say N edges, we randomly
choose N ordered pairs and connect each pair with a directed
edge. Now we have a random directed graph of order n with rn
edges.

In our model, sensor i observes qti = atis+ bti, where ati ∈
[amin, amax] and bti ∈ [bmin, bmax] are chosen at random from
a uniform distribution. The cost function for sensor i at each
time t is given by the mapping f t

i : R → R, where f t
i (ŝ) =

(1/2)(qti − Piŝ)
2 and Pi ∈ R. We use the distributed online

subgradient push-sum algorithm to estimate the state s. We
consider three scenarios:

1) sensors have the same observation model, that is, the
model we use for qti is the same for all sensors, and can
communicate over a sequence of time-varying directed
graphs;

2) sensors have the same observation model, but they cannot
communicate with each other;

3) sensors have different observation models and they can
communicate over a sequence of time-varying directed
graphs.

In what follows, we simulate the sensors’ state estimation
over time and study the sensors’ regret for each scenario.

1) Same Observation Model With Communication: We as-
sume the actual value s = 1/4 which is unavailable to sensors.
Each sensor i ∈ V , at each time t ∈ {1, . . . , T } observes qti .
In this model, we assume qti = atis+ bti, where ati and bti are
chosen at random from a uniform distribution on [0, 2] and
[−(1/2), (1/2)], respectively. We also have Pi = 1, for all i ∈
{1, . . . , n}, which is the expected value of random variable
ati. The communication topology is given by a time-varying
G(100, 0.2, 2) random directed graph.

Fig. 1 shows the states of four sensors over 100 time
iterations. By using the distributed online subgradient push-
sum algorithm (3), the subgradient of cost functions and the
communication between sensors result in a consensus between
sensors as shown in the figure. The consensus value is 1/4, the
expected value of sensor observations. Fig. 2 shows the average
individual regret of the two sensors with the maximum and
minimum average regrets over time.

In the previous example, the expected value of the minimizer
of the cost functions for each sensor is the same. Therefore, if
each sensor uses an online algorithm without communicating
with other sensors, they converge to the same value; how-
ever, the communication might accelerate this convergence, as
demonstrated next.

2) Same Observation Model Without Communication: Con-
sider a scenario with the assumptions as before, with the
exception that there is no communication between sensors.
Figs. 3 and 4 show, respectively, the estimates of four sen-
sors and the average individual regret of one sensor, picked
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Fig. 1. Sensors’ state estimation versus time for four of the sensors are
shown. The network consists of 100 sensors communicating over a sequence of
G(100, 0.2, 3) random directed graph. The ith sensor observes qti = atis+ bti ,
where ati and bti are random variables chosen from [0, 2] and [−(1/2), (1/2)],
respectively, with a uniformly probability distribution. We use distributed
online subgradient push-sum algorithm to estimate ŝ which minimizes the cost
function f(ŝ) =

∑T
t=1

∑n
i=1(1/2)(q

t
i − Piŝ)

2. The result demonstrates
consensus among sensors.

Fig. 2. Average regrets over time (Rj(T )/T ) versus T for two sensors with
maximum and minimum average regrets that are shown, where the same
assumptions as the ones in Fig. 1 hold.

at random, in the presence and absence of communications
over time.

3) Different Observation Model With Communication: Con-
sider a scenario with the same assumptions as above, with the
exception that the observation vector qti = atis+ bti is available
to sensor i, where ati and bti are chosen at random from a uni-
form distribution on [0, 2] and [−0.5 + ((i − 50)/100), 0.5+
((i − 50)/100)], respectively. In this sense, and in contrast
to the previous case, sensors do not use the same observa-
tions model. The communication network is a time-varying
G(100, 0.2, 2) random directed graph. We use the distributed
online subgradient push-sum algorithm to estimate ŝ. The con-
sensus among sensors is shown in Fig. 5, where the sensors’
estimates approach the expected value of sensor observation.
Fig. 6 shows the individual regret goes to zero as time increases
without bound.

Fig. 3. Sensors’ state estimation versus time for four of the sensors are
shown. The network consists of 100 sensors with no communications. The ith
sensor observes qti = atis+ bti , where ati and bti are chosen at random from a
uniform distribution on [0, 2] and [−0.5, 0.5], respectively. We use distributed
online subgradient push-sum algorithm to estimate ŝ which minimizes the cost
function f(ŝ) =

∑T
t=1

∑n
i=1(1/2)(q

t
i − Piŝ)

2.

Fig. 4. Average individual regrets versus time for one sensor, picked at random
among 100 sensors, in the presence and absence of communications over
time are shown, where the same assumptions as the ones in Fig. 3 hold,
and we consider two cases: First, there is communication between sensors
and second, there is no communication between them. The results shows that
communication gives a better regret.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced a subgradient-push discrete-dynamical
system for distributed online convex optimization, where agents
can communicate their state estimates over a sequence of time-
varying directed graphs. Under the assumption that agents’ cost
functions are locally Lipschitz and locally strongly convex,
we have proved that the proposed algorithm achieves sublin-
ear worst-case regret bound on any sequence of uniformly
strongly connected time-varying directed graphs. In particular,
by choosing a suitable learning rate, we have shown that the
network regret bound is logarithmic, up to a square. Although,
this bound is slightly worse than the known regret bounds in the
centralized case, the algorithm works for general time-varying
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Fig. 5. Sensors’ state estimation versus time for four of the sensors are shown.
The network consists of 100 sensors communicating through a sequence of
G(100, 0.2, 2) random directed graphs. The ith sensor observes qti = atis+ bti
where ati and bti are chosen at random from a uniform distribution on [0, 2]
and [−0.5 + ((i− 50)/100), 0.5 + ((i − 50)/100)], respectively. We use
the distributed online subgradient push-sum algorithm to estimate ŝ which min-
imizes the cost function f(ŝ) =

∑T
t=1

∑n
i=1(1/2)(q

t
i − Piŝ)

2. The result
demonstrates consensus among sensors.

Fig. 6. Average individual regret over time Rj(T )/T versus time for two
sensors is shown, one has the maximum average regret and the other one has the
minimum average regret, where the same assumptions as the ones in Fig. 5 hold.

network topologies. We also showed that the individual regret
bound grows linearly by the size of network for Ramanujan
graphs. Improving the regret bound, considering scenarios with
constraints, extending the results to general convex functions,
investigating other application areas, and studying the regret
bound on special classes of graphs are among the avenues for
future work.

APPENDIX

In this section, we study the boundedness of agents’ states,
where agents use (3) to generate the sequence {z(t)}Tt=1

over a sequence of B-strongly connected graphs. We assume
that the sequence of cost functions {f t

1, . . . , f
T
n }Tt=1 satisfies

Assumption 5.1.

Lemma A.1: For T ∈ R>0, let {f t
1, . . . , f

T
n }Tt=1 be a se-

quence of convex functions on R
d with a nonempty set of

minimizers, where each f t
i has a Li-bounded subgradient

set. Let

∪n
i=1 ∪T

t=1 argmin f t
i ⊂ B̄(0,K1)

for some K1 ∈ R>0 independent of T , and assume {f t
1, . . . ,

f t
n}

T
t=1 are β-central on R

d\B̄(0,K1), where β∈(0, 1]. Then,
for any sequence {(z1(t), . . . , zn(t))}Tt=1 and {x̄(t)}Tt=1 gen-
erated by (3) over a sequence of B-strongly connected graphs,
and any sequence of learning rates {α(t)}Tt=1, we have

‖x̄(t)‖2 ≤ rβ +
L

n
max
s≥1

α(s) + ‖x̄(0)‖2
‖zi(t)‖2 ≤H(β) (18)

for all t > 0, where L =
∑n

i=1 Li

rβ = max

{
K1 +K2

β
√
1− ε2 − ε

√
1− β2

,
L

2nε
max
s≥1

α(s)

}

H(β) = rβ + ‖x̄(0)‖2 +K2 +
L

n
max
s≥1

α(s) (19)

with ε ∈ (0, β) and K2 ∈ R>0.
Proof: First, we prove the boundedness of ‖x̄(t)‖2 by

induction on t. Note that the initial condition ‖x̄(0)‖2 satisfies
(18). Using (8), we conclude that if x̄(t) ∈ B̄(0, rβ), then

x̄(t+ 1) ∈ B̄

(
0, rβ + Lmax

s≥1
α(s)/n

)
.

With an argument very similar to the one in the proof [19,
Lemma V.7], we have that if x̄(t) ∈ R

d \ B̄(0, rβ), then ‖x̄(t+
1)‖2 ≤ ‖x̄(t)‖2. Next, using Lemma 5.5, for all t, we have that

‖zi(t+ 1)− x̄(t)‖2 ≤ K2

for some K2 ∈ R>0. We hence conclude that ‖zi(t)‖2 ≤
H(β), where H(β) is given in (19). �

Theorem A.2: For T ∈ R>0, let {f t
1, . . . , f

T
n }Tt=1 be a se-

quence of convex functions on R
d with a nonempty set of

minimizers, where each f t
i has Li-bounded subgradient set. Let

∪n
i=1 ∪T

t=1 argmin f t
i ⊂ B̄

(
0,

K1

2

)

for some K1 ∈ R>0 be independent of T . Suppose that
{f t

1, . . . , f
t
n}

T
t=1 is a sequence of μ-strongly convex func-

tions on B̄(0, H(μK1/2L)), for some μ ∈ R>0, where H(·)
is defined in (19). Then, {zi(t)}ni=1, generated by (3) over
a sequence of B-strongly connected graphs, stays in B̄(0,
H(μK1/2L)), for all t.

Proof: With an argument very similar to the one in
the proof [19, Lemma V.6], K1 < rβ < H(μK1/2L) and,
hence, K1 < H(μK1/2L). Thus, f t

i is μ-strongly convex in
B̄(0,K1) and an application of [19, Lemma V.9] implies that
each f t

i is β′-central on R
d \ B̄(0,K1), where β′ ≤ (μK1/2L).

Hence, the assumptions of Lemma A.1 are satisfied with
β = (μK1/2L) and, as a result, zi(t) remains in the region
B̄(0, H(μK1/2L)). �
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